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Introduction
Green machining represents an eco-friendly material removal process, in which the 
prime focus is to reduce its environmental impacts, safeguard operators’ health, and 
decrease power consumption [1, 2]. In conventional machining processes, like turning, 
drilling, milling, and shaping, material is removed from the workpiece in the form of 
chips with the help of a sharp-edged cutting tool having direct contact with the work-
piece surface. In a wet machining process, liquid lubricant is employed to carry away the 
heat generated in the machining zone as well as to evacuate the metal chips removed 
during the cutting operation. This involves additional machining cost along with poor 
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environmental impacts, such as emission of toxic gases to the surrounding. Alternatively, 
dry machining with almost no or minimum lubricant requirement has gained much 
popularity as a cost-effective eco-friendly machining process having less detrimental 
effects on the environment. With continuously rising public awareness for environmen-
tal-related impacts and to enforce environmental protection laws for occupational safety 
and health regulations, dry machining has emerged out as a crucial area for deployment 
of sustainable manufacturing decisions. It helps in minimizing use of liquid lubricants 
which can indirectly cause air and water pollutions.

Dry milling is a process of removing material from the workpiece by pressing forward 
a rotating cutter against the work material with no or minimal liquid lubricant require-
ment. The effects of different operating parameters of dry milling processes on the 
machining outputs have been explored by many researchers [3, 4]. Influences of these 
process parameters are highly correlated with the technological outputs of milling oper-
ation. The corresponding parametric values need to be carefully selected as an improper 
selection may result in deterioration of milling performance with poor product quality 
and may also lead to various adverse consequences, such as temperature rise, tool frac-
ture, and fatigue in work material. Several mathematical techniques have already been 
adopted by the previous researchers to overcome human interventional errors and iden-
tify the best parametric combinations in milling processes for having improved machin-
ing conditions [5]. Taguchi methodology [6], genetic algorithm (GA) [7], non-dominated 
sorting genetic algorithm (NSGA-II) [8], particle swarm optimization (PSO) [9], teach-
ing-learning-based optimization algorithm [10], grey relational analysis (GRA) [11, 12], 
GRA combined with fuzzy logic [13], multi-objective optimization based on ratio analy-
sis (MOORA) [14], graph theory and matrix approach [15], technique for order of pref-
erence by similarity to ideal solution (TOPSIS) [16, 17], desirability function approach 
[18], etc. are among the popular mathematical techniques deployed for attaining the 
most desired responses in various milling operations.

More recently, the trade-off between quality of cutting and power consumption dur-
ing machining operation has been explored by many researchers. Continuous rise 
in demand of energy along with various constraints associated with increased carbon 
emission has significantly influenced the manufacturing industries to save energy [19]. 
Selection of the optimal parametric combination for a machining process may too play 
a key role in this direction. Researchers have shown keen interest in adopting various 
optimization techniques to select the optimal parametric settings of various machining 
processes to reduce energy consumption (EC), and decrease emission of toxic gases and 
harmful substances to the environment [20–23]. Dry milling also consumes a significant 
amount of electrical energy during removal of material from the workpeice. Hence, pos-
sibilities must be searched out for saving energy which indirectly lead to reduction in 
carbon emission produced by various power plants for electric energy generation. Well-
known optimization techniques, like GRA [24], response surface methodology (RSM) 
[25], GA [26, 27], adaptive simulated annealing [28], and desirability function approach 
[29], have been adopted to determine the optimal milling parameters resulting in less 
energy consumption during material removal process. Although, these methodologies 
are quite capable of providing optimal or near-optimal solutions while solving paramet-
ric optimization problems, their complex application procedure, higher computational 
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time and effort, dependency of different algorithm-specific parameters, assignment of 
equal priorities to the considered responses by the decision-makers, etc. may hinder 
their widespread applications. Hence, an urgent need arises to explore this area to over-
come the above-mentioned drawbacks.

