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Abstract 

Cooling load estimation is crucial for energy conservation in cooling systems, 
with applications like advanced air-conditioning control and chiller optimization. 
Traditional methods include energy simulation and regression analysis, but artificial 
intelligence outperforms them. Artificial intelligence models autonomously capture 
complex patterns, adapt, and scale with more data. They excel at predicting cooling 
loads influenced by various factors, like weather, building materials, and occupancy, 
leading to dynamic, responsive predictions and energy optimization. Traditional meth-
ods simplify real-world complexities, highlighting artificial intelligence’s role in precise 
cooling load forecasting for energy-efficient building management. This study evalu-
ates Naive Bayes-based models for estimating building cooling load consumption. 
These models encompass a single model, one optimized with the Mountain Gazelle 
Optimizer and another optimized with the horse herd optimization algorithm. The 
training dataset consists of 70% of the data, which incorporates eight input variables 
related to the geometric and glazing characteristics of the buildings. Following the vali-
dation of 15% of the dataset, the performance of the remaining 15% is tested. Based 
on analysis through evaluation metrics, among the three candidate models, Naive 
Bayes optimized with the Mountain Gazelle Optimizer (NBMG) demonstrates remark-
able accuracy and stability, reducing prediction errors by an average of 18% and 31% 
compared to the other two models (NB and NBHH) and achieving a maximum R2 value 
of 0.983 for cooling load prediction.

Keywords:  Cooling load estimation, Prediction models, Building energy consumption, 
Naive Bayes, Metaheuristic optimization algorithms

Introduction
In the contemporary era, the escalating demand for energy, primarily from residen-
tial and commercial sectors, poses challenges in efficiently managing industries like 
transportation and construction while striving to conserve energy [1, 2]. Recent stud-
ies emphasize the substantial contribution of a growing population to energy consump-
tion in residential buildings [3, 4]. Efficiently managing a building’s energy consumption 
requires a thorough understanding of its performance, starting with the identification 
of energy sources and usage patterns. Key energy resources in buildings include district 
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heating supply, electricity, and natural gas, with applications such as HV heating, venti-
lation, and air-conditioning (HVAC) systems, lighting, elevators, hot water, and kitchen 
equipment consuming this energy [1]. Among these, HVAC systems, important for resi-
dential infrastructure, significantly impact cooling load (CL) and heating load (HL), con-
stituting around 40% of energy consumption in office buildings [5, 6]. Improving energy 
efficiency in urban residential buildings and employing dynamic load prediction in con-
struction management are crucial measures to enhance HVAC system performance and 
conserve energy [7]. Forecasting dynamic air-conditioning loads is essential for HVAC 
system design, enabling adjustments to initiation times, curbing peak demand, optimiz-
ing costs, and improving energy utilization in cooling storage systems [8]. Accurately 
predicting building cooling loads is challenging due to various influencing factors, 
including optical and thermal characteristics and meteorological data [9–11].

Achieving sustainability in thermal management relies on efficiently separating latent 
and sensible loads in the cooling process. An effective strategy involves integrating 
an indirect evaporative cooler (IEC) with a dehumidification system, providing both 
enhanced cooling efficiency and a sustainable solution to rising energy demands. The 
improved IEC, featuring three significant modifications, becomes a cornerstone in this 
approach, pushing the coefficient of performance (COP) for cooling to an impressive 78. 
The dehumidification component, operating at a COP of approximately 4–5, comple-
ments the cooling-only COP, resulting in an overall COP of 7–8 [12].

