Exploring the outputs of the focus group
The first workshop investigates the participants’ degree of involvement with the site, how they use or expect to use the surrounding environment, their suggestions for new activities and their vision for the future. Thus, the aim is to propose the possible activities that can take place in the selected site. These activities are proposed in the first brainstorming sessions and individual meetings, but elaborated according to several factors. These include the needs of the local community, NIRAG employees and what each participant or expert can offer based on his/her experience and dreams. Participants set a list of activities, which are discussed, evaluated and sorted according to priority. Alternatives of these activities are allocated on a site physical model during the focus group workshop.
The activities are assigned through a progressive evolution, as demonstrated in (Fig. 2), using sticky notes, tags and pins on a physical model of the site’s topography and surrounding context. These sticky notes are translated into areas and zones in a schematic sketch, then transformed to proper zoning alternatives, with the help of the survey levelling maps, using the computer-aided design (CAD) programme. Later, after having had many discussions and multiple modifications, the researchers clarify the maps on presentable illustrations, including similar precedent visualisation and images to support the perceivers’ perception and the ideation process [25].
Participants contribute to the workshop outcomes by engaging in discussions to achieve the best data synergistic interaction. For example, a path’s form and shape are set about the users’ needs and traced from the employees’ movement analysis. The main path is a shortcut connecting the old and new buildings. The secondary path is more prolonged, mimicking the original contour lines to maximise exposure to the activities, attract children and teenagers and provide a wheelchair-friendly gradient ramp. The same can be said about other necessary and optional activities, such as exploring educational instruments and sitting areas.
GIS role in adapting the preliminary zoning plan
One of the results of the first workshop is the joint GIS specialist. The GIS programme is commonly integrated with urban and planning research from the early stages. It is usually used as an analytical tool that helps design decisions, where added algorithms of different variables can supply the demand points efficiently.
This integration of modelling and GIS databases [26] contributes to design development, scientific decision-making and the best allocation for proposed activities [27]. GIS provides more potential for coordination when all maps are saved in shapefiles and KML formats as more data can be available for all experts. These maps help in adjusting the design as per added factors and conditions.
Here, GIS is combined with other participatory approaches to merge the mixed resultant qualitative and quantitative databases to facilitate the design progress and mutual learning [4]. For example, the precipitation data, specifically in exceptionally severe weather, such as the heavy rain that took place on the 13 March 2020, are estimated and combined with other data, such as topographic contour lines, geophysics data, the layer of water flow directions and other analyses of the dry stream. The focus group discusses the possibility of catching the rain and proposes the eco-construction method, while the GIS analysis coordinates the previous merged layers and provides guidelines to locate the rain harvesting pond at the best point. Although it rarely rains in Egypt, the project looks to maximise the use of rain and search for several sources of irrigation besides the wastewater treatment, where every single drop of water counts. We argue that GIS tools play a significant role in comparing alternatives, helping designers in scientific-based decision-making and adapting the finalised design.
Another example, constructing a telescope pier is one of the proposed observatory activities recommended by the NRIAGs astronomer. But checking the locations at the highest altitudes on the site and the best location of the telescope, checking the surrounding landmarks and adjusting the soft-scape is not easy to retrieve without the help of GIS. The telescope is best allocated according to the surrounding site conditions and the shed-view angle of the landmarks in the broad context.
By locating the bent pyramid and the red pyramid at Dahshur on Google Earth and with GIS Data Elevation Modelling, some proposed shading trees on the main path are removed to unblock the view. Later, the landscape architect recommended framing the view with palms instead of trees, to widen the view. We argue here that integrating the GIS tool with the participatory approach contributes to the accuracy of landscape design, as Fig. 3 elaborates.
Evaluating the outputs
Due to the COVID-19 lockdowns, the second focus group workshop is conducted online, on which the zoning map is presented to the participants. The eco-landscape design process is continued; a range of quantitative analytical strategies is integrated and online forms and surveys of the projects’ strategic goals are done. The participants’ weighted voting of each goal is analysed, the number of participants’ votes which agree on the proposed activities is counted and votes on the priority of execution and best practice are evaluated. Accordingly, the implementation cost analyses are computed. Later, the analysis of these numerical data is translated into different phases of zoning plans, where the shortcut path, the planting nursery and the wastewater treatment station are prioritised. Other activities are sequentially suggested to occur, as shown in (Fig. 4).
Integrating multi-methods in a conceptual framework
Researchers assert that combining multiple scopes and perspectives, implementing the mixed method of collecting a wide range of qualitative and quantitative data and the complexity of using multi-methods and various tools of analysis within participatory action research match ecodesign research and practice. They advocate that integrating modelling and databases supports eco-design. Proposing applications as CAD brace design activities and the importance of integrating both modelling and CAD programmes with GIS analysis outcomes is revealed [26] to help design scientific-based decision-making. This complex environment of multi-methods yields the construction for a conceptual framework to join all participants’ presentations of the varied collected data, shared ideas, discussions of needs and possible outcome activities in addition to the evaluations, all in a broad sense. Thus, the answers are demonstrated sufficiently instead of obstacles [28], as explored in the following conceptual framework (Fig. 5).
Planning the work packages and the following phases
Although this paper presents the first phase of an eco-park project, as previously elaborated in the individual meetings, group coordination, focus group workshops, modelling, digital programmes and GIS integration, the researchers set the plan for the following phases: mock-ups implementation, detailed design, working drawings and constructing the design elements based on their priority. Moreover, the research is based on distributing the tasks among experts and work packages [29] as this is a crucial concept in project scope management.
This project is broken into ten main work packages, such as wastewater analysis and treatment, planting, recycled and rammed earth construction, energy and environmental monitoring. Each work package has targets and outputs. All work packages are managed and coordinated by the project management board. The researchers, whose backgrounds in landscape architecture enable them to lead the dissimilar teamwork, establish ground rules for the group, map the different activities scenarios. Finally, with the help of GIS, produce an optimum ecodesign solution for the selected case within the complicated situation and limitation.
It is agreed in the workshops that each work package is responsible for a set of tasks. For example, landscape architects, based on the participatory workshops, address designing themes and functional activities, find creative and interactive ways to expose the wastewater treatment facility and prepare a detailed landscape of each zone in the park. Planting and soft landscape experts list the most suitable plants to the soil type, limited water source or the treated wastewater drip irrigation system. Planting experts also create nurseries to provide the site with needed green areas and conduct participatory planting workshops with the local community. Energy experts provide and install solar panels to feed night lighting, electrical outlets and automated irrigation systems. Wastewater treatment expert produces greywater treatment and reuse systems (GTRS) and conducts participatory workshops to build local workers’ capacities to carry on the future maintenance. Experts in recycled and rammed earth construction conduct a series of participatory workshops using construction waste and upcycled waste materials with local workers to construct the following, hardscape, signage, seats, furniture, playgrounds and educational instruments.
The distribution of the tasks among work packages, as shown in Fig. 6, helps in the execution phase and the project management, where each work package hires the most talented experts and local labours. It also controls and manages separate flexible working hours to reduce labours on site.
The phases mentioned above shall be followed up by continuous monitoring and control. Post-occupancy evaluation is recommended to allow design modifications and desirable future extensions. These future phases of the research are summarised in the design process plan, as shown in (Fig. 7).