
Packing optimization of practical systems
using a dynamic acceleration methodology
Christopher Douglas1, Jae Sung Huh2, Sang Ook Jun2 and Il Yong Kim3*

Introduction
The design of mechanical systems is often a challenging task with strong incentives and
competition within industry to produce cost-effective and best-performing products.
This design process often requires several design cycles before a final product is pro-
duced and may take a significant about of time and resources per cycle. As a result, there
is a growing demand in the industry for better performing, more efficient, and cost-
effective design tools to assist designers during the design process. Moreover, the ever-
increasing complexity of mechanical systems today often necessitates a shift away from

Abstract

System design is a challenging and time-consuming task which often requires close
collaboration between several multidisciplinary design teams to account for com-
plex interactions between components and sub-systems. As such, there is a growing
demand in industry to create better performing, efficient, and cost-effective develop-
ment tools to assist in the system design process. Additionally, the ever-increasing
complexity of systems today often necessitates a shift away from manual expertise
and a movement towards computer-aided design tools. This work narrows the scope
of the system design process by focusing on one critical design aspect: the packag-
ing of system components. The algorithm presented in this paper was developed
to optimize the packaging of system components with consideration of practical,
system-level functionalities and constraints. Using a dynamic acceleration methodol-
ogy, the algorithm packages components from an initial position to a final packed
position inside of a constrained volume. The motion of components from initial to final
positions is driven by several acceleration forces imposed on each component. These
accelerations are based on physical interactions between components and their
surrounding environment. Various system-level performance metrics such as center
of mass alignment and rotational inertia reduction are also considered through-
out optimization. Results of several numerical case studies are also presented to dem-
onstrate the functionality and capability of the proposed packaging algorithm. These
studies include packaging problems with known optimal solutions to verify the effi-
cacy of the algorithm. Finally, the proposed algorithm was used in a more practical
study for the packaging of an urban air mobility nacelle to demonstrate the algorithm’s
prospective capabilities in solving real-world packaging problems.

Keywords: Packaging optimization, Layout optimization, Packing density, Vector fields

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Douglas et al.
Journal of Engineering and Applied Science (2024) 71:92
https://doi.org/10.1186/s44147-024-00426-6

Journal of Engineering
and Applied Science

*Correspondence:
kimiy@queensu.ca

1 Queen’s University, Kingston,
Canada
2 Korea Aerospace Research
Institute, Daejeon, South Korea
3 Department of Mechanical
and Materials Engineering,
Queen’s University, 130 Stuart
Street, Kingston, ON K7L 3N6,
Canada

http://orcid.org/0000-0003-3386-8626
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-024-00426-6&domain=pdf

Page 2 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

relying solely on manual expertise and a movement towards integrating computer-aided
design tools into the design process. Such computational tools not only assist designers
in satisfying all performance metrics and reducing total design hours but also aim to
generate designs that are optimal.

One of the key drivers of mechanical system performance is the distribution or layout
of components within the system, an ideal problem for solving using packaging optimi-
zation. Packaging optimization is a class of computational design tools that can be used
for solving such component distribution problems. Typically, packaging optimization
problems are tasked with determining the positions and orientations of a set of objects
within a restricted volume or domain, such that an objective is maximized or minimized.

There exist three primary challenges inherent to packing type problems: their NP-hard
computational complexity, high multi-modality, and initial condition dependence. Prob-
lems of NP-hard complexity have solutions that can be checked and verified in poly-
nomial time but may not be solvable in polynomial time [1]. Well-known examples of
NP-hard type problems are the traveling salesman problem [2], the knapsack problem
[3], or the bin packing problem [4], where an optimal solution can always be found, but
the number of inputs significantly increases the complexity and computation time of
finding an optimal solution. NP-hard problems are also inherently non-deterministic,
making it challenging or even impossible to derive an analytic solution [5]. Due to the
high multi-modality of packaging problems, design spaces are commonly unpredictable,
noisy, and include many locally optimum solutions. As a result, certain solutions may
be unlikely or impossible for some packing algorithms to achieve based on certain input
conditions. This typically necessitates several individual optimizations with differing ini-
tial conditions to ensure that the design space is thoroughly explored.

Packing problems have been a topic of interest in literature and academia for decades.
Due to their widespread applicability, it is not surprising that they have found applica-
tions in various fields such as biology [6, 7], material science [8, 9], engineering [10, 11],
and manufacturing [12, 13]. Packaging problems are often attempted to be solved using
non-gradient, heuristic, and stochastic-based optimization methods used to simplify
the problem and relax the design space. Arguably, the simplest heuristic algorithms for
packing problems are a set of “fitness”-based algorithms such as first fit [14], next fit
[15], best fit [16], and last fit [17] packing algorithms. These algorithms are straightfor-
ward to implement and easily generalizable to fit most types of packing-related prob-
lems. However, fitness-based algorithms rely, in part, on random selection and thus do
not generally lead to optimum solutions. Evolutionary, meta-heuristic, and probabilistic
optimization methods such as genetic algorithms and simulated annealing are also pop-
ular packaging methods. Given their population-based methodology, the design space
can be explored in several directions simultaneously: ideal for algorithm parallelization
but tend to be slow and require unique tuning of several algorithm parameters for each
unique problem [18, 19]. Wodziak and Fadel successfully used a genetic algorithm-based
approach for the packaging of boxes into tractor trailers [20]. Their algorithm was shown
to provide viable solutions that not only considered packing density but also considered
center of gravity. However, optimization runtimes were shown to take upwards of sev-
eral hours for only a few dozen geometrically simplistic components. Other examples
of packaging optimization using genetic algorithms include the novel method for the

