
Journal of Engineering
and Applied Science

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54
https://doi.org/10.1186/s44147-022-00108-1

RESEARCH Open Access

An experimental study of group-by and
aggregation on CPU-GPU processors
Hua Luan1* and Lei Chang2

*Correspondence:
luanhua@bnu.edu.cn
1School of Artificial Intelligence,
Beijing Normal University, Beijing,
China
Full list of author information is
available at the end of the article

Abstract

Hash-based group-by and aggregation is a fundamental operator in database systems.
Modern discrete GPUs (graphics processing units) have been considered to accelerate
the performance. However, the data transfer through the PCIe (peripheral component
interconnect express) bus would reduce gains. On recent architectures, the GPU and
the CPU (central processing unit) are built into the same chip which removes the data
transmission and offers new performance opportunities. Yet there has been no
systematic analysis of grouping and aggregation algorithms on such architectures. In
this paper, we study the behaviors of various hash-based grouping and aggregation
methods on coupled architectures to provide meaningful guidelines. We conduct an
extensive experimental study and analysis on the single CPU, the coupled GPU, and
both processors. Six dimensions are considered in analyzing the hashing methods
carefully: (1) hashing scheme, (2) hash function, (3) data size, (4) group cardinality, (5)
load factor, and (6) data distribution. Two additional dimensions are also explored: (7)
shared and independent hash tables and (8) running on single processors and
co-processing. We hope the results in our study could help database researchers to
choose the right direction in terms of algorithm design and system optimization.

Keywords: Group-by and aggregation, Coupled CPU-GPU architectures, Experimental
study

Introduction
Group-by and aggregation is an important and dominant primitive in analytical queries.
Hashing is a common approach to implement the grouping operator. There has been a
lot of research on hashing grouping on multi-core CPUs [1–3]. With the advent of the
GPU accelerator, many efforts have appeared to accelerate the operation by offloading
the workload to the GPU [4–7]. However, the discrete GPU is connected to the CPU
and system memory through a PCIe bus. The data transfer over PCIe usually becomes
the bottleneck to hamper the performance improvement [8–10]. In recent years, a new
CPU-GPU architecture attracts growing interest of researchers, where a GPU coproces-
sor is integrated into the CPU chip which forms coupled CPU-GPU architectures. On this
architecture, the CPU and the integrated GPU share the same memory and data trans-
mission through the PCIe bus is eliminated. Researchers have focused on leveraging the

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-022-00108-1&domain=pdf
mailto: luanhua@bnu.edu.cn
http://creativecommons.org/licenses/by/4.0/

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 2 of 27

computing power of the coupled GPU in database systems [4, 7, 11–13]. Despite previ-
ous work, as far as hash grouping and aggregation is concerned, there does not exist an
in-depth study on coupled CPU-GPU architectures.
In this paper, we carefully study hash-based group-by and aggregation in a multi-

dimensional space on such heterogeneous architectures. We aim to investigate answers
to the following questions: (1) How well do various hashing methods perform on the
CPU and the emerging coupled GPU? (2) What are the most efficient methods and when
should we consider them? (3) Whether and how does the coupled GPU help to increase
the overall performance? (4) Where does time go when the group-by and aggregation
operator is executed on heterogeneous architectures?
To this end, we conduct a detailed experimental study and analysis from a variety of

dimensions. (1) Hashing scheme. Linear probing, two versions of chained hashing and
two versions of Cuckoo hashing are considered. (2) Hash function. Two representative
hash functions Multiply-shift and Murmur hashing are used and compared. (3) Data size.
We consider different data sizes to examine the effects when the data is rather small and
large. (4) Group cardinality.We observe the performance of hashingmethods for a variety
of group numbers. (5) Load factor. Six load factors between 25% and 90% are explored.
(6) Data distribution. We consider two data distributions: uniform distribution and Zipf
distribution. (7) Hash table. Shared and independent hash tables are investigated. The
shared hash table is accessed by all the work items. If hash tables are independent, each
work item has its own hash table and a global hash table is built at last. (8) Processor. We
examine the performance of hash grouping and aggregation on the CPU and the coupled
GPU to understand the ability of heterogeneous processors. In addition, two strategies
including inter-operator parallelism and intra-operator parallelism are exploited in co-
processing to explore potential benefits from the coupled architecture. Our main goal
is to acquire a comprehensive understanding of hash-based grouping and aggregation
on modern hybrid architectures, which could guide researchers to design and optimize
future database algorithms and systems.
The remainder of this paper is organized as follows. First, we briefly describe the cou-

pled CPU-GPU architecture, OpenCL, three kinds of considered hashing schemes and
two hash functions. Then, we give our methodology and the experimental setup. Later,
the experiment results and discussion are presented. Finally, the related work is described
and we conclude our work.

Preliminaries
In this section, we first describe the coupled CPU-GPU architecture and the OpenCL
standard. Then, we introduce three types of hashing schemes and two hash functions
examined in this paper.

Coupled CPU-GPU architectures

The coupled CPU-GPU architecture is a hybrid architecture which integrates the CPU
and the GPU in the same chip. On traditional discrete architecture, the GPU is equipped
with a great number of cores and has excellent computing power. However, data need be
transferred between the main memory and the GPUmemory through the PCIe bus. This
has become a nonnegligible overhead when using the discrete GPU as an accelerator. On
the emerging coupled architecture, the integrated GPU has much fewer computing units

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 3 of 27

compared with the discrete GPU and is not as powerful as the latter. But the integrated
GPU shares the same physical memory and the last level cache (LLC) with the CPUwhich
reduces the data transfer cost between two processors since the slow transfer via the PCIe
bus is not needed. It is meaningful to explore the benefits from the hybrid architecture in
applications.
Figure 1 shows the architecture of modern Intel processors. Intel supported its inte-

grated architecture on the processors such as Ivy Bridge. We use Intel Core i7-9700K as
the major experimental platform in this paper which is the 9th generation processor and
includes an integrated graphics processor, Intel UHD Graphics 630. The hardware con-
figuration is described in Table 1. The CPU has 8 cores and L1, L2, and L3 cache. L3
cache of size 8 MB (Megabyte) is the last level cache which could also be used by the inte-
grated GPU. On some laptop processors, an embedded dynamic random access memory
(EDRAM) is supported as a larger cache. The GPU contains 24 Execution Units (EUs) and
each EU can be regarded as a multithreaded SIMD (single instruction multiple data) pro-
cessor. Usually, the CPU is much faster than the integrated GPU and the GPU clock speed
of Core i7-9700K is 350MHz. However, the GPU could provide more parallel computing
resources and the actual computational capability will be examined in this paper.

OpenCL

The OpenCL (Open Computing Language) [14], developed by an open and non-profit
consortium Khronos Group, is a standard and framework for parallel programming on
CPUs, GPUs and other processors and accelerators. It specifies a C-like language and
APIs (application programming interfaces) to write and launch programs across various
platforms. The same code in C and OpenCL could be executed on either CPUs or GPUs,
which facilitates the software design on heterogeneous architectures. Hardware vendors
like Intel, AMD, and NVIDIA have supported the OpenCL standard by providing specific
OpenCL implementations.

Fig. 1 Intel CPU-GPU architecture

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 4 of 27

Table 1 Hardware parameters

Processor Intel Core i7-9700K

Type CPU GPU

Name N/A Intel UHD Graphics 630

Basic units Core EU

Number of units 8 24

Base clock rate 3.6 GHz 350 MHz

TDP 95 W

LLC 12 MB

In the OpenCL model, there exist one host and one or more devices in computer sys-
tems. The host usually refers to the CPU where the host code could run. The host code is
in charge of preparing and triggering OpenCL program execution on devices. The device
covers a wide range of processors such as CPUs, GPUs and other accelerators. Each device
contains more compute units and each compute unit is composed of more SIMD process-
ing elements. The parallel work is submitted to devices by launching kernels which are
coded in the OpenCL language. The instances of a kernel are broken up into work groups.
Each work group includes the same number of work items and is scheduled to run on a
single compute unit. Work items within the same work group are executed concurrently
by processing elements and could synchronize with each other using barriers or memory
fences.