Efforts to create energy-efficient buildings and enhance energy conservation are nec-
essary in managing energy demand and resources. A primary strategy involves early 
predictions of HL and CL in residential structures. Accurate forecasting requires data 
on building specifications and local weather conditions [13]. Climatic elements such as 
temperature, wind speed, solar radiation, atmospheric pressure, and humidity signifi-
cantly influence the prediction of building cooling and heating loads. Factors like relative 
compactness, roof dimensions, wall and glazing areas, roof height, and overall surface 
area should be considered when assessing a building’s load [14]. Building energy simula-
tion tools play a crucial role in designing energy-efficient buildings, allowing for per-
formance maximization and comparisons between buildings. Simulation outcomes have 
demonstrated high accuracy in replicating real-world measurements [15]. Although 
time-intensive and requiring proficient users, simulation software effectively assesses 
the influence of building design factors. In some cases, contemporary techniques like 
statistical analysis, artificial neural networks, and machine learning are adopted to pre-
dict cooling and heating loads and analyze the impact of different parameters [16].

HVAC system optimization involves three main categories: simulation, regression 
analysis, and artificial intelligence (AI). Simulation tools like DOE-2 [17], ESP-r [9], 
TRNSYS [10], and EnergyPlus [11, 18]  are utilized for cooling load estimation when 
comprehensive building data is available. However, challenges arise in accurately meas-
uring various parameters, and simplifying building models demands significant time and 
resources [19]. Simulation software is limited to real-time applications like online pre-
diction or optimal operational control [20]. Regression analysis, known for its ease of 
use and computational efficiency, is preferred for diverse building types [21], employ-
ing both linear and nonlinear techniques [22, 23]. Additionally, research emphasizes 
the efficacy of ML and AI in building energy forecasting, favoring nonlinear approaches 
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[24, 25]. Building cooling load prediction commonly involves key factors such as out-
door temperature, relative humidity, solar irradiation, and indoor occupancy schedules 
[26, 27]. Feature extraction methods, including engineering, statistical, and structural 
approaches, help condense raw data into informative formats, addressing the complexity 
introduced by historical data [21].

Numerous data mining methods have been applied to predict residential building 
energy requirements, including principal component analysis (PCA) [28], extreme learn-
ing machine (ELM) [29, 30], support vector machines (SVM) [31–33], k-means [34], 
deep learning [32, 33, 35–37], decision trees (DT) [38], various regression approaches, 
artificial neural networks [16, 39, 40], and hybrid models [41–44]. Researchers have 
employed diverse methodologies to forecast heating and cooling loads and energy 
demand in various building contexts. For instance, one study [45] predicted building 
heating load using the MLP method with meteorological data, while another simultane-
ously [46] predicted both cooling and heating loads with meteorological and date data 
inputs. Another study [16] examined a building’s energy performance using machine 
learning techniques, including general linear regression, artificial neural networks, 
decision trees, support vector regression (SVR), and ensemble inference models for 
cooling and heating load forecasting. Structural and interior design factors’ impact on 
cooling loads was explored through diverse regression models [47], and HVAC system 
energy demand was estimated from cooling and heating load requirements using dif-
ferent regression models. Commercial buildings’ cooling load and electric demand were 
forecasted for short-term and ultrashort-term management [48], enhancing energy effi-
ciency through a hybrid SVR approach. Additionally, the SVR method was applied [49] 
to project cooling loads in a large coastal office building in China, introducing a novel 
vector-based SVR model for increased robustness and forecasting precision [50].

Naive Bayes is a fundamental probabilistic machine learning algorithm widely 
employed in various fields, including natural language processing, spam filtering, and 
classification tasks. It is rooted in Bayes’ theorem and assumes conditional independ-
ence between features, which is where the “naive” in its name originates. This simplify-
ing assumption enables Naive Bayes to efficiently estimate the probability of a data point 
belonging to a particular class. Despite its simplicity, Naive Bayes often exhibits impres-
sive classification performance, especially when dealing with high-dimensional and large 
datasets. To date, there is no article to use Naïve Bayes as the prediction model in the 
case of CL of the buildings. In this study, Naïve Bayes single model prediction perfor-
mance is compared with two optimized counterparts (optimized with Mountain Gazelle 
Optimizer (MGO) and the horse herd optimization algorithm (HHO)). The following 
sections present an academic description of the model and selected optimizers and a 
comparative analysis between developed models.