Page 3 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

placement procedure of components by Gonçalves and Resende [21], the hybrid genetic
algorithm approach to three-dimensional bin packaging problems by Feng and Moon
[22], and hybrid genetic algorithm and linear programming approach by Liu and Si [23].
Multiple novel approaches to packaging using simulated annealing such as the “neigh-
borhood structure” method by Dowsland and Soubeiga [24], or domain-component
and component-component spatial consideration strategies by Cagan and Degentesh
[25], are just a few examples among dozens in literature. Gomes and Oliveira also uti-
lized simulated annealing to solve irregular strip packing problems with novel methods
for handling non-convex shapes [26]. Their algorithm was limited to two-dimensional
geometries, and additional heuristic subroutines related to the initial layout of compo-
nents were required to combat relatively high runtimes due to the simulated anneal-
ing process. These types of initial condition rulesets and deterministic pre-solvers are
both common inclusions in packaging algorithms in attempts to reduce initial condi-
tion dependence and decrease optimization time. Pre-solvers generate initial condi-
tions by first automatically deriving an initial feasible solution to provide the packaging
algorithm, used in such work as Torres and Hitschfeld for modeling of rock and porous
media [27]. Pre-solvers should be implemented carefully, however, to avoid rapidly con-
verging on less optimal solutions and to ensure the design space remains thoroughly
explorable. Feasible packaging solutions also commonly require that objects are posi-
tioned without the existence of geometric overlap between them. When this constraint
is applied, implementation of packaging algorithms, specifically ones used to pack three-
dimensional, non-convex objects, commonly sacrifices geometric accuracy in favor of
computational efficiency to avoid the mathematically complex and computationally
expensive geometric overlap measurement computations. Several types of methods used
for geometric simplification can be found in literature. Such examples include the work
by Fernandez and Bennell where objects were non-convex components were approxi-
mated into cube-like voxels [28]. Using this method, optimization runtimes could be
reduced at the geometric accuracy cost of coarse voxel refinement and vice versa. In the
work by Pankratov and Romanova, complex geometries were approximated from the
union of a collection of pre-defined basic geometries (e.g., spheres, cylinders, cones)
[29]. While this approach has limited capabilities in accurately representing practical
geometries, the proposed algorithm was shown to have relatively rapid runtimes. Demir
and Aliaga proposed a novel method for the automatic decomposition of objects into
near-convex sub-components for use in the packaging of additive manufacturing com-
ponents [30]. Such geometric simplifications result in conservative solutions with objec-
tives that could be made significantly more optimal if true geometries were considered.

In recent years, the utilization of artificial intelligence in the form of deep and rein-
forcement learning algorithms has gained significant traction as an approach for tackling
general optimization problems. This trend is bolstered by the increasing accessibility of
open-source frameworks. When focusing on packaging optimization problems, several
examples in literature exist that explore the efficacy of artificial intelligence as a value
tool in addressing the diverse array of packaging optimization challenges. For example,
deep reinforcement learning approaches have been shown for solving the rectangular
strip packaging problem by Fang and Rao [31], for an autonomous ore packing system by
Ren and Zhong [32], and the optimal vehicle packing space optimization with a focus on

Page 4 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

packing sequence of items by Tian and Kang [33]. Like the reliance on tuning parameters
of the previously discussed methods, the literature has shown that a primary drawback
of these deep learning is the reliance on training data, which may not be readily available
for a given type of packaging problem. Even if training data can be used, overfitting may
occur if training is done on small data sets, potentially reducing the scalability and flex-
ibility of the packaging optimizer.

The state-of-the-art packaging algorithms typically involve multi-physics or multi-
objective problem statements; however, few examples of the successful implementation
of multi-objective packing can be found in literature. This can be attributed to the high
complexity and challenge of modeling several physical effects (thermal, vibrational, etc.)
in relation to component layout while simultaneously accounting for the aforementioned
challenges inherent to packing problems in general. Despite this, researchers are contin-
uing to strive for novel approaches to this difficult type of optimization problem [34–38].

The proposed packaging optimization algorithm in this work uses the framework
developed by Carrick and Kim [39]. Carrick and Kim proposed a novel packaging opti-
mization method aimed to produce a non-probabilistic, heuristic, packaging algorithm
which could consider such performance measures. In this work, packaging optimization
was achieved through the dynamic simulation of component position and orientation
over time. The motion of components from their initial positions and orientations to
their final, packed positions and orientations are driven by dynamically updated “pack-
aging accelerations” imposed onto the components. Components are accelerated using
heuristic rulesets based on optimization objectives and physical effects between compo-
nents or the environment. Undesirable interactions between components increase the
magnitude of these packaging accelerations which then accelerate components towards
positions and orientations that produce favorable interactions. Therefore, throughout
optimization, components are continuously accelerated towards positions and orienta-
tions that minimize their interaction potential and packaging acceleration magnitudes.
Local optimum solutions are then found once all components have collectively settled
into a low energy state where component interactions are minimized, resulting in all
components coming to rest. An example of the behavior of Carrick and Kim’s packaging
algorithm is shown in Fig. 1.

The current state-of-the-art packaging optimization methodologies and algorithms
lack the extensive and simultaneous consideration of several key aspects of practical
packaging problems. First, packaging methodologies are commonly developed to solve
individual packaging problems using heuristics tuned to best fit unique packaging prob-
lems. Ideally, the packaging optimization algorithm could be utilized to solve a wide
variety of practical packaging problems with minimal adjustments or tuning of the algo-
rithm parameters. The ability to accurately represent the commonly three-dimensional,
non-convex geometries of practical system components is also uncommonly accounted
for in the literature. Most algorithms proposed in the literature either enforce convex
approximations or construct geometric representations of components using a limited
collection of simplified shapes. Furthermore, maximizing packing density is the sole
focus of most packaging algorithms in literature, neglecting any other practical engi-
neering design factors or system performance metrics. The position and orientation
of components commonly have a direct effect on system performance in areas such as

Page 5 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

stability, center of mass, thermal performance, vibrational considerations, and more.
As a result, packing density alone is insufficient for practical packaging solutions, and
a multi-objective approach or additional physical constraints are required to properly
model the packaging problem and produce meaningful results.

The objective of this work is to address both (i) the time-sensitive and resource-inten-
sive challenges inherent to the cyclical nature of mechanical systems design and (ii) the
NP-hard computational complexity, high multi-modality, and initial condition depend-
ence challenges inherent to packaging problems by significantly improving and expand-
ing upon the novel dynamic vector fields methodology framework developed by Carrick
and Kim. The continued development of this dynamic acceleration approach aims to
contribute to the field of mechanical system design by proposing a new algorithm that
is more efficient, improves optimization stability and convergence reliability, and con-
siders practical performance metrics that go beyond packing density. Primary contri-
butions specifically include updated accuracy and efficiency improvements to several
of the existing packaging acceleration methodologies, improved methods for the han-
dling of three-dimensional convex and non-convex components, and the simultaneous
consideration of center of mass and rotational inertia system performance metrics in
addition to packing density. The remainder of this paper begins by providing a theory
and methodology overview, followed by several numerical examples to demonstrate the
effectiveness of the proposed algorithm. The paper ends with a discussion of the results
and recommendations for future improvements that could increase the robustness of
the algorithm.