Hashing schemes

When performing hashing, multiple keys may be mapped into the same value. How to
handle key collisions is a problem. We study the performance of three kinds of hashing
schemes: (1) linear probing, (2) chained hashing, and (3) Cuckoo hashing. Linear probing
and Cuckoo hashing belong to the static hashing technique. The size of the hash table
is fixed and if the hash table could not provide enough space, a new hash table has to
be rebuilt from scratch. This is expensive and may be a factor which affects the use in
practice. Chained hashing is a dynamic hashing scheme by maintaining linked lists which
is able to resize the hash table without needing to rebuild the whole table.

Linear probing

Linear probing is a simple open-addressing hashing collision resolution technique. The
used hash function is h(k, i) = (h′(k) + i) mod S, where i represents the i-th probing, h′(k)
is an initial hash function, and S denotes the hash table size. The slot T[h(k, 0)] in the
hash table T is first checked for a key k. If the slot is empty, the key is placed into it.
Otherwise, the next free slots T[h(k, 1)], T[h(k, 2)], etc., are searched until an empty slot
or the same key is encountered. The collision resolution technique is to probe through a
set of alternate locations in the table in a cyclic manner.
The advantage of linear probing is its simplicity and sequential scanning. This method

has been adopted in many studies [4, 5, 7]. The problem in this collision resolution is pri-
mary cluster [15], that is, a large group of consecutive slots are occupied when an empty
slot needs to be searched for a key. The consecutive sequences form a cluster where keys
whose hash values lie require excessive probing, which degrades the performance of lin-
ear probing. We will examine the performance of this scheme as one of the comparison
methods in the experiments.

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 5 of 27

Chained hashing

Chained hashing is a classical method to deal with collisions, which is widely used in
practice such as functions in C++ STL (standard template library) and Java [15]. Keys with
the same hash value are placed in a bucket and all the slots in a bucket are linked together
with a head pointer pointing to the first slot. The directory which stores the head pointers
and pointers to the next slot in the linked list are extra space used by chained hashing
compared with linear probing. When a collision happens, the corresponding bucket is
traversed to judge whether the key has existed. If not, a new empty slot is added into the
linked list of the bucket. The characteristics of the linked list bring two disadvantages:
more memory space and irregular memory accesses. In order to reduce cache misses, a
variant of chained hashing was presented in the previous study [15] where the directory
is 24 bytes wide to keep key-value-pointer triplets so that one element could be directly
stored in the directory and the linked list is not needed to be visited. In our study, we
consider two versions of chained hashing: the standard scheme and the variant mentioned
above.

Cuckoo hashing

Cuckoo hashing [16] is another type of open-addressing scheme, which maintains two
hash tables T0 and T1 with their own hash function h0 and h1 in the simple version. Keys
are stored in one of the hash tables. Every hash table is checked to find an empty slot
or a slot containing the same key. If both tables have an empty slot, any of the two hash
tables are chosen alternately to store the new key k. If neither of them has an empty slot
in the corresponding location, the key k′ in the slot T0[h0(k)] in the first hash table is
kicked out to make room for the new key k, which is inserted into the second hash table
at location T1[h1(k′)]. If the location in the second table is not free, the existing key is
evicted again to probe its location in the first table. The advantage of Cuckoo hashing
is two accesses are required at most to find a key. However, the insertion process may
end up in a cycle and no empty slot could be found for a key especially for high load
factors. Increasing the number of hash tables is one of the ways to alleviate the problem.
In our experiments, besides the traditional Cuckoo hashing with two tables, the version
using four hash tables is also explored to check the performance. The hash functions
Multiply-shift and Murmur hashing described later are used respectively by two hash
tables. Besides them, two additional functions such as ((a × k + b) mod p) mod B with
different parameters are utilized in the other tables.

Hash functions

Two representative hash functions are considered in our study which are widely used
in practice: (1) Multiply-shift and (2) Murmur hashing. The detailed description is as
follows.

Multiply-shift

Multiply-shift [17] is a universal hash function used in previous studies [7, 15] and the
definition is:

h(k) = (k × r % 2w) / 2w−d (1)

where k is a w-bit integer, r is an odd w-bit integer, and d means the hash table is of size
2d. The operator “/” could be implemented by a right bit shift by w-d positions. In our

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 6 of 27

experiments,w is set at 32 that is keys are 32-bit integers, and r is an odd integer generated
randomly.

Murmur hashing

Murmur hashing is a common hash function which is widely used in the literature [4, 5,
15]. This hash function is more complex than Multiply-shift and we use the Murmur3
implementation [18] for 32-bit keys in this paper with the finalization code shown as
follows:
uint32_t fmix32 (uint32_t h) {

h ˆ= h >> 16;
h *= 0x85ebca6b;
h ˆ= h >> 13;
h *= 0xc2b2ae35;
h ˆ= h >> 16;
return h;

}

Methods
In this paper, we aim to understand how well a hash-based group-by and aggregation
operator works on the new coupled architecture. The following group-by query is used as
a representative example:
SELECT c1, count(c2), sum(c2)
FROM T
GROUP BY c1
There are two 32-bit integer columns c1 and c2 in a table T. The query calculates the

count and sum aggregates grouped by c1. The column c1 provides the keys on which
a hash table is built. Two aggregates are stored and updated with the establishment of
the hash table. The study in this paper is also suitable for other algebraic aggregates like
average,min, andmax.

Load factors

We assume the group cardinalityG is known in advance which actually could be estimated
by the optimizer in a DBMS (database management system) and the hash table size S is
set at a power of 2. The ratio G/S is considered as the load factor of the hash table. For
linear probing a hash table has S slots, and for chained hashing, there are also S slots in
total and the directory stores the same number of pointers. In Cuckoo hashing, the size of
each hash table is the minimum power of 2 which is greater than or equal to S/2 or S/4.
In our experiments, the total size of multiple tables is just equal to S because the quotient
is exactly a power of 2. We examine the performance of various grouping methods with
six load factors: the low load factors 25%, 35%, and 45% and the high ones 50%, 70%, and
90%, which cover a wide range of collisions. At low load factors, collisions will be rare and
become apparent when the load factor is increased.

Parallelization strategies

Two parallelization strategies are adopted to design hash tables: shared and independent.
In the first strategy, a single globally shared hash table among all the work items in differ-
ent work groups is used to perform grouping. Concurrent updates to the same bucket or
slot are resolved with atomic access primitives. Compared with the independent strategy,

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 7 of 27

thememory requirements of a shared table are reduced. However, on the other hand, con-
tentions may cause a performance problem especially when collisions occur often. The
second strategy is a simple parallel approach and each work item aggregates into its own
hash table. The advantage is that contentions on the same data are eliminated and expen-
sive synchronization primitives are avoided. However, more memory space is needed to
store many hash tables and a subsequent phase is required to merge the independent
tables into a global one. We consider the shared approach when using linear probing and
chained hashing. The independent hash table is combined with all the hashing schemes.
The reason why we do not adopt a shared table for Cuckoo hashing is that for OpenCL
there is no synchronization between work groups and it is hard to ensure the correct-
ness of updates and accesses to a hash table. When Cuckoo hashing was implemented
with a shared hash table, accesses to each sub table by all the work items from different
work groups needed to be synchronized; otherwise, faster work items would modify any
sub table which led to wrong results. However, the global synchronization operation of
work items between work groups is not provided by the current OpenCL implementation.
Thus, the shared hash table will not be combined with the Cuckoo method.