Methods
Data collection

The main goal of this study is to forecast the cooling load (CL) in buildings. This is 
achieved by using experimental data extracted from energy consumption patterns docu-
mented in previous studies [51, 52]. Table 1 reports the statistical properties (minimum, 
maximum, average, and standard deviation) of the variables included in the training of 
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the developed prediction models and the output. Input parameters include relative com-
pactness (indicating the building’s surface area-to-volume ratio), surface area, roof area, 
wall area, orientation, overall height, glazing area (encompassing glazing, frame, and 
sash components), and the distribution of glazing area, and cooling load is the expected 
output variable.

Figure 1 visually represents the correlation among the variables examined in this study. 
The analysis depicted in the figure reveals compelling insights. Specifically, it becomes 
apparent that the overall height and relative compactness exhibit the most substantial 
positive impact on the cooling load. In contrast, roof area and surface area emerge as 

Table 1  The statistic properties of the input variable of NB [51, 52]

Variables Indicators

Category Min Max Avg St. dev

Relative compactness Input 0.62 0.98 0.764 0.106

Surface area (m2) Input 514.5 808.5 671.7 88.09

Wall area (m2) Input 245 416.5 318.5 43.63

Roof area (m2) Input 110.25 220.5 176.6 45.17

Overall height (m) Input 3.5 7 5.25 1.751

Orientation Input 2 5 3.5 1.119

Glazing area (%) Input 0 0.4 0.234 0.133

Glazing area distribution Input 0 5 2.813 1.551

Cooling (KW) Output 10.9 48.03 24.59 9.513

Fig. 1  The correlation between input and output parameters
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variables with the most pronounced negative influence on the cooling load. This graphi-
cal representation not only highlights the interrelationships between the variables but 
also emphasizes the varying degrees of impact each variable has on the cooling load.

Overview of machine learning methods and optimizers

Naive Bayes (NB)

The Naive Bayes (NB) classifier stands as a robust probabilistic model founded on Bayes’ 
theorem, which simplifies modeling by assuming independence among input variables. 
Its potential for substantial improvements in prediction accuracy becomes evident when 
combined with kernel density approximations, as highlighted in [53, 54].

The NB is a sophisticated system that smoothly integrates the Naive Bayes probability 
model into its decision-making process. This classifier relies on the maximum a poste-
riori (MAP) decision rule, a well-established method for identifying the most probable 
hypothesis from a given set of options. Additionally, there is a closely related classifier 
called the Bayes classifier. This robust algorithm is responsible for assigning class labels 
y = Ck , where k can range from 1 to K. This involves a detailed evaluation of various fac-
tors and variables, leading to the categorization of data points into predefined classes.

In the provided equation, the variable y represents the predicted class label assigned 
by the Naive Bayes classifier. The term Ck denotes a specific class, where k ranges from 1 
to K  , indicating the total number of classes. The variable n represents the total number 
of input features or variables, and xi refers to the i − th input feature or variable. The 
term p(Ck) represents the prior probability of class Ck , while p(xi | Ck) denotes the con-
ditional probability of observing xi given the class Ck.

Mountain gazelle optimizer (MGO)

The MGO algorithm is inspired by the behavior of mountain gazelles, which are grouped 
into bachelor herds, maternity herds, and solitary, territorial males. It aims to find opti-
mal solutions by designating adult male gazelles in herd territories as global optima. 
Mathematically defined, the algorithm balances exploitation and exploration, gradually 
moving toward optimal solutions using four specified exploration mechanisms [55].

Territorial solitary males  Mature mountain gazelles establish solitary territories, vigor-
ously defending them from other males seeking access to females. Equation (2) models 
these territories.