Methods
In packaging optimization problems, efficient distribution of components within a con-
strained domain is generally measured with packing density, defined as the ratio of the
sum of component volumes to the convex hull surrounding all components. The optimi-
zation objective used in this algorithm is therefore set as the minimization of negative

Fig. 1 Left: Dynamic layout of components. Right: Packing density per iteration [39]

Page 6 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

packing density. The generalized mathematical optimization statement is stated as
follows:

where ρp represents the packing density of the system’s components, Vi is the volume of
component i , and VCH is the volume of the convex hull encapsulating all components, nc
is the number of components, pi is the position of the geometric centroid of component
i with respect to the coordinates [x, y, z] , qi is the quaternion orientation of component i
defined by its axis of rotation [Rx,Ry,Rz] and angle θ , sI is the system’s rotational inertia,
sCOM is the system’s center of mass, sICOM is the intended center of mass, I∗ and COM∗
are the upper limits on rotational inertia and center of mass deviation constraints, oi,j is
the geometric overlap between component i and component j with geometric overlap
tolerance TOL, and d2pi/dt2 DE

 is the domain-containment acceleration of component
i , representing its containment within the domain. The workflow for the presented pack-
aging optimization algorithm in this work can be summarized and grouped into three
distinct phases: initialization, main loop, and outputs. The initialization phase retrieves
all input data (e.g., geometry files, initial component poses, system elements) required to
define the first optimization iteration. Next, the main loop phase executes the packaging
optimization algorithm itself. Finally, the output phase extracts and reports the results of
the converged optimization. The flowchart in Fig. 2 illustrates this methodology.

The presented packaging optimization algorithm packages components from an initial
position to a final packed position inside of a constrained volume, denoted a domain.
The dynamic motion of components from their initial to final positions is driven by the
summation of several packaging acceleration forces imposed on each component. These
individual accelerations are each derived from physical interactions between compo-
nents, the domain, and any system-level design requirements and constraints. Interac-
tions between components that produce unfavorable performance metrics because of
their relative positions and orientations (poses) trigger the acceleration of components
towards more favorable poses. This behavior iteratively lowers the interaction potential
of the system of components and ultimately results in components coming to rest over
time. The optimally packed configuration is then established once all components come
to rest.

Component geometries are imported into the algorithm in stereolithography (STL)
format which automatically discretizes each component into triangular faces. The
position of each component is tracked throughout optimization using its geometric
centroid, and each vertex of every triangular face is tracked relative to this geometric

Minimize ρp = −
∑nc

i=1Vi

VCH
(Packing density)

w.r.t pi
(

x, y, z
)

(Position)

qi
(

Rx,Ry,Rz , θ
)

(Quaternion orientation)

Subject to sI ≤ I∗ (Rotational inertia)

�sCOM − sICOM� ≤ CoM∗ (Center of mass)
�oi ,j� ≤ TOL (Component geometric overlap)

�d2pi
dt2 DE

� = 0 (Component− domain acceleration)

Page 7 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

centroid. As several of the packaging acceleration methodologies rely on convex
geometries, non-convex/concave components must be discretized into sets of convex
sub-components. Each sub-component’s position is then tracked relative to an arbi-
trary “base” sub-component.

However, components found within practical, real-world systems are more likely to
have complex, non-convex/concave geometries that can be mathematically challeng-
ing to handle. Furthermore, several geometry-related computations and sub-algo-
rithms within the presented packaging algorithm are only valid for convex geometries.
As a result, the presented algorithm handles non-convex components by discretizing
them into several convex sub-components. All sub-components are then subjected
to all packaging accelerations individually. Translational connectivity throughout the
dynamic motion of a set of sub-components is then achieved by averaging the total
acceleration of all sub-components within the same group and applying the result to
each sub-component equally before positional updates.

To produce physically meaningful solutions, no two components may have overlap-
ping geometries when in their final packed positions. The geometric overlap resolu-
tion (GOR) acceleration is therefore tasked with repelling overlapping components
and is derived using a two-step process: overlap detection and overlap resolution.
The first step of overlap detection is implemented using the Gilbert-Johnson-Keerthi
(GJK) algorithm [40]. The GJK algorithm not only allows for the detection of overlap
between two convex shapes but also provides the minimum distance between them if
they are not overlapping. Although the GOR acceleration only utilizes GJK’s overlap
detection output, the minimum distance output is also stored for use later in the algo-
rithm. If GJK detects two components are overlapping by any amount, the expand-
ing polytope algorithm (EPA) is then utilized to compute the maximum amount of
overlap [41]. The penetration vector output from EPA, representing the maximum

Fig. 2 Packaging optimization algorithm flowchart

Page 8 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

overlap, is then used to derive the GOR acceleration for each overlapping component
as follows:

where
(

d2pi/dt
2
)

GOR
 is the GOR acceleration of component i , SGOR is the GOR global

acceleration scaler, oi,j is the penetration vector of component i with respect to com-
ponent j , and nc is the number of components. By default, GOR acceleration is applied
when the magnitude of oi,j is greater than zero (i.e., constraining any amount of geomet-
ric overlap). To improve convergence stability and reduce runtime, the user may option-
ally decide to relax this constraint by permitting some allowable geometric overlap
tolerance. If a nonzero tolerance is applied, GOR acceleration is instead applied when
the magnitude of oi,j is greater than the tolerance value. A two-dimensional illustration
of the behavior of the GOR acceleration is shown in Fig. 3.

To achieve densely packed configurations, components are encouraged to group
together through attraction-based accelerations. The component attraction (CA) accel-
eration accelerates all components towards each other’s geometric centroids as a func-
tion of component proximity. The farther apart two components are from each other,
the stronger they will be attracted to one another by the CA acceleration. Component
proximity, set as the minimum distance between the surfaces of two components, is
pre-computed in the GJK algorithm utilized in the GOR acceleration computations.
This minimum distance is then set as the magnitude of the CA acceleration such that
when two components come into contact, no further CA acceleration between them is
applied. However, the magnitudes of all CA accelerations are first penalized based on

(1)
−−→
d2pi

dt2 GOR
= SGOR

nc
∑

j=1

−→o i,j

Fig. 3 Illustration of the acceleration magnitude for geometric overlap resolution acceleration

Page 9 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

relative component distances. This penalization process minimizes attraction of compo-
nents located very far from each other and encourages attraction of components located
close to each other, effectively only permitting local component attraction. The CA
acceleration is then mathematically formulated as follows:

where
(

d2pi/dt
2
)

CA
 is the CA acceleration of component i , SCA is the global CA accel-

eration scalar, Pi,j is the distance penalization factor for component i with respect to
component j , and pi and pj are the positions of the geometric centroids of component i
and component j , respectively, dmax and dmin are the maximum and minimum distances
with respect to all components, di,j is the minimum distance between component i and
component j , and γ is the penalization exponent. A two-dimensional illustration of the
behavior of the CA acceleration is shown in Fig. 4.