Co-processing

Since there exist two processors on a chip now, it is reasonable to utilize two kinds of com-
puting resources together besides assigning a query on a single processor. In this work, we
investigate task and data parallelism models of co-processing. When the task parallelism
model is used, the CPU and the coupled GPU handle different group-by and aggrega-
tion queries simultaneously which forms a kind of inter-operator parallelism. The queries
are of the same form as the representative example illustrated previously with the varied
tuple number or group count. If intra-operator parallelism is adopted, the CPU and the
GPU process part of data at the same time to build a global shared hash table. The other
operations in the operator are performed by a separate processor.
Although the coupled GPU provides the extra computing ability, it adds to the pressure

on the memory bandwidth since the CPU and the GPU access the unified memory. The
concurrent visits to different memory regions may also bring the cache contention which
results in more cache misses. In addition, the execution on the GPU acquires the control
and coordination of the CPU which may affect the overall co-processing performance
to some extent. In view of the above factors, we study the co-processing strategy in our
experiments to explore the performance gains from the hybrid architecture.

Implementation

The implementation of the group-by operator adopts a column-based model, which is
true for a columnar database suitable for analytical query processing. The raw data, inter-
mediate structures, and the results are all stored by columns. The raw table is generated
as a file on the disk and read into memory in advance.
The major process consists of four phases and involves three kernels. The first phase

is to create and initialize data structures used in the building step. For linear probing
and Cuckoo hashing, three arrays are allocated to store the distinct group-by key, the
count of tuples and the sum of values respectively. For the traditional chained hashing,
two extra arrays are needed in a hash table to keep the head and next pointers which are
represented by array indexes in our implementation. Figures 2 and 3 show the structure

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 8 of 27

Fig. 2 Linear probing structure

and implementation of linear probing and the classical chained hashing. The variant of
chained hashing relates three other arrays to the directory which are used to place the
first key, count and sum directly. The work in this phase is done by the CPU.
The second phase is to construct shared or independent hash tables by launching a ker-

nel build_hash_table on the CPU or the coupled GPU or both of them in co-processing.
The concrete implementation of the kernel is associated with different methods. Algo-
rithm 1 shows the pseudo-code of linear probing with shared tables as an example. The
kernel acquires the global number of work items that is how many work items will deal
with respective tuples simultaneously (Line 1). The value is the same for all the work
items. Then, each work item gets its item ID which ranges from zero to the number of
work items minus one (Line 2). Every work item accesses the tuples at intervals of the
work item count (Line 3). For every tuple, the kernel calculates the bucket number based
on the grouping key and checks the corresponding bucket until the insertion process is

Fig. 3 Chained hashing structure

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 9 of 27

Algorithm 1 The kernel build_hash_table of linear probing with shared hash tables
_kernel void build_hash_table (_global int *c1, _global int *c2, _global int *key,
_global int *count, _global int *sum, ...)
1: stride = get_global_size(0); // how many work items in total
2: tid = get_global_id(0); // the id of the current work item
3: for (i = tid; i < tupleNum; i += stride)
4: calculate the bucket number b based on k that is c1[i]
5: while (!success)
6: if (key[b] is empty)
7: ret = atomic_cmpxchg(key[b], empty, k);
8: if (ret is empty or ret is equal to k)
9: update the values in count and sum arrays atomically
10: set success with true
11: else
12: b = (b +1) % the size of the hash table
13: else if (key[b] is equal to k)
14: update the values in count and sum arrays atomically
15: set success with true
16: else
17: b = (b +1) % the size of the hash table

finished (Line 4 and Line 5). If the bucket is empty, the key will be filled in the bucket
using the atomic_cmpxchg function (Line 7). If the bucket is set successfully or it has been
set with the same key by another work item, the aggregates are updated atomically (Line
8 and Line 9). Otherwise, the next bucket has got as a candidate and will be examined
later (Line 12). If the bucket is not empty at the beginning, there are two cases. One is that
there exists a key which is the same as the grouping key to be inserted, the kernel revises
the count and sum values directly (Line 14). Otherwise, the bucket has been occupied by
another key and the kernel checks a new bucket to try to perform the insertion operation
(Line 17). Suppose there are four work items and the first four tuples in the table are 〈1,
10〉, 〈2, 20〉, 〈3, 30〉 and 〈4, 40〉. An illustration of linear probing is shown in Fig. 4. The
build_hash_table kernel is executed by all the four work items and each work item han-
dles one tuple. If 〈4, 40〉 has the same initial bucket number as 〈1, 10〉, the fourth work
item has to use the next free bucket to resolve the collision.
After the second phase, a shared hash table or multiple separate hash tables contain-

ing the distinct keys and their aggregates are established. In order to get the final results
from the hash table, two subsequent stages are needed. The third phase differs in the
functions for the two parallelization strategies. If a shared hash table is used, the sec-
ond kernel gather_item_num counts the number of keys a work item will access in the
last phase. By calculating a prefix sum on the numbers, each work item knows the offset
from which it could put data in the result array. Then, in the third kernel aggregate_result,
the final aggregation results are acquired and filled into arrays by the same work items
in parallel. If the independent strategy is adopted, the last phase completes the similar
function by executing the aggregate_result kernel. The difference lies in the second ker-

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 10 of 27

Fig. 4 An illustration of linear probing

nel gather_item_num. Before counting the key number for every work item, a global hash
table is needed to be generated.
For two variants of chained hashing, the head pointer of keys belonging to a global

bucket has the same position in each local directory. Thus, in the process of producing
the unique hash table, every work item consolidates the corresponding sub-buckets in all
of the independent hash tables. The sub-buckets in the later tables are merged into the
ones in the first hash table. If keys are equal to each other, two aggregates are updated. If
the key only exists in the later hash table, the slot is inserted into the appropriate location
in the linked list. After a work item finishes the current bucket, it turns to the next bucket
over an interval of the global size of work items. For linear probing and Cuckoo hashing,
keys in a global bucket may be not in the same position in different local hash tables. A
parallel method similar to the merge-sort is utilized. Each work itemmerges two adjacent
local hash tables into an intermediate hash table. Two adjacent intermediate hash tables
are processed by a work item further. Until the end, a final global hash table is established.
The second and third kernels could run on either the CPU or the coupled GPU. In

our experiments, we will examine how the time is spent from the perspective of different
phases to understand the performance of various methods on various platforms.

Experimental setup

Our experiments are conducted on Intel Core i7-9700K unless noted otherwise. The
major hardware parameters are shown in Table 1. The machine is equipped with a 16-
GB (Gigabyte) memory and Microsoft Windows 10. The code is implemented in C and
OpenCL and compiled by Visual Studio 2017 with -O2 enabled in 64-bit mode. The raw
data is read from disk into the memory and the time is not included. The OpenCL ini-
tialization overhead such as creating the context, queue, and kernels and building the
program is not considered since these operations need be executed only once and the
overhead could be amortized over queries. Each group-by and aggregation is run four
times. The first run is used to exclude the warm up penalty and the average value based
on the following three executions is used as the final time.
If the algorithms work on the CPU, the number of work groups is set to the core number

of the CPU which is 8 on our platform. The number of work items in each work group

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 11 of 27

is set to 1. Thus, the global size on the CPU is 8. For the coupled GPU, the number of
work groups is 32 and each work group has 32 work items to make full use of computing
resources. All the data are 32-bit and there are two kinds of data distributions. The first
is uniformly distributed and the number of keys in each group is similar. The second is
skewed and generated using a Zipf distribution with the parameter set to 3, which means
the most frequent value occurs in about 80% of the data.

Results and discussion
In this section, we provide the experimental results and performance analysis of various
methods in grouping and aggregation. We use “Linear” to represent linear probing, and
“Chain” and “Chain+” for the standard chained hashing and the variant of chained hash-
ing. The terms “Cuckoo2” and “Cuckoo4” denote Cuckoo hashing using two hash tables
and four hash tables respectively. “I” and “S” represent the independent and shared hash
tables respectively. “CPU” and “GPU ” denote the processor where the algorithm runs. In
addition, “LF” is used to indicate the load factor. If not specified, chained hashing mostly
refers to the standard chained hashing scheme, Multiply-shift is used as the hash function
and the data is uniformly distributed.