Equation (2) describes malegzl as the adult man is the most effective overall solution, 
as seen by the position vector. The variables ri2 and ri1 are random integers that can 
take on a value of either 1 or 2 [55]. YH denoted the coefficient vector of utilizing 
Eq. (3), and one can determine the young male herd. Similarly, F  is computed using 
Eq. (4). In each iteration, the coefficient vector Cof r , selected at random, undergoes 

(1)y = argmaxp(Ck)
n

i=1
p((xi|Ck ))

(2)TSM = malegzl − |(ri1 × YH − ri2 × X(t))× F | × Cof r
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updates and is employed to augment the search capability. This coefficient vector is 
specified using Eq. (3).

Here, Xra denotes a random solution (young 1 male) within the range of ra . Mpr refers to 
the average number of search agents, which is equal to ⌈N3 ⌉ , and N  is the total number of 
gazelles, while r1 and r2 are random values in [0, 1].

Equation (4) incorporates multiple variables associated with the problem’s dimensions. 
A randomly generated number following a standard distribution denoted as N1 and exp 
is the equation that employs the exponential function. Iter shows the ongoing iteration 
number in the process, and MaxIter signifies the total count of iterations.

Additionally, r3 , r4 , and rand are random numbers from 0 to 1 [55]. N2 , N3 , and N4 
denote random numbers drawn from a typical distribution, and it is related to the 
dimensions of the problem. Iter indicates the current iteration number, while MaxIter is 
the number of iterations to be performed.

Maternity herds  Maternity herds hold a crucial position within the mountain gazelles’ 
life cycle since they are principally responsible for producing strong male gazelles. Fur-
thermore, male gazelles may actively participate in the delivery process of the offspring 
and confront the presence of younger males attempting to mate with females. This 
behavioral interplay is expressed mathematically in Eq. (7).

Here, YH signifies the young men’s impact factor vector, which is determined by using 
Eq.  (3). Cof 2,r and Cof 3,r random vectors for the coefficients are determined indepen-
dently using Eq. (5). ri3 and ri4 are random integers that can take on a value of either 1 
or 2. malegzl denoted the best global solution (adult male) in the current iteration. Ulti-
mately, Xrand corresponds to the location vector of a gazelle chosen at random from the 
entire herd.

Bachelor male herds  Male gazelles create territories after they reach adulthood and 
engage in mating pursuit, a period marked by intense competition between young and 

(3)YH = Xra × ⌊r1⌋ +Mpr × ⌈r2⌉, ra =

{
⌈
N

3
⌉ . . .N

}

(4)F = N1(D)× exp

(
2− Iter ×

(
2

MaxIter

))

(5)Cof i =






(x + 1)+ r3,
x × N2(D),

r4(D),

N3(D)×N4(D)
2×cos((r4×2)×N3(D)),

(6)x = −1+ Iter ×

(
−1

MaxIter

)

(7)MH =
(
YH + Cof 1,r

)
+ (ri3 ×malegzl − ri4 × Xrand)× Cof 1,r
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adult males for territory control and access to females, as mathematically captured in 
Eq. (8).

where X(t) indicates the gazelle’s current iteration’s location vector. The variables ri5 and 
ri6 are random integers that can take a value of either 1 or 2. The ideal answer designates 
the male gazelle’s location vector as malegzl . r6 is also a random number from 0 to 1.

Migration to search for food  Equation (10), which describes how mountain gazelles for-
age for food, takes into account their extraordinary sprinting and leaping speed.

where ul and ll represent the lower and upper limits of the problem, respectively. Fur-
thermore, r7 is a random integer in [0, 1] , and it is selected randomly.
The pseudo-code of MGO is available as follows:

%MGO setting
Inputs: The population size N and maximum number of iterations I
Outputs: Gazelle’s location and fitness potential

% initialization
Create a random population using Xi(i = 1, 2, ...,N)

Calculate the gazelle’s fitness level
While (the stopping condition is not met) do
For (each gazelle ( Xi )) do

% Alone male realm
Calculate TSM using Eq. (2)

% Mother and child herd
Calculate MH using Eq. (7)

% Young male herd
Calculate YMH using Eq. (8)