Solving practical packaging problems generally necessitates the containment of all
components into a domain with a fixed volume and orientation. The domain encapsula-
tion (DE) acceleration is therefore tasked with accelerating components into the domain
using a modified methodology first developed by Carrick and Kim. If a component exists
entirely or partially outside of the domain, identified using the GJK algorithm, the vector
from the vertex of the component furthest outside of the domain to the closest domain
surface is stored. This vector is then used to set each component’s DE acceleration mag-
nitude and direction. However, if a component exists entirely within the domain, identi-
fied by checking if each vertex of the component is located within the domain, no DE
acceleration is applied. The DE acceleration is therefore formulated as follows:

(2)

−−→
d2pi
dt2 CA

= SCA
nc
∑

j=1

Pi,j
−−−−−→(

pj − pi
)

where Pi,j =
(

dmax−di,j
dmax−dmin

)γ

Fig. 4 Illustration of the acceleration magnitude for component attraction acceleration

Page 10 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

where
(

d2pi/dt
2
)

DE
 is the DE acceleration of component i , SDE is the DE global accel-

eration scaler, and xi,d is the minimum distance of component i to the exterior sur-
face domain d . A two-dimensional illustration of the behavior of the DE acceleration is
shown in Fig. 5.

Center of mass alignment is an optional system-level performance metric included in this
algorithm. The center of mass alignment (COMA) acceleration is tasked with accelerating
components towards positions that minimize the deviation between the intended center of
mass (manually input by the user) and the current center of mass of components through-
out optimization. The current center of mass at any given iteration is first computed using a
point mass assumption:

where sCOM represents the current center of mass of the system, nc represents the num-
ber of components, pi is the position of the geometric centroid of component i , mi is
the mass of component i , and mT is the total mass of all components. For each compo-
nent, its position that would individually align the intended center of mass of the system
(assuming all other components were fixed) is determined using the following equation:

(3)
−−→
d2pi

dt2 DE
= SDE

−→
xi,d

(4)sCOM =
nc
∑

i=1

mipi

mT

(5)pi
COM =

mT

(

sICOM − sCOM−i

)

mi

Fig. 5 Illustration of the acceleration magnitude for domain encapsulation acceleration

Page 11 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

where pcomi represents the position of component i that would align the system’s cur-
rent center of mass to the intended center of mass sICOM , sCOM−i is the system’s center of
mass when component i is excluded, and mi and mT represent the mass of component i
and the total mass of all components respectively. The COMA acceleration is then math-
ematically formulated as follows:

where
(

d2pi/dt
2
)

COMA
 is the COMA acceleration of component i , SCOMA is the COMA

global acceleration scaler, sICOM is the intended center of mass, sCOM is the current center
of mass of the system, pcomi is the position of component i that would align the system’s
current center of mass to the intended center of mass, and pi is the position of the geo-
metric centroid of component i . The COMA acceleration methodology is illustrated in
Fig. 6.

Rotational inertia is another optional system-level performance metric included in this
packaging optimization algorithm. The rotational inertia reduction (RIR) acceleration is
tasked with minimizing the rotational inertia about a rotation axis (manually input by the
user) by accelerating components towards the rotation axis. The rotational inertia about the
rotation axis is approximated using a point mass assumption:

where sI is the rotational inertia of the system, nc is the number of components in
the system, mi is the mass of component i , and ri is the perpendicular vector from

(6)

−−→
d2pi

dt2 COMA
= SCOMA

(−−−→
sICOM −−−−→sCOM

)

(−−−→
pCOMi +

(−−−→
sICOM −−−−→sCOM

)

+
(−−−→
sICOM −−→

pi

))

�
(−−−→
pCOMi +

(−−−→
sICOM −−−−→sCOM

)

+
(−−−→
sICOM −−→

pi

))

�

(7)sI =
nc
∑

i=1

mi
−→ri

2

Fig. 6 Vector summation method used to dictate the direction of the center of mass alignment acceleration

Page 12 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

component i to the axis of rotation. The RIR acceleration is then mathematically formu-
lated as follows:

where
(

d2pi/dt
2
)

RIR
 is the RIR acceleration of component i , SRIR is the RIR global accel-

eration scaler, and ri is the perpendicular vector from component i to the axis of rota-
tion. The RIR acceleration methodology is illustrated in Fig. 7.

Components are also dynamically rotated throughout optimization to align their
faces, a process which generally increases packing density. Rotational alignment in this
algorithm is performed using the methodology first developed by Carrick and Kim. All
components are rotationally aligned to all other components. For each component pair,
two faces (one per component) are identified and used for rotational alignment. These
two faces are selected as the faces which identify the minimum distance between the
two aligning components. The angle between the two normal vectors defined by these
selected faces is then used to set the angle of rotation, and the cross product of these
two normal vectors sets the axis of rotation positioned at the component’s geometric
centroid. The rotational alignment (RA) acceleration then iteratively rotates components
such that the angle between the selected faces is minimized. For each component, this
process is repeated with respect to all other components. The resulting set of rotations is
applied using quaternion rotation to avoid gimbal locking. For discretized components,
rotational connectivity is enforced using the same rotational alignment methodology;

(8)
−−→
d2pi

dt2 RIR
= SRIR

−→ri

Fig. 7 Illustration of the acceleration magnitude for rotational inertia acceleration

Page 13 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

however, only one normal vector is selected for the entire set of sub-components. Sub-
components are then rotated equally about the average position of all sub-component’s
geometric centroids. An illustration of this rotational alignment process is shown in
Fig. 8.

After the total acceleration for each component is determined by the summation of all
individual packaging accelerations, numerical integration is used to update the velocity
and position of each component using the Euler method. Damping of the translational
velocities is also included to avoid oscillations of components nearing their final posi-
tions. The formulation for this integration scheme is as follows:

where x is the positional term, (dx/dt) is the velocity term, (d2x/dt2) is the acceleration
term, t0 is the start time, h is the timestep, ζ is the damping factor, and O

(

h2
)

 is the trun-
cation error of order 2.