Effects of group cardinalities

In the first set of experiments, we analyze the performance difference among 11 different
configurations from five hashing schemes, two parallelization strategies and two proces-
sors with changing group cardinalities. Figure 5a to c show the execution time when there
are 221 (2M) tuples whose size is relatively small. Figure 6a to c give the performance when
the data size is set to 225 (32M) which is rather large. The values of X-axis represent the
hash table size from which the actual group cardinality could be derived by multiplying
by LF. We tested various methods under six load factors 25%, 35%, 45%, 50%, 70%, and
90%; however, due to the limited space, some of the similar results are omitted and we
only present the results at the representative load factors in this paper. In addition, for lin-
ear probing, chained hashing and Cuckoo hashing, the execution times with independent
hash tables on the coupled GPU are omitted in these and the following figures in order
to show the performance difference of the other methods clearly because their times are
much larger than the counterparts on the CPU, which demonstrates that independent
hash tables are not suitable for the coupled GPU.
From the figures, we could obtain the following observations:
First, when the data size and group cardinality are small, all the methods show a rela-

tively stable performance and the independent strategy performs better than the shared

Fig. 5 Performance as the number of groups changes with different load factors when the data has 221 (2M)
tuples

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 12 of 27

Fig. 6 Performance as the number of groups changes with different load factors when the data has 225 (32M)
tuples

one, as found in the left part of the curves in Fig. 5a, b and c. When the group cardinality
becomes larger, the execution time goes up drastically. This implies the group cardinal-
ity does not affect the overall time too much within a certain range for the small data
set. Outside the scope, a larger group cardinality, which means a bigger hash table when
the load factor is fixed and more keys are stored in the table, has a great influence on
the performance. Moreover, multiple independent hash tables bring a larger performance
degradation than the shared table with the increase of the group count. Thus, the shared
parallelization strategy should be considered as the primary choice for a larger data size
or group cardinality. In Fig. 5b, the shared approach could achieve a speedup up to 6.9
and 3.9 on the CPU for linear probing and chained hashing respectively. In Fig. 6b, the
maximum speedup is 6.5 and 5.7.
Second, two variants of Cuckoo hashing are slower than linear probing and chained

hashing in most cases when using the independent hash table. In the results, in order to
make the difference clear, some large time values are not plotted. Cuckoo hashing on two
tables only works when the load factor is 25%. It begins to fail in some cases due to too
many tries back and forth when the load factor is set to 35%, 45%, and 50%. If the load
factor goes up to 70% and 90%, the method could not run at all. The version of Cuckoo
hashing on four tables performs slower than that with two tables while it is feasible for a
high load factor except 90%.
Third, linear probing and chained hashing on the CPU and the coupled GPU show the

following behaviors: when the data size is 2M, the CPU algorithms run faster than the
GPU counterparts except in several cases when the number of groups is large; if 32M
tuples need to be processed, the trend is more obvious: the methods on the CPU perform
better than those on the GPU when the group cardinality is low and the GPU methods
show better performance if the group cardinality is increased. Thus, the coupled GPU
has performance gains under time-consuming scenarios which makes it more useful to
consider the accelerator in the grouping operator. In addition, linear probing outperforms
chained hashing in most cases on either of the two processors. The performance gap of
two kinds of hashing schemes on the CPU is larger than that on theGPUwhich sometimes
is very close.
Fourth, in order to distinguish the performance clearly, two versions of chained hashing

are illustrated separately in figures. We could find that for the configurations that run
fastest, the two variants show similar performance. For example, in Fig. 7a, when the
group cardinality is not bigger than 216, Chain-I-CPU is close to Chain+-I-CPU. When
the number of groups is increased, the best methods Chain-S-CPU and Chain+-S-CPU
achieve a close performance. This similar phenomenon could also be observed in Fig. 7b.

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 13 of 27

Fig. 7 Comparison between two kinds of chained hashing as the number of groups changes with different data
sizes

In addition, on the whole, for the 2M data the standard chained hashing is a little better
and when the data size is 32M, the variant of chained hashing demonstrates the advantage
in many cases.
Fifth, there are clear breaking points where the execution time starts to increase linearly

with the problem size especially for the methods using the independent hash tables. The
size of hash tables becomes larger with the increase of the number of groups. For the
independent strategy, every hash table grows exponentially and more memory space is
needed. Thus, the increase of the group cardinality will lead to more LLC misses which
reduce the performance. Take Fig. 5b for example, when the value on X-axis is less than
or equal to 215, it is hard to detect LLC misses when Intel VTune Profiler, a performance
analyzer Intel provides, is used to profile Linear-I-CPU. When the value is set to 216,
217 and 218, the corresponding miss count is 140,000, 420,000, and 840,000, which may
explain the occurrence of the breaking point.

Effects of data sizes

In the second set of experiments, we compare various methods with the number of
tuples varied. The hash table size is set to 211 and 221 respectively. The group cardinality
responds to the change of the load factor. For space reason, the results at load factors 25%,
50%, and 90% are displayed in Figs. 8a to 9c. There exist 512, 1024, and 1843 groups in
Fig. 8a, b and c respectively. The maximum number of tuples is 221. The group cardinal-
ity is 524,288, 1,048,576, and 1,887,436 in Fig. 9a, b, and c respectively, and the data size
reaches 226.

Fig. 8 Performance as the number of tuples changes with different load factors when the number of groups is
set at 211 * LF with the hash table size of 211

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 14 of 27

Fig. 9 Performance as the number of tuples changes with different load factors when the number of groups is
set at 221 * LF with the hash table size of 221

In the former group of figures where the data size and group cardinality are relatively
small, the algorithms using the independent strategy are the top performers and the GPU
methods offer the worst performance in most cases. The feature of Linear-S-CPU and
Chain-S-CPU is that they have similar performance which is competitive with the best
performers at the beginning and drops significantly with the increase of the data size.
When the data size is 221, the shared CPU andGPUmethodsmeet together. Cuckoo hash-
ing does not work when the load factor is 90% and is slower than the other two hashing
schemes for larger data sizes. In Fig. 9a to c, it could be pointed out that the four shared
methods perform better than the independent ones. All the curves are in the upward
trend in the execution time when the data size is increased. In terms of load factors, when
the load factor is 25%, the four shared approaches show rather similar performance, and
Chain-S-CPU falls behind obviously when the load factor goes up. A small gap among
Linear-S-CPU, Linear-S-GPU, and Chain-S-GPU also begins to appear, and linear prob-
ing is slightly faster. The difference of two versions of chained hashing is shown in Fig. 10a
and b. The behaviors are similar to those described above. When the data size is large,
Chain-S-CPU is affected by increasing load factors. The other three shared methods are
close and Chain+-S-GPU performs slightly better.
In Fig. 8, there are no LLC misses since the data size and group cardinality are small.

There exist breaking points for Linear-S-CPU and Chain-S-CPU because their retired
instructions are increased with the number of tuples. For example, in Fig. 8b, when there
are 215, 216, 217, 218, and 219 tuples, Linear-S-CPU executes 720,000, 1,440,000, 3,240,000,
5,400,000, and 12,240,000 instructions respectively. The CPI (cycles per instruction
retired) is in the range of 6.7–9.5. As a result, the execution time increases approximately
linearly with the problem size.

Fig. 10 Comparison between two kinds of chained hashing as the number of tuples changes with different hash
table sizes

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 15 of 27

So far, we could derive the following results from the two sets of experiments:
(1) The shared parallelization strategy is suitable for large data sets or group cardinali-

ties, in other words the heavy workload. If the data size and group cardinality are small,
the independent strategy works well.
(2) The coupled GPU on the hybrid architecture could help to increase the grouping

and aggregation performance, which performs better for the time-consuming workload.
Offloading the task to the coupled GPU is an option worth considering.
(3) Linear probing and chained hashing on the CPU are close to each other when the

independent strategy is used to acquire good performance. When the shared hash table
is adopted: linear probing on the CPU performs better than the CPU chained hashing
in most cases and the gap is obvious with the increase of the group cardinality and load
factor; for large data sets and group cardinalities, the GPU linear probing is competitive
with and even slightly better than the CPU counterpart; chained hashing on the GPU is
an attractive method, which is similar to the GPU linear probing and in the meantime it
is a dynamic scheme.
(4) Cuckoo hashing is not an ideal candidate and slower than linear probing and chained

hashing. Using four tables could increase the practicability of Cuckoo hashing in terms of
load factors; however, the performance decreases.
(5) Neither of the two versions of chained hashing is the absolute winner. From the per-

spective of the best performance that could be provided, two methods perform similarly.
Considering the extra memory requirement of the variant of chained hashing, we only
present the standard chained hashing in the rest of this paper.