This paper proposes the combined application of step-wise weight assessment ratio 
analysis (SWARA) and combined compromise solution (CoCoSo) methods to solve 
parametric optimization problems for two green dry milling process based on past 
experimental data. In conventional parametric optimization problems for machining 
operations, it is noticed that equal importance is usually assigned to all the responses, 
mainly to ease out the calculation steps. But, in real-time machining scenario, based 
on the end product requirements and to fulfill customers’ demands, one particular 
response (quality characteristic) may be preferred over the others. Thus, those responses 
may have different priority weights. The SWARA method, developed by Keršuliene et al. 
[30], allows the decision-makers (or a group of experts) to opine on the importance of 
one attribute over the other based on a significance ratio scale while assigning unequal 
weights to the considered attributes (responses). Its extremely simple computation 
procedure makes it a popular choice among the research community to calculate cri-
teria weights [31–33]. On the other hand, CoCoSo is a newly developed multi-criteria 
decision-making (MCDM) technique leading to a compromise solution based on simple 
additive weighting and weighted product models [34]. Since its inception, this method 
has been gaining popularity in solving various complex decision-making problems, like 
security evaluation [35], sustainable supplier selection [36], optimization of drilling 
performance [37], cache placement strategy selection [38] etc. In this paper, CoCoSo 
method is applied to determine the optimal mixes of two green dry milling process 
parameters based on the past experimental dataset. It would finally lead to enhanced 
milling performance with minimal harmful effects while achieving green sustainable 
machining environment.

Materials and methods
Green milling process

A traditional milling process helps in removing material from a workpiece in the form 
of chips by moving forward a rotating multi-point cutting tool against the workpiece. 
During its operation, a large amount of electrical energy is consumed which mainly 
depends on the combination of various milling parameters. A green dry milling can 
be categorized as a metal removal process with minimum energy and liquid lubricant 
requirements while maintaining the quality of the machined components. The inter-
relationship between various input parameters and outputs in a green milling process 
can be illustrated through an input-output model, as shown in Fig. 1. The inputs to this 
process are different machining parameters, workpiece, tool, and electric power, while 
the outputs are finished product, heat, noise, vibration, and metal chips. To attain green 
machining environment, the manufacturer should take into account two main aspects, 
i.e., manufacturing aspect and environmental aspect. The decision-making model for a 
green milling process thus consists of material removal rate (MRR), surface roughness 
(in the form of average surface roughness (Ra)), tool wear, etc., as the manufacturing 
aspects, and power factor (PF), EC, temperature rise, noise, etc., as the environmental 
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aspects. Figure 2 presents a schematic diagram illustrating the manufacturing and envi-
ronmental aspects of a green milling process.

SWARA method

The computational steps involved in SWARA method are provided as below [30, 39]:

Step 1: defining and ranking of the decision criteria

In this step, the concerned decision-makers define the decision criteria and rank them 
from the best to the worst based on their expertise and knowledge. These criteria can 
be denoted as Cj (j = 1,2,…n), where C1 and Cn respectively represent the best and the 
worst criteria sorted according to their assigned ranks.

Step 2: determination of the comparative importance of each criteria

The average value of comparative importance (sj) of each criterion is now determined 
based on the corresponding rank. It basically describes how criterion Cj is more impor-
tant than criterion Cj+1.

Step 3: estimation of the coefficient (kj) of each criterion

The coefficient of each criterion can be obtained as follows:

Fig. 1  Input-output model for a green dry milling process

Fig. 2  Manufacturing and environmental aspects of a green dry milling process



Page 5 of 21Das and Chakraborty ﻿Journal of Engineering and Applied Science           (2022) 69:35 	

Step 4: determination of the recalculated weight (qj) of each criterion

The recalculated weight of each criterion can now be estimated using Eq. (2).

Step 5: calculation of the relative weight (wj)

The final weight of each criterion can be computed while dividing the weight obtained in 
the previous step by the sum of the weights.

CoCoSo method

This method is an integrated approach based on simple additive weighting and weighted 
product models. Its procedural steps are enumerated as below [40]:

Step 1: development of the initial decision matrix

The corresponding decision matrix is first formulated considering m alternatives (num-
ber of experimental trials) and n criteria (number of responses).

where xij is the performance measure of ith alternative with respect to jth criterion.

Step 2: normalization of the decision matrix

Depending on the type of the criterion considered, the initial decision matrix is now 
normalized employing the following equations [41]:

For beneficial (higher-the-better) criterion:

For non-beneficial (lower-the-better) criterion:

where nij is the normalized value of xij.