Two methods of optimization convergence are implemented: maximum iteration
count and minimal positional deviation. If all components come to rest, the interaction
potential between components has been minimized, and thus, no further iterations will
significantly change the configuration. Identifying whether all components have come to
rest is accomplished by tracking the magnitude of the acceleration of each component

(9)
dx

dt to+h
= ζ

(

dx

dt t0
+ h

d2x

dt2 t0

)

+ O
(

h2
)

(10)xt0+h = xt0 + h
dx

dt t0
+ O

(

h2
)

Fig. 8 Illustration of the component rotational alignment methodology

Page 14 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

and ensuring each component’s acceleration is below a specified tolerance value for sev-
eral sequential iterations. A secondary rotational check is also conducted to ensure that
all components are no longer rotationally aligning for several sequential iterations.

Results and discussion
Several packaging problems with well-defined and known optimal solutions were used
to verify the efficacy of the current implementation of the algorithm. The presented
results were collected using a computer with 12 cores running at 3.79 GHz and 128 GB
of RAM, and the algorithm is currently written in the Python programming language.

Empirical proof has shown that for spheres of equal size, the maximum possible pack-
ing density based on hexagonal close packing or face-centered cubic lattice structures is
π/(3

√
2) or approximately 74% [42]. For spherical packing with arbitrarily and irregu-

larly packed spheres, literature has shown a maximum packing density of 64% is achiev-
able [43]. Therefore, a study was conducted to determine if this packaging algorithm can
produce a packing density of 64% using a set of 12 spheres of equal size. The spheres
used in this study were approximated using an STL of 120 faces and were provided ran-
dom initial positions. No domain was included in this study. Out of 100 individual opti-
mizations, 91 achieved the optimal packing density of 64% for irregularly packed spheres
with an average computation time of approximately 4 min.

The packing of eight equally sized cubes has an empirically optimal packing density
of 100%, which can be achieved with several possible configurations. A domain was
included in this study to force the result into only permitting the formation of one of the
optimal configurations. The domain-restricted optimal configuration selected for this
study was the formation of a larger cube with side lengths equal to two times the side
length of the cubes it is composed of. The domain was placed at the origin, with all cube
components placed randomly outside of the domain and with random initial orienta-
tions. Out of 100 individual optimizations, 83 achieved a maximum packing density of
95% with an average computation time of approximately 3 min. The densest configura-
tion achieved was 97%. Although the optimal packing density of 100% was not achieved,
the final configuration of the cubes was in the expected optimal arrangement. Upon
closer inspection, minor face misalignments and gaps between faces of components
could not resolve before accelerations were small enough to trigger convergence.

A third study was performed to test the efficacy of the packaging algorithm using
non-convex components. Orthogonally connected cubes known as tetracubes, a class of
polycubes, were selected for this study because of their clear non-convexity and ease of
discretization into convex sub-components. Two of these tetracubes are capable of fit-
ting together such that they form a cube-shaped configuration, resulting in an expected
optimal packing density of 100%. The tetracubes were provided random initial positions
and orientations. No domain was included in this study. Out of 100 individual optimi-
zations, 72 achieved a packing density over 95% in the cube-shaped configuration. The
densest configuration achieved was 98%. Notably, the remaining 18 solutions did not
form the optimal cube-shaped configuration because of poor initial orientations that
did not facilitate enough rotation time to permit the interlocking of components before
coming into contact. This is an example of the current initial condition dependance

Page 15 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

limitations of the algorithm. An example of the dynamic layout of the components for a
single optimization for each verification study is shown in Fig. 9.

Several packaging algorithms described in literature execute packaging optimization
through the approach of adding new geometry to the problem sequentially, as opposed
to including all geometry at the initial iteration [12, 22, 33]. To assess this packing opti-
mization strategy, an additional study was conducted using the proposed algorithm in
this work. This study involved the packing of eight equally sized cubes into a rectangular
prism-shaped domain, where an optimal solution would force a flat-packed 2 × 4 config-
uration with a packing density of 100%. First, optimization was run to convergence using
two of the eight cubes. In each subsequent optimization, the positional results of the
previous optimization were utilized as initial conditions, and a new cube was introduced
to the problem with a randomized initial position. This sequential process was repeated
until all eight cubes were integrated and resulted in a maximum packing density of 99%
with the expected 2 × 4 layout. Total optimization runtime took approximately 11 min or
approximately 1.5 min per optimization. The layout of these cubes throughout sequen-
tial optimizations is shown in Fig. 10.

This study was then repeated but instead employing the default single optimization
approach where all eight cubes were added at the initial iteration. This resulted in a

Fig. 9 Dynamic layout of sphere (top row), cube (middle row), and tetracube (bottom row) components

Page 16 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

maximum packing density of 96% due to minor gaps and misalignments between com-
ponent faces. Convergence was achieved in approximately 4 min. Consequently, while
the sequential approach yielded a more densely packed configuration, it also incurred
a longer total optimization runtime. This implies a potential trade-off between packing
density and optimization runtime between the two optimization approaches. Depend-
ing on the scale of the optimization problem, it may be advantageous to run one method
over the other if runtime becomes a limiting factor. It should be noted that the algorithm
presented in this work is not primarily intended for use with the sequential optimization
approach; currently, setting up a new optimization manually is necessary for each subse-
quent optimization. If future studies reveal further compelling advantages to the sequen-
tial approach in terms of performance metrics, it is recommended for future work to
automate and refine this sequential approach as a permanent secondary optimization
method within the algorithm.

The results of the previous verification studies have been summarized in Table 1 to
exhibit the efficacy of the current implementation of the proposed algorithm.

Fig. 10 Converged results of sequential optimization approach

Table 1 Results of packaging verification studies

Study Avg. packing density [%] Densest
packing [%]

Optimal packing
density [%]

Avg.
computation
time [s]