Effects of hash functions

In the previous two sets of experiments, Multiply-shift is the primary hash function. In
the third set of experiments, the performance of Murmur hashing integrated with six
major grouping methods is examined to show the effects of different hash functions. In
order to see the gap clearly, the ratio of two execution times occupied by a certain method
using Multiply-shift and Murmur hashing respectively is shown. The ratio larger than
one indicates that Murmur hashing performs better than Multiply-shift. Due to space
limitation, only the results when the load factor is 50% are illustrated in Fig. 11a to d.
Tables 2 and 3 give the values in the form ofm/n wherem is the number of ratios greater
than one and n the number of points that lie on the line. “L-I-C” is used as a shorthand
notation for Linear-I-CPU, and so on.
The main observations are as follows:
(1) Multiply-shift outperforms Murmur hashing in most cases. Considering all the test

scenarios in Tables 2 and 3, only in 22% cases Murmur hashing runs faster;
(2) Even if Murmur hashing is better, the performance gap between the two hash

functions is much narrower than the performance degradation it brings in other cases;
(3) A pattern could be identified loosely that is the larger the load factor, the worse

performance Murmur hashing will produce compared with Multiply-shift.
Thus Multiply-shift is a good candidate which is used in other experiments.

Effects of data distributions

In the fourth set of experiments, we compare six algorithms on the skewed data which
obeys the Zipf distribution. In order to fully understand how these different methods per-

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 16 of 27

Fig. 11 Time ratios of various methods combined with Multiply-shift and Murmur hashing

form when the group keys are skewed, the data sets are generated with the parameter of
3, which means that 80% of the tuples belong to one group. Under these circumstances,
the actual group cardinality is much smaller than the expected one due to the character-
istics of Zipf ’s law. In Fig. 12a to d, the values on X-axis and the axis title represent the
parameters used to produce the test data sets which finally contain several hundred dis-
tinct keys. The tuple counts are the same with those in the previous experiments. In the
case of the same hash table size, the number of collisions is reduced greatly.
From the figures, it could be found that the independent strategy combined with linear

probing and chained hashing shows the best performance in most cases. The reason may
be that the number of groups is significantly less than that on the uniform data. Many
tuples are associated with one key. The independent strategy demonstrates its superiority
on the low group cardinality. The performance in the third figure is similar to that in
Fig. 8b which is reasonable since there exist fewer groups in the original test data. Using
the shared hash table, linear probing and chained hashing on the GPU are faster than
the CPU versions in many cases. Sometimes as shown in the first two figures, the two

Table 2 The performance of Murmur hashing on data sets of different sizes

Data set Load factor L-I-C C-I-C L-S-C L-S-G C-S-C C-S-G

2M 25% 0/11 2/11 6/11 6/11 2/11 2/11
50% 0/11 3/11 3/11 3/11 1/11 2/11
90% 0/11 1/11 0/11 0/11 1/11 2/11

32M 25% 0/9 2/9 2/9 8/9 0/9 2/9
50% 0/9 3/9 3/9 8/9 2/9 3/9
90% 0/9 4/9 0/9 0/9 3/9 4/9

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 17 of 27

Table 3 The performance of Murmur hashing with groups of different numbers

Data set Load factor L-I-C C-I-C L-S-C L-S-G C-S-C C-S-G

S=211 25% 2/11 2/11 8/11 0/11 3/11 0/11
50% 0/11 2/11 4/11 0/11 4/11 0/11
90% 2/11 3/11 2/11 0/11 1/11 0/11

S=221 25% 0/6 2/6 6/6 6/6 5/6 5/6
50% 0/6 0/6 2/6 6/6 1/6 0/6
90% 0/6 1/6 0/6 0/6 0/6 0/6

methods on the coupled GPU become the best candidates and we will investigate the
reason in the next section.

Time analysis

Before the time analysis, we first give the standard deviation in calculating the average
execution time on three runs in Table 4. The workload denoted by “Wi” includes the
previous uniform and skewed data sets where the load factor is set to 50%. For example,
“W0” corresponds to the workload in Fig. 5b. For each algorithm, the standard deviation
at each point in the figure is first acquired and then the average value is used to represent
the standard deviation under the workload. From the results, it could be found that the
more the execution time, the larger the standard deviation is. For skewed heavy workloads
such asW5 andW7, the shared strategy especially on the coupled GPU produces a bigger
standard deviation. In addition, linear probing is more stable than chained hashing in
most cases.

Fig. 12 Performance of various methods on the skewed data which obeys the Zipf distribution with the
parameter of 3

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 18 of 27

Table 4 The standard deviation

Notation Workload L-I-C C-I-C L-S-C L-S-G C-S-C C-S-G

W0 uniform data, 2M 0.51 1.30 0.34 0.40 0.54 0.37

W1 uniform data, 32M 12.07 17.56 9.78 2.22 14.25 2.56

W2 uniform data, S = 211 0.11 0.23 0.13 0.40 0.13 0.33

W3 uniform data, S = 221 3.80 10.33 5.95 0.45 7.02 0.47

W4 skewed data, 2M 0.74 0.33 0.34 1.51 0.63 0.39

W5 skewed data, 32M 5.51 5.88 22.51 62.62 54.08 38.08

W6 skewed data, S = 211 0.08 0.11 0.11 0.51 0.12 1.44

W7 skewed data, S = 221 2.28 4.32 2.56 14.60 7.95 9.37

Every grouping and aggregation algorithm is composed of four phases three of which
are implemented by kernels. We break the execution time down to the time spent on each
phase to exhibit the performance bottleneck. Figure 13a to d show the time breakdown in
four cases which include two points (218 and 224 groups) in Fig. 6b and two (221 and 226

tuples) in Fig. 9b. Figure 14a to d are the results on the skewed data. In the figures, “build”,
“gather” and “aggregate” represent three kernels respectively, and “other” mainly refers to
the process of creating and initializing data structures.
For the methods using the shared strategy, the first kernel build_hash_table that builds

the hash table dominates the total execution. For the independent strategy, the first kernel
is not the only time-consuming operation. When the hash table size is larger, the inde-
pendent strategy spends more time on the first phase (“other”) since multiple hash tables
are needed to be created, which could be observed in Figs. 13b and 14b. This explains the

Fig. 13 Time breakdown in four cases which include two points (218 and 224 groups) in Fig. 6b and two (221 and
226 tuples) in Fig. 9b

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 19 of 27

Fig. 14 Time breakdown in four cases on the skewed data

performance degradation of two independent methods on the skewed data in the previ-
ous experiments. The time on the first phase for two independent methods in Fig. 13c
and d is similar and just the proportion in the total execution time is different. This is
also true when the data is skewed. As the group cardinality is increased, the second ker-
nel gather_item_num to generate a global hash table from separate tables occupies much
time. Thus if the independent hash tables are used, three of the four phases could become
the main contributors to the execution time.
Table 5 shows the LLC miss count of each method obtained from Intel VTune Profiler.