% Migration to search for food
Calculate MSF using Eq. (10)
Calculate the fitness values of TSM, MH, YMH, and MSF and then add them to the habitat
End for
Sort the entire population in ascending order
Update bestGazelle
Save the N best gazelles in the max number of population
end, while
Return XBestGazelle,best Fitness

Horse herd optimization algorithm (HOA)  The HOA is based on how horses behave in 
the wild [56]. This information is based on six specific behaviors: grazing, hierarchy, imi-
tation, sociability, roaming, and defense mechanisms. These actions are the foundation 
of HOA, directing the movement of horses in each cycle, as detailed in Eq. (11):

where XIter,A
m  denotes the position of the m− th horse, A represents the age range, and 

Iter is the current iteration. A also reflects the horse’s age range, while 
−→
V

Iter,A

m  indicates 
the velocity vector of the horse. Horses typically live between 25 and 30 years, exhibiting 

(8)YMH = (X(t)− D)+ (ri5 ×malegazelle − ri6 × YH)× Cof r

(9)D = (|X(t)| +
∣∣malegzl

∣∣)× (2× r6 − 1)

(10)MSF = (ul − ll)× r7 + ll

(11)XIter,A
m =

−→
V

Iter,A

m + X (Iter−1),A
m ,A(Age) = α,β , γ , δ
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various behaviors throughout their lifespan. These behaviors are categorized into δ (0–5 
years), γ (5–10 years), and α (older than 15 years) groups. An extensive response matrix 
determines how old horses are sorted by how well they perform. The top 10% form 
group α , the next 20% belong to group β , and the remaining 30% and 40% are catego-
rized as groups γ and δ , respectively. Motion vectors corresponding to equines of vary-
ing age groups and computational cycles within the algorithm are established following 
these behavioral patterns.

To elucidate the derivation of the global matrix, Eqs. (13) and (14) are utilized, and a 
relationship between positions ( X ) and their respective cost values ( C(X) ) is established.

Here, m indicates the count of horses, and d is the dimensions of the problem. After that, 
the global matrix is arranged according to the final column, which signifies costs. The 
horse’s age is recorded in this column. The velocity of horses under 5 years age range is 
as follows:

The velocity of horses between 5 and 10 years age range:

(12)

−→
V

Iter,α

m =
−→
G

Iter,α

m +
−→
D

Iter,α

m
−→
V

Iter,β

m =
−→
G

Iter,β

m +
−→
H

Iter,β

m +
−→
S

Iter,β

m +
−→
D

Iter,β

m
−→
V

Iter,γ

m =
−→
G

Iter,γ

m +
−→
H

Iter,γ

m +
−→
S

Iter,γ

m +
−→
I

Iter,γ

m +
−→
D

Iter,γ

m +
−→
R

Iter,γ

m
−→
V

Iter,δ

m =
−→
G

Iter,δ

m +
−→
I

Iter,δ

m +
−→
R

Iter,δ

m

(13)X =





x1,1 x1,2 . . . x1,d
x2,1
...

x2,2 . . .

...
. . .

x2,d
...

xm,1 xm,2 . . . xm,d




,C(X) =





c1
c2
...
cm





(14)Global Matrix = [XC(X)] =





x1,1 x1,2 . . . x1,d c1
x2,1
...

x2,2 . . .

...
. . .

x2,d c2
...
...

xm,1 xm,2 . . . xm,d cm





(15)
−→
V

Iter,δ

m =
[
g (Iter−1),δ
m ωg

(
ŭ+ Pl̆

)[
X (Iter−1)
m

]]
+ [i(Iter−1),δ

m ωi[(
1

PN

PN∑

j=1

X̂ Iter−1
j )

− XIter−1]]] + [r(Iter−1),δ
m ωrPX

Iter−1

(16)

−→
V

Iter,γ

m =
[
g (Iter−1),γ
m ωg

(
ŭ+ Pl̆

)[
X (Iter−1)
m

]]
+ [h(Iter−1),γ

m ωh

[
X (Iter−1)
∗ − X

(Iter−1)

m

]
]