12 spheres 63.03 (100 trials) 63.98 64.00 239.15

8 cubes (2 × 2 × 2) 96.21 (100 trials) 97.44 100.00 183.32

2 tetracubes 91.49 (100 trials) 98.19 100.00 230.67

8 cubes (2 × 4) 96.23 (1 trial) 96.23 100.00 244.47

8 cubes (2 × 4) seq 99.09 (1 trial) 99.09 100.00 681.14

Page 17 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

A final study was conducted with the objective of exhibiting the algorithm’s prospec-
tive capabilities in addressing practical, real-world packaging problems. A fictitious,
simplified, hybrid urban air mobility (UAM) nacelle was used for this study. A set of
components commonly found within hybrid UAM nacelles were included as follows: a
data acquisition unit (DAU), cooling fan, water tank, inverter, pinion gear with a linear
actuator for nacelle rotation about a rotation axel, heat exchanger, and water pump. The
motor was excluded for this study, as it was assumed the motor must exist in a fixed
position at the nose of the nacelle and would exist partly outside of the nacelle domain.
As this was a fictitious nacelle packaging problem, the dimensions and densities of all
components were arbitrarily set. Each component’s geometry was represented by a sim-
plified bounding volume approximating the volume that the real component may take
up within the domain. All components were also approximated to have uniform densi-
ties for this study. Auxiliary components, such as electrical wiring, air ducts, or bracket-
ing, were not considered in this study. The pinion gear and linear actuator for the tilting
mechanism were treated as attached components, as their proximity to one another
would be critical for tilting functionality. To facilitate tilting about the nacelle’s rota-
tion axel, the pinion gear was also translationally and rotationally fixed to the intended
center of mass positioned along the center of the rotation axis. The fan-cake type heat
exchanger was constructed as a non-convex component, discretized into several convex
sub-components. It was also assumed that the heat exchanger must be axially aligned
to the cooling fan through their midpoints to promote efficient airflow from the cool-
ing fan through the heat exchanger. The packaging algorithm was run 100 times for this
study. For each run, the initial positions and orientations of each component were rand-
omized. Out of the 100 runs, 79 converged before the maximum iteration limit of 1000
was reached, 11 reached this maximum iteration limit, and 10 did not produce a feasible
solution. A selection of three different, feasible results from the set of optimization runs
has been presented below. These three configurations were specifically selected because
they resulted in common local minimum solutions shared between several optimization
runs. The final configuration of all three selected designs can be found in Fig. 11, and
the system-level performance metrics for each design are summarized in Tables 2 and 3,
respectively.

The most important user-defined parameters in this proposed algorithm are the
relative acceleration scaling values for the CA and GOR accelerations, SCA and SGOR ,
respectively. If too large of a value of SCA is used, the components may be too strongly
attracted to one another. This can result in significant geometric overlaps that may never
be resolved, thus disallowing the optimization convergence criteria to be met. Similarly,
too of large of a SGOR value will cause components to rapidly “bounce” off one another
at the point of contact, introducing chaotic motion that may never settle to convergence.
Conversely, too small values of these two scaling factors can result in unnecessarily long
runtimes. A balance between the relative magnitudes of SCA and SGOR should therefore
be achieved in order to improve convergence reliability and decrease optimization runt-
imes. To demonstrate this effect, a parameter study was conducted using the packing of
eight equally sized cubes problem. The values of SCA and SGOR were varied from 0.1 to
2.0. For each pair of scaling values, a total of 5 separate optimizations were run with ran-
dom initial position and orientations of the cubes and with a maximum of 500 iterations.

Page 18 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

The average number of iterations for each pair of scaling values is shown in Figs. 12 and
13. Based on the results of this study, it is recommended to use magnitudes between
1.0 and 1.5 for both scaling factors, with SGOR approximately 1.5 times larger than SCA .

Fig. 11 Configuration of nacelle components for three selected packaging optimization results

Table 2 Solver performance metrics for each selected design

Solver performance metrics

Design no Number of iterations Computation
time [s]

1 313 614

2 451 906

3 404 810

Table 3 System-level performance metrics for each selected design

System-level performance metrics

Design no Performance metric Output

1 Packing density [-] 0.60

Center of mass offset [mm] 117.72

Inertia [kg·m2] 11.46

2 Packing density [-] 0.45

Center of mass offset [mm] 67.47

Inertia [kg·m2] 8.16

3 Packing density [-] 0.58

Center of mass offset [mm] 70.50

Inertia [kg·m2] 7.55

Page 19 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

Further testing is required to properly tune the remaining acceleration scale values, but
it is recommended to establish baseline values for SCA and SGOR beforehand.

Currently, the proposed algorithm only accounts for a limited set of practical perfor-
mance metrics (i.e., center of mass and rotational inertia). However, the modular struc-
ture of this algorithm facilitates future development efforts for the inclusion of additional
system performance metrics. If certain physical metrics (e.g., thermal, structural, vibra-
tional) can be abstracted into acceleration field representations, this algorithm lays the
groundwork for implementing such metrics and even multi-objective optimization.
Newly introduced acceleration fields can be seamlessly integrated into the existing set
of acceleration fields, where these new accelerations could simply be added to the sum
of all activated acceleration fields using the same methodology as described in this work.
Future development efforts focused on this approach would provide users with a tool-
box of performance metrics akin to those found in traditional computer-aided design
software, enhancing the flexibility and customization options for solving a more diverse
set of packaging scenarios. Integration with commercial analysis software could also be
used to provide analytical data throughout optimization. For example, component poses

Fig. 12 Average number of iterations for packing of eight equally sized cubes, SGOR and = SCA[0.1, 0.5, 1.0, 1.5,
2.0]

Fig. 13 Average number of iterations for packing of eight equally sized cubes with varying ratios of SCA/SGOR

Page 20 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

could be input into an external thermal finite element analysis or computational fluid
dynamic solver to compute component body temperature data via conduction and/or
convection and output this temperature data to the packaging optimization algorithm
at each iteration. New, thermally related acceleration fields as functions of component
body temperature, for example, could then be added to the existing set of accelerations
being simultaneously applied on all components. This would provide the ability to con-
sider thermally related objective functions such as minimized system temperature or
addition of thermally related constraints such as minimum or maximum component
temperatures. It should be noted that tuning parameter studies, like the parameter stud-
ies conducted in this work, for these new acceleration fields would be required to ensure
that new acceleration fields do not over (or under) power existing acceleration fields.
Additional studies are also proposed for future work with respect to the performance of
the algorithm as a function of the number of unique acceleration fields activated. This
is because it is conceivable that incorporating an excessive number of simultaneous
acceleration fields could deteriorate optimization performance. In this context, given
the acceleration summation-based methodology proposed in this work, as more accel-
eration fields are applied, the likelihood of some fields nullifying the effects of others
increases. Consequently, this phenomenon could lead to a significant rise in optimiza-
tion convergence time or conversely premature convergence to nonoptimal solutions.
Therefore, an investigation on the impact of the number of activated acceleration fields
on algorithm performance is crucial for ensuring its effectiveness and scalability in real-
world applications.

Conclusions
This paper proposes a novel methodology for solving packaging optimization problems
using a dynamic, acceleration-based approach. The algorithm was shown to be effec-
tive in addressing three-dimensional packaging scenarios, accommodating components
of varying geometrical complexity (i.e., convex and non-convex), preventing geometric
overlap between components, and proper encapsulation within design domains. The
algorithm was also shown to be capable of yielding optimal results for a variety of pack-
aging problems with known optimal solutions. Furthermore, the algorithms’ prospec-
tive capability in solving real-world packaging problems was demonstrated through the
packaging of a hypothetical nacelle, incorporating practical considerations of center of
mass and rotational inertia.