Overall, the independent hash table exhibits more cache misses than the shared strategy
on both the CPU and the coupled GPU. The relative performance in cache misses of var-
ious approaches is similar to that of the execution time on the uniformly distributed data
sets. In the cases on skewed data, although Linear-S-CPU and Chain-S-CPU have few

Table 5 LLC miss count

Data set L-I-C C-I-C L-S-C L-S-G C-S-C C-S-G

Figure 13a 39,246,666 43,680,000 233,333 280,000 280,000 303,333

Figure 13b 44,846,667 169,026,667 34,580,000 256,667 59,010,000 420,000

Figure 13c 3,220,000 7,700,000 735,000 93,333 2,310,000 210,000

Figure 13d 59,243,333 173,845,000 36,330,000 280,000 90,976,667 280,000

Figure 14a 443,333 466,666 140,000 70,000 163,333 70,000

Figure 14b 3,990,000 4,025,000 840,000 210,000 980,000 210,000

Figure 14c 385,000 210,000 233,333 70,000 70,000 70,000

Figure 14d 1,166,667 945,000 256,667 140,000 606,667 163,333

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 20 of 27

LLC misses, they spend more time than Linear-I-CPU and Chain-I-CPU on three ker-
nels. The reason is that the two methods using shared hash tables produce more retired
instructions or higher CPI. For instance, in Fig. 14d, the number of retired instructions of
Chain-I-CPU and Chain-S-CPU is 2,550,960,000 and 5,271,120,000 respectively and the
CPI is 1.22 and 8.77. There are more instructions for Chain-S-CPU and on average each
instruction needs more cycles. Thus it runs slowly.

Co-processing

Since the modern architecture provides the additional GPU accelerator, we explore the
co-processing potentials the coupled GPU could bring in the experiments. Firstly, an
operator-level co-processing strategy is adopted to execute different queries on the CPU
and the GPU simultaneously, which simulates real application scenarios of databases. We
use the previously used eight kinds of workloads at 50% load factor, four of which are
based on the uniform distribution and four are skewed data. “Parallel” means every two
queries are assigned to the CPU and the GPU until no more two queries in the workload
need to be executed. After two queries are finished, the next two queries start. The total
sum of time is compared with the time when the corresponding part of queries are inde-
pendently executed on the CPU and the coupled GPU respectively. The relative time ratio
is shown in the figures. If the parallel time is less than the sum of the CPU time and GPU
time denoted by “CPU+GPU”, this illustrates the co-processing paradigm could help to
increase the performance.
In Fig. 15a and b, the co-processing strategy is a little better than the mechanism on

the single processor and the maximum speedup is 18%. Notice, in some cases for exam-

Fig. 15 Performance of the operator-level co-processing strategy

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 21 of 27

ple W1 and W3 workloads in Fig. 15a the parallel approach reduces the performance
slightly. These workloads are heavier for both the CPU and the GPU than W0 and W2,
that is there are more tuples or groups, and for these workloads, the CPU and the coupled
GPU are likely to compete for cache and memory resources which will affect the overall
performance. In Fig. 15c and d, the workloads contain skewed data and the performance
gap between the CPU and the GPU is larger. Thus, the competition is reduced and co-
processing could provide better performance. For linear probing, the speedup is between
23 and 33% and for chained hashing, it ranges from 11 to 29%.
Secondly, an intra-operator co-processingmethod is used to provide fine-grained paral-

lelism. After the CPU completes the task of the first phase, the CPU and the coupled GPU
handle different raw data in the second phase to establish a shared hash table. The work-
load distribution belonging to each processor is based on the previous execution time on
separate processors. According to the percentage of the GPU time to the sum of the CPU
and GPU time spent on the building phase, an initial CPU ratio is acquired. Then, con-
sidering the communication cost between the CPU and the GPU, the actual data ratio
handled by the CPU is set empirically at an optimal value around the initial ratio which is
a multiple of 0.05 in the experiments. We use this straight workload division way to verify
the effectiveness of co-processing. At last, the left job is assigned to the CPU unless the
second phase is totally finished by the GPU.
In order to build the hash table by all the work items of the CPU and the GPU, the meth-

ods are implemented using OpenCL 2.0 with the Shared Virtual Memory (SVM) feature
and the corresponding experiments are done on Intel Core i7-8700 which is equipped
with 6 cores and Intel UHD Graphics 630 and supports the SVM technology. SVM allows
virtual addresses to be shared between the host and all devices in a context and enables
pointer-based data structures. The SVM atomics could be used to guarantee concurrent
accesses by the CPU and the GPU to the same memory address. The same workloads
tested above are considered here and the ratios of single processor methods to the co-
processing approach are shown in Figs. 16a to 17d. “CoP” indicates that the CPU and the
GPU work in parallel within the operator.
The data sets used in Fig. 16a to d are uniformly distributed. If not considering Fig. 16c,

in most cases the intra-operator co-processing method is faster than the corresponding
version on the CPU and the coupled GPU for both linear probing and chained hashing.
The average speedup over the CPU when linear probing is used is 1.7, 1.2, and 1.1 respec-
tively in Fig. 16a, b, and d and the simultaneous speedup over the GPU is 1.4, 1.5, and 1.3.
When chained hashing is adopted, the average time ratio is 1.6, 1.6, and 1.9 for the CPU
and 1.3, 1.5, and 1.4 for the GPU. The higher the speedup, the corresponding processor
runs more slowly than the counterpart and could acquire better performance improve-
ment by adding extra computing power. In Fig. 16c, the absolute execution time is too
short especially for the CPU and there exists a large gap between two processors when
the number of tuples is small. Thus, the better choice is to use the CPU only to conduct
the query not introducing the coupled GPU as well as the additional communication and
contention cost. With the increase of the tuple count, the speedup acquired by the co-
processing strategy over the CPU goes up and the maximum value is 3.0 and 2.2 for linear
probing and chained hashing respectively.
The results of the data under the Zipf distribution are shown in Fig. 17a to d. Since for

the skewed data the GPU methods perform much better than the CPU counterparts, the

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 22 of 27

Fig. 16 Performance of the intra-operator co-processing strategy on the uniform data

Fig. 17 Performance of the intra-operator co-processing strategy on the skewed data

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 23 of 27

workload proportion belonging to the CPU is very small which is 5% in the majority of
cases and 10% at most. Sometimes the coupled GPU itself shows the best performance.
Except the third figure, the average speedup of the co-processing strategy over the GPU
method in every figure is around 1.2. The behavior in the third figure is similar to that in
Fig. 16c that is the CPU is the top performer at first.
Generally the empirical optimal workload ratio owned by the CPU is smaller than the

initial CPU ratio and the performance of the co-processing mechanism is affected by
the used value. Thus, an advanced optimizer in databases should be designed in future
to produce adaptive execution strategies under considering comprehensive factors from
CPU, GPU, and memory.

Discussion

The used example has two columns and each column entry is 4-byte integer. Assume
there are n tuples in the table then the data size is 8n. The CPU time is roughly expressed
as 8n/Bm + To, where Bm is the memory bandwidth, and To is the other execution time. If
the query is memory-bounded, To could be ignored. For a discrete GPU, if through opti-
mization the execution on the GPU could be overlapped with the data transfer via the
PCIe bus, the runtime is 8n/Bp, where Bp is the PCIe bandwidth. Usually, Bm is larger
than Bp thus it is quite possible the CPU outperforms the discrete GPU. Although the
coupled architecture is our main research object, ideally the CPU and two kinds of GPUs
are not contradictory and the study on the coupled architecture could be combined into
the technologies on discrete GPUs. A better performance may be gained if all the com-
puting resources such as CPUs, coupled GPUs, and discrete GPUs are utilized fully and
simultaneously in future.

Related work
On the traditional multi-core CPU, there have existed many studies on group-by and
aggregations [1–3, 19]. Cieslewicz et al. [1] focused on chip multiprocessors to study
different strategies and factors of affecting performance and introduced an adaptive
aggregation operator to choose the correct strategy. The used hash function was multi-
plicative hashing and chaining was utilized to resolve hash collisions. The research [2]
found that for aggregation the complexity of hashing was the same as that of sorting
and mixed hashing and sorting routines in the same algorithmic framework to leverage
the advantages of both approaches. Ye et al. [3] provided a solution to perform parallel
aggregation on the Intel Nehalem architecture and proposed two algorithms to acquire
good performance. Gubner et al. [19] studied optimizations using SIMD instructions
and presented an in-register aggregation technique which can be vectorized easily. A
seven-dimensional analysis of hashing methods [15] have been performed on Intel CPU
processor using indexing as a use-case. Some dimensions are also considered in this
paper such as hash functions and hashing schemes. The differences include the following
aspects: the emerging coupled CPU-GPU architecture is our goal and we are interested
in the performance of different methods on the coupled GPU and two processors besides
only the CPU; the grouping and aggregation operation is our research purpose which is
different from indexing; the parallel methods not the single-threaded hashing are studied
carefully in our work.