+ [S(Iter−1),γ
m ωS [(

1

N

N∑

j=1

XIter−1
j )− XIter−1]] + [i(Iter−1),γ

m ωi[(
1

PN

PN∑

j=1

X̂Iter−1
j )− XIter−1]]

− [d(Iter−1),γ
m ωd [(

1

qN

qN∑

j=1

X̂Iter−1
j )− XIter−1]] + [r(Iter−1),AGE

m ωrPX
Iter−1]
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The velocity of horses between 10 and 15 years age range:

Horses that are 15 years or older exhibit the following velocity:

Results and discussion
Hyperparameter results

External configurations referred to as hyperparameters—such as alpha and binarize—
are important in shaping a model’s behavior. Distinguished from parameters, these 
hyperparameters are predetermined and not acquired through the learning process of 
the data. The optimization of model performance significantly relies on the fine-tuning 
of hyperparameters, a nuanced process that demands both experimentation and the 
strategic application of optimization techniques. Table  2 outlines the hyperparameter 
values for the NBMG and NBHH models. By providing intricate insights into the intri-
cacies of hyperparameter configurations, it becomes an indispensable tool for compre-
hending and, crucially, reproducing model setups. This exposition not only elevates the 
technical aspects of the research but also contributes to the broader scholarly discourse 
in the field of machine learning.

Prediction performance analysis

The assessment of the predictive effectiveness of the constructed models involved the 
utilization of five distinct metrics, which relied on actual observed values ( Ti ) and cor-
responding predicted values ( Pi ). Here, the symbols T  and P denote the mean of all the 
outcomes subjected to testing and predicting. In contrast, n signifies the total count of 
samples encompassed within the analyzed dataset. A description of these metrics is pre-
sented as follows:

(1)	 The coefficient of determination (R2) numerically represents the portion of the var-
iability in the dependent variable that can be anticipated through the independent 
variables integrated into the model.

(17)

−→
V

Iter,β

m =
[
g (Iter−1),β
m ωg

(
ŭ+ Pl̆

)[
X (Iter−1)
m

]]
+ [h(Iter−1),β

m ωh

[
X (Iter−1)
∗ − X

(Iter−1)

m

]
]

+ [S(Iter−1),β
m ωS [(

1

N

N∑

j=1

XIter−1
j )− XIter−1]] − [d(Iter−1),β

m ωd [(
1

qN

qN∑

j=1

X̆Iter−1
j )− XIter−1]]

(18)−→
V

Iter,α

m =
[
g (Iter−1),α
m ωg

(
ŭ+ Pl̆

)[
X (Iter−1)
m

]]
− [d(Iter−1),α

m ωd [(
1

qN

qN∑

j=1

X̆Iter−1
j )− XIter−1]]

Table 2  The results of hyperparameters for NB

Models Hyperparameter

Alpha Binarize

NBMG 7 5.61

NBHH 6.52953 1.317853
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(2)	 Root-mean-square error (RMSE) denotes the square root of the squared dispari-
ties’ mean between the projected and observed values. This quantifies the typical 
magnitude of the discrepancies the model introduces when forecasting the target 
variable.

(3)	 Mean squared error (MSE) calculates the average of the squared differences 
between predicted and actual values, measuring how well a model’s predictions 
match the actual data. Lower MSE values indicate better predictive accuracy and a 
closer fit to the observed data.

(4)	 Nash–Sutcliffe efficiency (NSE) assesses how well a model’s predictions match 
observed values, considering the variability of the observed data. Higher NSE val-
ues indicate better model performance, with 1 indicating a perfect match.

(5)	 MDAPE (mean directional absolute percentage error) expresses the average per-
centage difference between the predicted and actual values, considering the direc-
tion of the errors (underestimation or overestimation).