The algorithm proposed in this paper currently considers a limited set of performance
metrics. However, the modular structure and acceleration summation-based approach of
the proposed packaging algorithm pave the way for future development efforts regarding
the inclusion of additional physical effects (e.g., thermal, structural, vibrational). Newly
introduced acceleration fields would simply be added to summation of all other existing
acceleration fields simultaneously applied on system components. Additionally, integra-
tion with commercial analysis software (e.g., computational fluid dynamic solvers, ther-
mal finite element analysis solvers) to provide analytical data throughout optimization
for use in the formulation of new acceleration fields is also proposed for future work.

In summary, the novel algorithm in this paper demonstrates an effective methodol-
ogy for solving generalized packaging optimization problems. Furthermore, this work

Page 21 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

provides a modular framework that can be expanded upon in the future to incorporate
additional physical performance metrics, thereby enhancing the algorithm’s capability to
solve a broader range of practical packaging problems.

Abbreviations
STL Stereolithography
GOR Geometric overlap resolution
GJK Gilbert-Johnson-Keerthi
EPA Expanding polytope algorithm
CA Component attraction
DE Domain encapsulation
COMA Center of mass alignment
RIR Rotational inertia reduction
RA Rotational alignment
UAM Urban air mobility
DAU Data acquisition unit

Acknowledgements
Not applicable

Authors’ contributions
CD developed, programmed, and experimentally tested the packaging optimization methodology presented in the
manuscript and was the primary contributor in writing the manuscript. JH, SJ, and IYK provided supervisory roles
throughout the development of this research and reviewed and provided feedback to the work. All authors read and
approved the final manuscript.

Funding
Funding for this research was provided by Queen’s University.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 1 July 2023 Accepted: 8 April 2024

References
 1. Papadimitriou CH (1994) Computational complexity. Addison-Wesley, Boston
 2. Lawler EL (1985) The traveling salesman problem: a guided tour of combinatorial optimization. Wiley, Chichester
 3. Martello S, Toth P (1990) Knapsack problems; algorithms and computer implementations. Wiley, Chichester
 4. Garey MR, Johnson DS (1996) Approximation algorithms for bin-packing; a survey. Approximation Algorithms for

NP-Hard Problems 266:147–172. https:// doi. org/ 10. 1007/ 978-3- 7091- 2748-3_8
 5. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness
 6. Lee C, Subbiah S (1991) Prediction of protein side-chain conformation by packing optimization. J Mol Biol

217(2):373–388. https:// doi. org/ 10. 1016/ 0022- 2836(91) 90550-p
 7. Sanches CAA, Soma NY (1988) A polynomial-time DNA computing solution for the bin-packing problem. Comput

Methods Appl Mech Eng 71(2):197–224. https:// doi. org/ 10. 1016/ 0045- 7825(88) 90086-2
 8. Amirjanov A, Sobolev K (2008) Optimization of a computer simulation model for packing of concrete aggregates.

Part Sci Technol 26(4):380–395. https:// doi. org/ 10. 1080/ 02726 35080 20845 80
 9. Chen JJ et al (2021) Packing optimization of paste and aggregate phases for sustainability and performance

improvement of concrete. Adv Powder Technol 26(4):987–997. https:// doi. org/ 10. 1016/j. apt. 2021. 02. 008
 10. Fadel GM, Wiecek MM (2015) Packing optimization of free-form objects in engineering design. Optimized Packings

Appl 105:37–66. https:// doi. org/ 10. 1007/ 978-3- 319- 18899-7_3
 11. Joung YK, Noh SD (2014) Intelligent 3D packing using a grouping algorithm for automotive container engineering. J

Comput Des Eng 1(2):140–151. https:// doi. org/ 10. 7315/ JCDE. 2014. 014
 12. First H and Alpaslan N. An effective approach to the two-dimensional rectangular packing problem in the manufac-

turing industry. Comput Ind Eng. 2020;148. https:// doi. org/ 10. 1016/j. cie. 2020. 106687
 13. Araújo LJP et al (2018) Analysis of irregular three-dimensional packing problems in additive manufacturing: a new

taxonomy and dataset. Int J Prod Res 57(18):5920–5934. https:// doi. org/ 10. 1080/ 00207 543. 2018. 15340 16
 14. Dósa G (2007) The tight bound of first fit decreasing bin-packing algorithm. Int Symp Comb Algorithms Probab Exp

Methodol 4614:1–11. https:// doi. org/ 10. 1007/ 978-3- 540- 74450-4_1

https://doi.org/10.1007/978-3-7091-2748-3_8
https://doi.org/10.1016/0022-2836(91)90550-p
https://doi.org/10.1016/0045-7825(88)90086-2
https://doi.org/10.1080/02726350802084580
https://doi.org/10.1016/j.apt.2021.02.008
https://doi.org/10.1007/978-3-319-18899-7_3
https://doi.org/10.7315/JCDE.2014.014
https://doi.org/10.1016/j.cie.2020.106687
https://doi.org/10.1080/00207543.2018.1534016
https://doi.org/10.1007/978-3-540-74450-4_1

Page 22 of 22Douglas et al. Journal of Engineering and Applied Science (2024) 71:92

 15. Halfin S (1989) Next-fit bin packing with random piece sizes. J Appl Probab 26(3):503–511. https:// doi. org/ 10. 2307/
32144 08

 16. Dósa G and Sgall J. Optimal analysis of best fit bin packing. Autom Languages Program. 2014;8572. https:// doi. org/
10. 1007/ 978-3- 662- 43948-7

 17. Kim BI, Wy J (2010) Last two fit augmentation to the well-known construction heuristics for one-dimensional
bin-packing problem: an empirical study. Int J Adv Manufact Technol 50:1145–1152. https:// doi. org/ 10. 1007/
s00170- 010- 2572-z

 18. Yuan B, Gallagher M (2005) A hybrid approach to parameter tuning in genetic algorithms. IEEE Congr Evol Comput.
https:// doi. org/ 10. 1109/ CEC. 2005. 15548 13

 19. Zhan S and Lin J. List-based simulated annealing algorithm for traveling salesman problem. Comput Intell Neurosci.
2016;2016. https:// doi. org/ 10. 1155/ 2016/ 17126 30

 20. Wodziak J, Fadel G (1999) Packing and optimizing the center of gravity location using a genetic algorithm. Clemson
University, Design Methodology Group

 21. Gonçalves J, Resende M (2013) A biased random key genetic algorithm for 2D and 3D bin packing problems. Int J
Prod Econ 145(2):500–510. https:// doi. org/ 10. 1016/j. ijpe. 2013. 04. 019