(1)kj =

{

1 if j = 1
sj + 1 if j > 1

}

(2)qj =

{

1 if j = 1
qj−1

kj
if j > 1

}

(3)
wj =

qj
n
∑

j=1

qj

X =







x11 x12 . . . x1n
x21 x22 . . . x2n
. . . . . . . . . . . .

xm1 xm2 . . . xmn







(4)nij =
xij −min xij

max xij −min xij

(

i = 1, 2 . . . ,m; j = 1, 2 . . . , n
)

(5)nij =
max xij − xij

max xij −min xij
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Step 3: calculation of the power of weighted (Pi) and sum of weighted (Si) comparability 

sequence scores

The power of weighted comparability and sum of weighted comparability sequence 
scores are computed for each of the alternatives.

where wj is the weight assigned to jth criterion.

Step 4: estimation of the appraisal scores

The appraisal scores of each alternative can now be calculated using the following 
three aggregation strategies:

Step 5: calculation of the final appraisal score (Ai)

The final appraisal score for each alternative is estimated using Eq. (11).

The alternative with the highest appraisal score is identified as the best option 
for final selection. The flowchart exhibiting application of this integrated SWARA-
CoCoSo method for parametric optimization of green dry milling processes is por-
trayed in Fig. 3.

In this paper, the parametric optimization problems of two green dry milling pro-
cesses are solved using SWARA-CoCoSo approach which has several advantages 
over the other integrated MCDM techniques. At first, in SWARA method, based on 
the preference of the participating stakeholders (manufacturers, machine operators, 
and end users), different weight sets for the considered responses can be determined 
while evaluating their influences on final rankings of the alternative experimental tri-
als. It has also extremely simple computational steps. On the other hand, in CoCoSo 

(6)Pi =

n
∑

j=1

(

nij
)wj

(7)Si =

n
∑

j=1

(

wj × nij
)

(8)
aia =

Pi + Si
m
∑

i=1

(Pi + Si)
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Pi

min Pi
i

+
Si

min Si
i

(10)aic =
�× Pi + (1− �)× Si

�×max Pi
i

+ (1− �)×max Si
i
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(

� = 0.5 by default
)

(11)Ai = (aia × aib × aic)
1
3 +

1

3
(aia × aib × aic)
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method, power of weighted and sum of weighted comparability sequences are aggre-
gated together to determine the composite performance scores of the experimen-
tal runs. This integrated approach has minimum dependency on algorithm-specific 
parameters. Its superiority in identifying the optimal parametric intermixes for green 
milling processes is also contrasted against desirability function approach and GRA 
technique. Thus, it can be employed as an efficient multi-objective optimization tool 
for solving parametric optimization problems of green dry milling processes.

Results and discussion
Example 1

Green dry milling is an eco-friendly machining operation which aims in reducing the 
environmental impacts, minimizes EC and protects operator’s health. Nguyen et al. [29] 
performed dry milling operation in a computer numerical control Spinner U620 machin-
ing center on stainless steel 304 work material having dimensions 350 mm × 150 mm × 

Fig. 3  Application of SWARA-CoCoSo method for parametric optimization of green dry milling processes

Table 1  Green milling parameters and their levels for example 1 [29]

Parameter Unit Level

− 1 0 + 1

Cutting speed (V) m/min 60 110 160

Depth of cut (a) mm 0.2 0.6 1.0

Feed rate (f) mm/z 0.04 0.08 0.12

Nose radius (r) mm 0.2 0.4 0.8
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25 mm. Four milling parameters, i.e., cutting speed (V), depth of cut (a), feed rate (f), and 
nose radius (r) were considered with three level variations, as presented in Table 1. Based 
on Box-Behnken design plan, 25 combinations of experiments were conducted with PF, 
EC (in kJ), and Ra (in μm) as the responses (process outputs). The measured values of 
all the considered responses and the experimental design plan are provided in Table 2. 
The value of PF can be derived as the ratio of active power consumption with respect 
to apparent power consumption. Higher value of PF is practically desired as it assures 
that the milling setup would generate more active power necessary for the machining 
operation. On the other hand, EC is the power in the form of electrical energy consumed 
while removing material from the workpiece. Finally, Ra measures the micro-undula-
tions of a given workpiece surface both in horizontal and vertical directions. It actually 
denotes the quality of a machined surface. Among these three responses, PF is the only 
higher-the-better quality characteristic, while EC and Ra are lower-the-better type of 
quality characteristics. For this green dry milling process, applying desirability function 
approach, Nguyen et al. [29] suggested the optimal parametric condition as V = 160 m/
min, a = 0.42 mm, f = 0.09 mm/z and r = 0.8 mm.