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 24 of 27

As discrete GPUs have become popular, they have been used as accelerators in database
research [5, 6, 8–10, 20–22]. Karnagel et al. [5] studied offloading the grouping and aggre-
gation operator to a discrete GPU and provided the corresponding analysis and a model
with a heuristic optimizer. Compression, query-compilation-like fusion and a schedul-
ing mechanism were investigated by the research work [6] to use both the CPU and the
GPU for TPC-H Q1. There have also appeared some studies on coupled architectures [4,
7, 11–13, 23–25]. Power et al. [4] explored scan-aggregate queries on the CPU, the dis-
crete GPU, and the integrated GPU and found that an integrated GPU was faster than a
discrete GPU and a CPU. Linear probing was used to implement the hash table and Mur-
murHash was the hash function. Rosenfeld et al. [7] examined the influence of different
parameters on hash aggregation on five discrete GPUs and one integrated GPU and pre-
sented an algorithm to optimize execution parameters. Multiply-shift and linear probing
were used in the work. The paper [25] provided the first step of the work to improve
group-by and aggregation by using the coupled GPU. The research object was the group-
ing and aggregation based on chained hashing, one of the common hashing schemes, and
in terms of hash functions, only Multiply-shift was used directly. The contribution was
to present a co-processing approach which firstly implemented data parallelism using a
shared hash table. Despite the previous work from researchers and us, a systematic anal-
ysis of grouping and aggregation algorithms on such architectures is still missing, which
is the original intention of this paper. In this paper, eight different dimensions are con-
sidered in the extensive experimental study and analysis, including five hashing schemes,
two hash functions, six low load factors and high ones, both shared and independent hash
tables and two kinds of co-processing strategies. We hope the current work could provide
more meaningful insights into the operator behavior on the coupled CPU-GPU archi-
tecture and some meaningful conclusions could help database researchers to design the
high-performance algorithms on modern processors.
In terms of optimization strategies on hybrid heterogeneous architectures, many other

research findings have been provided [26–36]. Heuristical and machine-learning-based
load distribution and balancing models on a hybrid CPU-GPU database systems were
proposed by the authors [26] and multiple models such as linear regression, random for-
est, and Adaboost were used to dynamically decide the processing unit. Nozal et al. [27]
designed an OpenCL-based runtime system EngineCL to simplify the co-execution of
data-parallel kernels on different devices of a heterogeneous system. The research work
[28] implemented an abstract entity Multi-Controler in a library to coordinate the man-
agement of heterogeneous devices. In the paper [29] a field-programmable gate array was
utilized to accelerate query processing in a searchable encrypted database system and
a cache function was proposed to improve the access. Singh et al. [30] focused on an
energy-efficient run-timemapping and thread partitioningmethod to execute concurrent
OpenCL applications on the CPU and the GPU cores. The authors [31] integrated the
FPGA (field-programmable gate array) into EngineCL and effective cooperation among
the CPU, GPU and FPGA were implemented. An OpenCL runtime FluidiCL was pro-
posed by Pandit et al. [32] to execute a program coded for a single device on both the CPU
and the GPU. Most of these studies are related to OpenCL. Wang et al. [33] studied how
to migrate a CUDA-based ultrasound imaging code to oneAPI code to run on different
hardware. Intel oneAPI was equipped with co-processing strategies in the work [34] to
execute the same kernel between different devices and static and dynamic policies were

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 25 of 27

exploited. Hammond et al. [35] provided a comparative analysis of Kokkos and SYCL pro-
gramming models. The study [36] analyzed the feasibility of solving large-scale Markov
decision processes with value iteration in low-power heterogeneous platforms using dif-
ferent programming approaches and scheduling strategies. SYCL, a Khronos standard for
heterogeneous programming build on C++, is the model used in these studies. Overall,
interesting and helpful insights in the acceleration technologies on hybrid heterogeneous
architectures could been found.

Conclusions
In this paper, we have studied in depth group-by and aggregation on CPU-GPU proces-
sors. Our observations are described throughout the paper. The overall conclusions are as
follows: (1) If the workload is light, for example, the data set and/or group cardinality are
small, the independent hash table combined with linear probing or chained hashing on
the CPU is preferred. As the group cardinality or the data set gets bigger, linear probing
on the CPU using a shared hash table is the best. If the workload keeps getting heavier,
the shared GPU linear probing is a candidate that could be considered, and the shared
GPU chained hashing is also a good choice in practice in terms of dynamically resizing
the hash table. (2) Cuckoo hashing, the variant of chained hashing and Murmur hashing
have some disadvantages and are not the first choices. (3) For both linear probing and
chained hashing, the grouping and aggregation could benefit from co-processing on the
hybrid architecture. The coupled GPU plays a positive role no matter whether it is used
as a stand-alone processor or jointly with the CPU.
For the performance optimization, various co-processing mechanisms should be

explored further on the coupled architecture, such as adaptive strategy selection or even
different workloads and hashingmethods on different processors. For future work, we will
consider optimization techniques in the direction and design fine algorithms on choosing
correct strategies.

Abbreviations
GPU Graphics processing unit
PCIe Peripheral component interconnect express
CPU Central processing unit
LLC Last level cache
MB Megabyte
EDRAM Embedded dynamic random access memory
EU Execution unit
SIMD Single instruction multiple data
OpenCL Open computing language
API Application programming interface
STL Standard template library
DBMS Database management system
GB Gigabyte
SVM Shared virtual memory
FPGA Field-programmable gate array
CPI Cycles per instruction retired

Acknowledgements
Not applicable

Authors’ contributions
The corresponding author, H.L., designed and performed the experimental study and was a major contributor in writing
the manuscript. L.C. participated in the discussion about the performance analysis and reviewed and edited the article.
The authors read and approved the final manuscript.

Funding
This research was funded by the National Key R&D Program of China grant number 2020YFC1523300 and a grant from
the Capital Science and Technology Innovation Vouchers of China.

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 26 of 27

Availability of data andmaterials
All data generated or analyzed during this study are included in this published article.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1School of Artificial Intelligence, Beijing Normal University, Beijing, China. 2Oushu Inc., Beijing, China.

Received: 14 February 2022 Accepted: 30 May 2022

References
1. Cieslewicz J, Ross KA (2007) Adaptive aggregation on chip multiprocessors. In: Proceedings of the 33rd International

Conference on Very Large Data Bases, University of Vienna, Austria, 23-27 September 2007. ACM, New York.
pp 339–350

2. Müller I, Sanders P, Lacurie A, Lehner W, Färber F (2015) Cache-efficient aggregation: Hashing is sorting. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, Melbourne, Victoria,
Australia, May 31 - June 04 2015. ACM, New York. pp 1123–1136

3. Ye Y, Ross KA, Vesdapunt N (2011) Scalable aggregation on multicore processors. In: Proceedings of the Seventh
International Workshop on Data Management on New Hardware, DaMoN 2011, Athens, Greece, 13 June 2011. ACM,
New York. pp 1–9

4. Power J, Li Y, Hill DM, Patel MJ, Wood AD (2015) Toward GPUs being mainstream in analytic processing. In:
Proceedings of the 11th International Workshop on Data Management on New Hardware, DaMoN 2015, Melbourne,
Victoria, Australia, May 31 - June 04 2015. ACM, New York. pp 11:1–11:8

5. Karnagel T, Müller R, Lohman MG (2015) Optimizing GPU-accelerated group-by and aggregation. In: International
Workshop on Accelerating Data Management Systems Using Modern Processor and Storage Architectures - ADMS
2015, Kohala Coast, Hawaii, USA, 31 August 2015. pp 13–24

6. Tomé GD, Gubner T, Raasveldt M, Rozenberg E, Boncz AP (2018) Optimizing group-by and aggregation using
GPU-CPU co-processing. In: International Workshop on Accelerating Analytics and Data Management Systems Using
Modern Processor and Storage Architectures, ADMS@VLDB 2018, Rio de Janeiro, Brazil, 27 August 2018. pp 1–10