 22. Feng X et al (2015) Hybrid genetic algorithms for the three-dimensional multiple container packing problem. Flex
Serv Manuf J 27:451–477. https:// doi. org/ 10. 1007/ s10696- 013- 9181-8

 23. Liu C, et al. Optimizing two-dimensional irregular packing: a hybrid approach of genetic algorithm and linear pro-
gramming. Appl Sci. 2023;22. https:// doi. org/ 10. 3390/ app13 22124 74

 24. Dowsland K et al (2007) A simulated annealing based hyperheuristic for determining shipper sizes for storage and
transportation. Eur J Oper Res 179(3):759–774. https:// doi. org/ 10. 1016/j. ejor. 2005. 03. 058

 25. Cagan J et al (1998) A simulated annealing-based algorithm using hierarchical models for general three-dimen-
sional component layout. Comput Aided Des 30(10):781–790. https:// doi. org/ 10. 1016/ S0010- 4485(98) 00036-0

 26. Gomes A, Oliveira J (2006) Solving irregular strip packing problems by hybridising simulated annealing and linear
programming. Eur J Oper Res 171(3):811–829. https:// doi. org/ 10. 1016/j. ejor. 2004. 09. 008

 27. Torres et al. Convex polygon packing based meshing algorithm for modeling of rock and porous media. Int Conf
Comput Sci. 2020:. 257–269. https:// doi. org/ 10. 1007/ 978-3- 030- 50426-7_ 20

 28. Fernandez C et al (2022) Voxel-based solution approaches to the three-dimensional irregular packing problem.
Oper Res. https:// doi. org/ 10. 1287/ opre. 2022. 2260

 29. Pankratov A, Romanova T (2020) Packing oblique 3D objects. Mathematics. https:// doi. org/ 10. 3390/ math8 071130
 30. Demir I and Aliaga DG. Near-convex decomposition and layering for efficient 3D printing. Addit Manuf. 2018;;21.

https:// doi. org/ 10. 1016/j. addma. 2018. 03. 008
 31. Fang J, et al. A deep reinforcement learning algorithm for the rectangular strip packing problem. PLoS One. 2023;18.

https:// doi. org/ 10. 1371/ journ al. pone. 02825 98
 32. Ren H, Zhong R (2024) An autonomous ore packing system through deep reinforcement learning. Adv Space Res.

https:// doi. org/ 10. 1016/j. asr. 2024. 01. 061
 33. Tian R, et al, Learning to multi-vehicle cooperative bin packing problem via sequence-to-sequence policy network

with deep reinforcement learning model. Comput Ind Eng 2023;177. https:// doi. org/ 10. 1016/j. cie. 2023. 108998
 34. Miao Y et al (2003) Multi-objective configuration optimization with vehicle dynamics applied to midsize truck

design. ASME 2003 Design Engineering Technical Conferences and Computers and Information in Engineering
Conference. pp 1–9. https:// doi. org/ 10. 1115/ DETC2 003/ DAC- 48735

 35. Wu S (2014) Multi-objective optimization of 3D packing problem in additive manufacturing. IIE Annual Conference
and Expo. pp 1485–1494

 36. Gao L et al. Multi-objective optimization of thermal performance of packed bed latent heat thermal storage system
based on response surface method. Renew Energy. 153:669–680. https:// doi. org/ 10. 1016/j. renene. 2020. 01. 157

 37. Sridhar R. et al. Multi objective optimization of heterogeneous bin packing using adaptive genetic approach. Indian
J Sci Technol. 9(48). https:// doi. org/ 10. 17485/ ijst/ 2016/ v9i48/ 108484

 38. Bello W et al (2024) Multi-physics three-dimensional component placement and routing optimization using geo-
metric projection. J Mech Des 146(8):2024. https:// doi. org/ 10. 1115/1. 40644 88

 39. Carrick C, Kim IY (2019) Packaging optimization using the dynamic vector fields method. Int J Numer Meth Eng.
https:// doi. org/ 10. 1002/ nme. 6161

 40. Gilbert EG et al (1988) A fast procedure for computing the distance between complex objects in three-dimensional
space. IEEE J Robot Automation 4(2):193–203. https:// doi. org/ 10. 1109/ 56. 2083

 41. Seelen LJH et al (2018) A granular discrete element method for arbitrary convex particle shapes: method and pack-
ing generation. Chem Eng Sci 189:84–101. https:// doi. org/ 10. 1016/j. ces. 2018. 05. 034

 42. Conway JH, Sloane NJA (1993) Sphere packings, lattices and groups. p 290
 43. Song C et al (2008) A phase diagram for jammed matter. Nature 453(7195):629–632. https:// doi. org/ 10. 1038/ natur

e06981

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.2307/3214408
https://doi.org/10.2307/3214408
https://doi.org/10.1007/978-3-662-43948-7
https://doi.org/10.1007/978-3-662-43948-7
https://doi.org/10.1007/s00170-010-2572-z
https://doi.org/10.1007/s00170-010-2572-z
https://doi.org/10.1109/CEC.2005.1554813
https://doi.org/10.1155/2016/1712630
https://doi.org/10.1016/j.ijpe.2013.04.019
https://doi.org/10.1007/s10696-013-9181-8
https://doi.org/10.3390/app132212474
https://doi.org/10.1016/j.ejor.2005.03.058
https://doi.org/10.1016/S0010-4485(98)00036-0
https://doi.org/10.1016/j.ejor.2004.09.008
https://doi.org/10.1007/978-3-030-50426-7_20
https://doi.org/10.1287/opre.2022.2260
https://doi.org/10.3390/math8071130
https://doi.org/10.1016/j.addma.2018.03.008
https://doi.org/10.1371/journal.pone.0282598
https://doi.org/10.1016/j.asr.2024.01.061
https://doi.org/10.1016/j.cie.2023.108998
https://doi.org/10.1115/DETC2003/DAC-48735
https://doi.org/10.1016/j.renene.2020.01.157
https://doi.org/10.17485/ijst/2016/v9i48/108484
https://doi.org/10.1115/1.4064488
https://doi.org/10.1002/nme.6161
https://doi.org/10.1109/56.2083
https://doi.org/10.1016/j.ces.2018.05.034
https://doi.org/10.1038/nature06981
https://doi.org/10.1038/nature06981

	Packing optimization of practical systems using a dynamic acceleration methodology
	Abstract
	Introduction
	Methods
	Results and discussion
	Conclusions
	Acknowledgements
	References