The following discussion comprehensively analyzes the model’s performance in pre-
dicting CL based on Table 3:

•	 NB (single model): A minimum R2 value of 0.963 is reported for this model. High 
error values of ( RMSE = 2.147 , MSE = 4.610 , and MDAPE = 7.482 ) indicated low 
accuracy of this traditional model, especially in the testing phase. Low NSE values 
of 0.966, 0.958, and 0.949 in the training, validation, and testing phases confirm the 
high variability of estimated data.

•	 NBMG (NB + MGO): High R2 values of 0.986, 0.980, and 0.974 in training, valida-
tion, and testing phases and low error values, especially in the case of NBMG, which 

(19)R2 =





�n
i=1(Ti − T )(Pi − P)���n

i=1(Ti − P)
2
���n

i=1(Pi − P)
2
�





2

(20)RMSE =

√∑n
i=1(Pi − Ti)

2

n

(21)MSE =
1

n

∑n

i=1
(Pi − Ti)

2

(22)NSE = 1−

∑n
i=1(Pi − Ti)

2

∑n
i=1(Ti − T )

2

(23)RAE =

∑n
i=1|Pi − Ti|∑n
i=1

∣∣Ti − T
∣∣
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are almost twice lower than NB single model indicate superior optimization perfor-
mance of MGO in enhancing CL prediction capability of NB.

•	 NBHH (NB + HHO): This model with marginal lower R2 (lower than 1%) and higher 
error values (on average 20%) has weaker performance than NBMG. However, the 
MGO algorithm has notably enhanced the NB’s prediction accuracy.

Figure  2 visually illustrates the trends in error values (RMSE, MSE) and R2 for the 
three models developed in this study. The comparative analysis reveals a consistent 
decrease in R2 values from training to testing across all models, indicating a weakness in 
the training ability of the models. Notably, all data columns for R2 values of NBMG are 
higher than those of NB but show similar heights to NBHH. In terms of RMSE and MSE 
error values, the NBMG model, particularly during the training phase, demonstrated 
significantly lower error values compared to the other models. As detailed in Table 3 and 
depicted in Fig. 2, the NBMG model showcased the best performance in predicting CL 
values, boasting an impressive R2 of 0.986, RMSE of 1.129 KW, and MSE of 1.275 KW.

Figure 3 provides a comprehensive visual representation through a scatter plot, elu-
cidating the relationship between predicted and measured samples for the CL. The 
scrutiny of these samples unfolds across three distinct phases, each phase offering 
valuable insights into the model’s performance. The allocation of sample points in 
the plot is guided by two main metrics: RMSE, which characterizes the dispersion 
within the figure, and R2, a measure that assesses the degree of collinearity among 
the sample points. In this visual exploration, the coincidence of a high R2 value with 
a low RMSE value signifies an optimal state where the predicted values closely align 
with the measured values, approximating the center ( X = Y  ). To facilitate interpreta-
tion, two dashed lines are introduced onto the plot, delineating 15% overestimation 
and underestimation. Significantly, upon closer examination, the NBMG and NBHH 
hybrid models emerge as standout performers. These models, marked by their lowest 
RMSE values and highest R2 values, showcase a level of performance that surpasses 
the NB single model. It is worth highlighting that while the NBHH model exhibits 

Table 3  The result of developed models for NB

Model Phase Index values

RMSE R2 MSE MDAPE NSE

NB Train 1.742 0.968 3.035 6.137 0.966

Validation 2.051 0.958 4.205 7.328 0.958

Test 2.147 0.953 4.610 7.482 0.949

All 1.856 0.963 3.446 6.442 0.962

NBMG Train 1.129 0.986 1.275 2.914 0.986

Validation 1.523 0.980 2.319 4.024 0.977

Test 1.619 0.974 2.620 5.055 0.971

All 1.278 0.983 1.633 3.237 0.982

NBHH Train 1.428 0.978 2.039 2.555 0.977

Validation 1.960 0.965 3.842 3.650 0.962

Test 1.680 0.970 2.821 4.188 0.969

All 1.557 0.975 2.426 3.012 0.973
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some comparative weakness against the NBMG model, it does present certain data 
points with overestimation exceeding 15%. This nuanced observation adds depth to 
the understanding of the models’ performance dynamics across various scenarios and 
contributes to a more comprehensive evaluation of their predictive capabilities.