7. Rosenfeld V, Breß S, Zeuch S, Rabl T, Markl V (2019) Performance analysis and automatic tuning of hash aggregation
on GPUs. In: Proceedings of the 15th International Workshop on Data Management on New Hardware, DaMoN
2019, Amsterdam, The Netherlands, 1 July 2019. ACM, New York. pp 8:1–8:11

8. Kaldewey T, Lohman MG, Müller R, Volk P (2012) GPU join processing revisited. In: Proceedings of the Eighth
International Workshop on Data Management on New Hardware, DaMoN 2012, Scottsdale, AZ, USA, 21 May 2012.
ACM, New York. pp 55–62

9. Yuan Y, Lee R, Zhang X (2013) The yin and yang of processing data warehousing queries on GPU devices. Proc VLDB
Endowment 6(10):817–828

10. Shanbhag A, Madden S, Yu X (2020) A study of the fundamental performance characteristics of GPUs and CPUs for
database analytics. In: Proceedings of the 2020 International Conference on Management of Data, SIGMOD
Conference 2020, 14-19 June 2020. ACM, New York. pp 1617–1632

11. He J, Lu M, He B (2013) Revisiting co-processing for hash joins on the coupled CPU-GPU architecture. Proc VLDB
Endowment 6(10):889–900

12. Luan H, Chang L (2017) An evaluation of analytical queries on CPUs and coupled GPUs. Concurrency Comput Pract
Exp 29(5):e3982

13. Delorme MC, Abdelrahman TS, Zhao C (2013) Parallel radix sort on the AMD fusion accelerated processing unit. In:
42nd International Conference on Parallel Processing, ICPP 2013, Lyon, France, 1-4 October 2013. IEEE Computer
Society, Washington, DC. pp 339–348

14. Khronos The OpenCL specification. https://www.khronos.org/registry/cl/specs. Accessed Oct 2021
15. Richter S, Alvarez V, Dittrich J (2015) A seven-dimensional analysis of hashing methods and its implications on query

processing. Proc VLDB Endowment 9(3):96–107
16. Pagh R, Rodler FF (2004) Cuckoo hashing. J Algoritm 51(2):122–144
17. Dietzfelbinger M, Hagerup T, Katajainen J, Penttonen M (1997) A reliable randomized algorithm for the closest-pair

problem. J Algoritm 25(1):19–51
18. Appleby A Murmurhash project. https://github.com/aappleby/smhasher. Accessed Oct 2021
19. Gubner T, Boncz PA (2017) Exploring query execution strategies for JIT, vectorization and SIMD. In: International

Workshop on Accelerating Analytics and Data Management Systems Using Modern Processor and Storage
Architectures, ADMS@VLDB 2017, Munich, Germany, 1 September 2017. pp 9–17

20. Pirk H, Manegold S, Kersten LM (2014) Waste not... efficient co-processing of relational data. In: IEEE 30th
International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4 2014. IEEE Computer
Society, Washington, DC. pp 508–519

21. Wang K, Zhang K, Yuan Y, Ma S, Lee R, Ding X, Zhang X (2014) Concurrent analytical query processing with GPUs.
Proc VLDB Endowment 7(11):1011–1022

22. Sioulas P, Chrysogelos P, Karpathiotakis M, Appuswamy R, Ailamaki A (2019) Hardware-conscious hash-joins on
GPUs. In: 35th IEEE International Conference on Data Engineering, ICDE 2019, Macao, China, 8-11 April. IEEE
Computer Society, Washington, DC Vol. 2019. pp 698–709

https://www.khronos.org/registry/cl/specs
https://github.com/aappleby/smhasher

Luan and Chang Journal of Engineering and Applied Science (2022) 69:54 Page 27 of 27

23. Huang H, Luan H (2020) Optimizing B+-tree searches on coupled CPU-GPU architectures. In: Algorithms and
Architectures for Parallel Processing - 20th International Conference, ICA3PP 2020, New York, USA, 2-4 October 2020.
Springer, Cham. pp 401–415

24. Huang H, Luan H (2021) Rethinking insertions to B+-trees on coupled CPU-GPU architectures. In: 19th IEEE
International Symposium on Parallel and Distributed Processing with Applications, IEEE ISPA 2021, New York, USA,
September 30 - October 03 2021. IEEE Computer Society, Washington, DC. pp 993–1001

25. Luan H, Fu Y (2021) Accelerating group-by and aggregation on heterogeneous CPU-GPU platforms. In: 2021 17th
International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery, ICNC-FSKD 2021,
Guiyang, China, 24-26 July 2021. Springer, Cham. pp 980–990

26. Abdennebi A, Elakas A, Tasyaran F, Öztürk E, Kaya K, Yildirim S (2021) Machine learning-based load distribution and
balancing in heterogeneous database management systems. Concurrency Comput Pract Exp 34(4):e6641

27. Nozal R, Bosque J, Beivide R (2020) EngineCL: Usability and performance in heterogeneous computing. Futur Gener
Comput Syst 107:522–537

28. Moreton-Fernandez A, Llanos D (2019) Multi-device controllers: a library to simplify parallel heterogeneous
programming. Int J Parallel Prog 47(1):94–113

29. Okada M, Suzuki T, Nishio N, Waidyasooriya H, Hariyama M (2020) FPGA-accelerated searchable encrypted database
management systems for cloud services. IEEE Trans Cloud Comput 10(2):1373–1385

30. Singh A, Prakash A, Reddy B, Merrett G, Al-Hashimi B (2017) Energy-efficient run-time mapping and thread
partitioning of concurrent OpenCL applications on CPU-GPU MPSoCs. ACM Trans Embed Comput Syst
16(5s):147:1–147:22

31. Dávila-Guzmán M, Nozal R, Tejero R, Villarroya-Gaudó M, Gracia D, Bosque J (2019) Cooperative CPU, GPU, and FPGA
heterogeneous execution with EngineCL. J Supercomput 75(3):1732–1746

32. Pandit P, Govindarajan R (2014) Fluidic kernels: Cooperative execution of opencl programs on multiple
heterogeneous devices. In: 12th Annual IEEE/ACM International Symposium on Code Generation and Optimization,
CGO 2014, Orlando, FL, USA, 15-19 February 2014. ACM, New York

33. Wang Y, Zhou Y, Wang Q, Wang Y, Xu Q, Wang C, Peng B, Zhu Z, Takuya K, Wang D (2021) Developing medical
ultrasound beamforming application on GPU and FPGA using oneAPI. In: IEEE International Parallel and Distributed
Processing Symposium Workshops, IPDPS Workshops 2021, Portland, OR, USA, 17-21 June 2021. IEEE Computer
Society, Washington, DC. pp 360–370

34. Nozal R, Bosque J (2021) Straightforward heterogeneous computing with the oneAPI coexecutor runtime.
Electronics 10(19):2386

35. Hammond J, Kinsner M, Brodman J (2019) A comparative analysis of Kokkos and SYCL as heterogeneous, parallel
programming models for C++ applications. In: Proceedings of the International Workshop on OpenCL, IWOCL 2019,
Boston, MA, USA, 13-15 May 2019. ACM, New York. pp 15:1–15:2

36. Constantinescu D, Navarro A, Corbera F, Asenjo R (2021) Fernández-Madrigal, J. J Supercomput 77(1):44–65

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Abstract
	Keywords

	Introduction
	Preliminaries
	Coupled CPU-GPU architectures
	OpenCL
	Hashing schemes
	Linear probing
	Chained hashing
	Cuckoo hashing

	Hash functions
	Multiply-shift
	Murmur hashing

	Methods
	Load factors
	Parallelization strategies
	Co-processing
	Implementation
	Experimental setup

	Results and discussion
	Effects of group cardinalities
	Effects of data sizes
	Effects of hash functions
	Effects of data distributions
	Time analysis
	Co-processing
	Discussion

	Related work
	Conclusions
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

