The SEM image in Fig. 1a and b shows that fine Fe3O4 ore particles have been agglomerated more effectively than coarser Fe2O3 particles (Fig. 1c, d) after mixing with bitumen. Both iron ore agglomerates show good binding capacity with bitumen.
The produced mix was compacted into pellets after cooling to room temperature. The solid particles approach each other closely under the acting pressure, forming a tight connection. The baked pellets, at low temperatures, attained high crushing strength due to the polymerization and hardening of molten bitumen film coating the ore particles. At the point of contact between particles, a solid bridge is formed. Considerably larger bridges are formed when thermoplastic material (such as bitumen) moves under the influence of pressure and friction.
Figure 2a and b of green and baked Fe3O4 pellets illustrate the increase in density and improved crushing strength when heated to 400 K, whereas Fig. 2c and d show the green and baked Fe2O3 pellets with increased density. At this stage, bitumen well packed with iron oxide polymerizes with the formation of cross-linked polymers.
Effect of temperature on the microstructures
In the case of Fe3O4 super concentrate powder reduced at a lower temperature of 773 K (Fig. 3a), the number of small pores was generated, though the shape of the sample did not change. As the temperature rose to 973 K (Fig. 3b), the particles formed larger pores, but the particles’ sharp corners and shape almost remained the same. After a further increase in temperature to 1273 K (Fig. 3c), the sharp corners of the original Fe3O4 particles became rounded and smoother, with no open pores visible. This was due to sintering which increased the density of the porous product.
A similar effect for reduced powder of the Fe2O3 was observed at different temperatures. At 773 K (Fig. 3d), each grain appeared to be dense. After measuring the pore surface area of the particles, it was concluded that fine pores were present in those dense grains. At 973 K (Fig. 3e), the particles were not as dense as at 773 K, and small pores within some particles can be noticed in Fe2O3 particles (×1000) (Fig. 4c) at 973 K. Few cracks are clearly shown in some reduced particles at temperatures 773 K and 973 K respectively in Fig. 3a and b; however, the shape and size of the particle appear to be the same. At 1273 K (Fig. 3f), pores in Fe2O3 particles became coarser, but the sharp edges were retained.
Reduced magnetite and hematite with and without 5% bitumen
In Fig. 4, the microstructures of reduced magnetite and hematite particles are compared with 5% bitumen-mixed samples. It can be seen that porosity increased in the case of bitumen-mixed powders of both samples. This was partially due to the evolution of volatiles which leaves behind a highly porous material. The reduction of magnetite powder at 973 K (Fig. 4a) was slower when bitumen was not added. Reduction became faster, and a rate minimum occurred at a higher degree of reduction as compared with magnetite alone. This is another reason why bitumen-added magnetite appears to be more porous as shown in Fig. 4b. Some oxide inclusions were always present in the center of the particles surrounded by cracks as shown in Fig. 4a. Some cracks are also visible in the hematite sample with and without bitumen as shown in Fig. 4c, d.
At high temperatures, such as 1273 K, an additional process occurred during magnetite-bitumen reduction, in which carbon monoxide (CO) was formed, and the reduction rate became faster than when no bitumen was present. This was the effect of high gas pressure build-up within the iron shell resulting in rupture of the shell and exposure of the unreduced oxide to the reducing gas. With H2 reduction, the gas pressure is not high enough to break the dense iron shell. It is believed that the bursting mechanism would produce a more open structure, and the porosity of iron particles would be increased.
The effect of magnetite-bitumen and hematite-bitumen reduced by H2 at 1273 K is shown in Fig. 4e and f. Hematite-bitumen specimen (Fig. 4f) is more porous than those with no bitumen (Fig. 3f). The effect of sintering at high magnification is seen in Fig. 4 in case of bitumen-added samples. The pore structure of the specimen shown in Fig. 4e and f with bitumen is coarser than without bitumen (Fig. 3c, f). Turkdogan et al. also found that the pore structure obtained after CO reduction is always coarser than after H2 reduction [14, 15].
The combustion of organic binders at high temperatures could virtually emit no residual ash to the structure of pellets, leading to slag formation [16]. The softening of bitumen starts at 353 to 363 K; when heated at low (673 K) and high (1273 K) temperatures, the volatiles evolved at 75% and 79% respectively. This volatile reduction was also justified by chemical analysis where fixed carbon was found at 20.5%, and ash content was around 0.12%. Based on this analysis, the bitumen-magnetite mixture contained 3.96% volatiles and 1.015% fixed carbon. The reduction results for Fe and FeO at high temperatures with hydrocarbon oxidation were found to be extremely favorable, and hydrocarbon volatilization began early in the process, at 573 K, while the oxides were still in the Fe3O4 form. H2 reaction mainly influenced this volatilization, which drives H2O formation and escaping into the atmosphere [17].
The combustion analysis of blown bitumen showed the chemical percentage for different elements as 82.8% carbon (C), 10% H2, 4.6% sulfur (S), and 2.7% oxygen (O2); ash content 0.12%; and 0.5% N2. During the thermal decomposition of bitumen, the non-condensable gases (H2, CO, CO2, H2S, COS) are also produced with light boiling aromatics. However, under the temperature of 973 K, the formation of carbon and CO2 from CO is well known. It was observed when the mixture was reduced in the range 673 to 1373 K, the weight loss percentage was much higher than the Fe3O4 recorded alone, as shown in Fig. 5a–f.
This difference was mainly caused due to bitumen addition into these powders in the H2 atmosphere. Figure 5a and b, both showing an increase of 3.7%, is achieved for weight loss after the addition of bitumen. However, the reduction percentage is slightly higher than the total volatile content of the magnetite-bitumen mixture. The results depicted in Fig. 5c–f are considerably interesting, where the increase in weight reduction was slight (1.3%) by increasing temperature up to 873 K as shown in Fig. 5c. This might be because of two possibilities: (I) the maximum reduction of Fe3O4 already occurred, and the high diffusion rate of H2 and water from reacting sample could inhibit the volatilization rate; (II) the deposition reaction of carbon may compatibly occur at a temperature which is thermodynamically favorable which resulted in little increase in weight reduction as achieved on 673 to 773 K. On the contrary, the reduction percentage for 973 to 1073 K as shown in Fig. 5d and e is quite comparably of the same magnitude achieved on 673 to 773 K. However, the reduction was up to 5% when the temperature increased at 1073 K, which indicated that fixed carbon is also participating in the reduction in addition to H2. Increasing the temperature around 1300 K, the percentage of weight reduction of the mixture was rapid and found larger in magnitude as of the Fe3O4 alone. A higher reduction percentage of 9% was found at the initial time of the process.
The results shown in Fig. 5d–f clearly show an increase in weight loss of 5.6%, 9%, and 9.4% at 973 K, 1073 K, and 1373 K respectively. These losses were a combination of the amounts of bitumen and O2 removed at the respective temperature. It is apparent that after the same time of reduction in H2, the magnetite-bitumen samples were reduced to higher levels than Fe3O4 alone. The increase in reduction rate (above 1073 K) was due to the fixed carbon where gasification increased with temperature, and conversely, the carbon left in the reduced samples decreased. However, H2 is a fast-reducing agent, and small additions of CO increase after the initial reduction periods at high temperatures.