Figure 4 employs a line plot in this investigation to comprehensively compare the vari-
ation in error values across three developed models. The range of errors for NBMG is 
approximately half that of NBHH, underscoring the advantageous capability of the 
MGO algorithm. Furthermore, in the case of NBMG, the error rate during the training 
phase is only half that observed in the other two phases, suggesting that MGO exhibits 
superior prediction performance during the training phase compared to the other mod-
els. This observation is corroborated by Fig. 5, which illustrates the normal distribution 
of errors for MGO, displaying a narrow bell-shaped curve indicative of a high concentra-
tion of errors near 0%.

Figure 6 presents Taylor diagrams that vividly depict the performance of the employed 
predictive models, namely NB, NBMG, and NBHH. These diagrams serve as statistical 
syntheses, integrating both observed and predicted CL and incorporating essential met-
rics such as RMSE, correlation coefficients (CC), and normalized standard deviations. 
The visual representation within the figure provides a comprehensive overview of the 
model performances. Notably, the NBMG model, an amalgamation of the NB model, 
and the MGO optimizer emerge as the optimal predictive model. The outcomes of this 

Fig. 2  The comparison of parameters
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model closely align with the ideal benchmark observed in the experimental data. This 
alignment signifies the effectiveness of the NBMG model in capturing the intricate pat-
terns of the cooling load, emphasizing its superior predictive capabilities compared to 
the other models under consideration.

Examining the kernel smooth distribution of errors during the prediction of CL values 
across the training, validation, and testing phases, Fig. 7 provides a graphical insight into 
the performance of three distinct models (NB, NBMG, and NBHH). Notably, the NB 
model displayed the highest errors during the testing phase, whereas the NBMG model 
showcased the lowest errors. Consistent favorability toward the NBMG hybrid model 
emerged across all stages of analysis. In the testing phase of the NB model, errors ranged 
widely from − 25 to 30. Conversely, the NBMG model, exhibiting superior performance 
during the training phase, featured errors predominantly concentrated within a nar-
rower range of − 15 to 15. This emphasis on a refined error distribution underscores the 

Fig. 3  The scatter plot for developed hybrid models
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heightened predictive accuracy of the NBMG model, especially when compared to the 
broader range observed in the NB model’s testing phase.

Conclusions
Accurate building cooling load forecasting is vital for optimizing HVAC systems, reduc-
ing costs, and enhancing energy efficiency. However, it remains challenging due to the 
complex interplay of building characteristics and meteorological data. Prior studies 
emphasize the effectiveness of machine learning in building energy forecasting, favor-
ing nonlinear approaches. Naive Bayes, a foundational machine learning algorithm, was 

Fig. 5  The normal distribution plot of errors among the developed models

Fig. 6  The Taylor diagram for developed models



Page 16 of 18Xu ﻿Journal of Engineering and Applied Science           (2024) 71:75 

unexplored in this context. Naive Bayes-based models encompassed a single model, one 
optimized with the Mountain Gazelle Optimizer (MGO) and another optimized with 
the horse herd optimization (HHO) algorithm. The research findings underscore the 
exceptional performance of the NBMG model, consistently outperforming its counter-
parts by reducing prediction errors by an average of 20% and achieving a maximum R2 
value of 0.982 for cooling load prediction. This highlights the substantial potential of 
machine learning, as NBMG exemplifies, to significantly enhance the precision of energy 
consumption forecasts. Consequently, it empowers decision-makers in energy conserva-
tion and retrofit strategies, contributing to the overarching goals of sustainable building 
operations and reduced environmental impact.
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