It has already been mentioned that in order to simplify the calculations involved 
in any of the MCDM techniques, equal weights are usually allotted to all the criteria 
(responses). But, in real-time machining environment, these relative weights may vary 

Table 2  Parametric combinations and measured responses for example 1 [29]

Exp. no. V (m/min) a (mm) f (mm/z) R (mm) PF EC (kJ) Ra (μm)

1 110 0.2 0.04 0.4 0.518 50.33 0.45

2 110 0.6 0.12 0.8 0.867 25.46 1.08

3 110 0.6 0.08 0.4 0.652 31.56 0.85

4 60 0.6 0.08 0.2 0.611 53.66 1.34

5 160 0.6 0.12 0.4 0.851 18.42 0.95

6 60 0.6 0.12 0.4 0.736 42.6 1.47

7 110 0.2 0.12 0.4 0.690 21.99 1.14

8 60 0.6 0.08 0.8 0.685 59.13 0.78

9 60 1.0 0.08 0.4 0.703 61.68 1.31

10 110 1.0 0.12 0.4 0.868 26.72 1.49

11 110 1.0 0.08 0.2 0.732 35.41 1.42

12 160 0.6 0.08 0.2 0.719 22.84 0.89

13 160 1.0 0.08 0.4 0.835 27.26 0.79

14 60 0.2 0.08 0.4 0.547 48.96 0.82

15 160 0.6 0.04 0.4 0.690 44.62 0.47

16 110 0.6 0.04 0.2 0.566 54.03 0.98

17 60 0.6 0.04 0.4 0.529 94.95 0.82

18 110 1.0 0.04 0.4 0.659 63.82 1.06

19 160 0.2 0.08 0.4 0.671 22.07 0.41

20 110 0.6 0.12 0.2 0.752 23.74 1.55

21 110 0.6 0.04 0.8 0.648 62.35 0.52

22 160 0.6 0.08 0.8 0.862 26.68 0.36

23 110 0.2 0.08 0.2 0.576 28.23 0.91

24 110 0.2 0.08 0.8 0.681 32.95 0.48

25 110 1.0 0.08 0.8 0.843 39.02 0.89
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based on manufacturer’s or customer’s requirements. The SWARA method has the 
capability to estimate varying sets of criteria weights depending on the opinions of 
the concerned decision-makers. In this paper, three decision-makers are considered 
having their dissimilar judgments on the relative importance of the responses. The 
first decision-maker (one of the customers) has assigned maximum importance to Ra 
and the corresponding preference order is Ra→EC→PF. On the other hand, the sec-
ond decision-maker (manufacturer) has set the preference order of the responses as 
EC→Ra→PF. Finally, for the last decision-maker (the machine operator), the responses 
are preferred as PF→Ra→EC. Thus, the decision-makers have separately ranked the 
responses depending on their level of importance. The average values of compara-
tive importance (sj) of all the responses are calculated based on the ranks assigned by 
the participating decision-makers. Now, utilizing Eqs. (1)–(3), the final weights of the 
responses are estimated using SWARA method for the three decision-makers, as shown 
in Tables 3, 4, and 5, respectively.

Following the procedural steps of CoSoSo method and based on the type of qual-
ity characteristic, the response values, provided in Table  2, are linearly normalized, 
applying Eqs. (4) and (5). These normalized values are provided in Table 6. The power 
of weighted comparability sequence and sum of weighted comparability sequence for 
each of the alternative experimental trials are also calculated considering weight set 
1 (based on the preference of decision-maker 1) in Table 6. Using the three aggrega-
tion strategies of Eqs. (8)–(10), the corresponding appraisal scores are computed for 
all the experimental trials. Finally, these appraisal scores are transformed into a final 
appraisal score, employing Eq. (11). The computed values of these appraisal scores 
for all the experimental trials for criteria weight set 1 are exhibited in Table 7. From 
this table and Fig. 4, it can be noticed that among the 25 experiments, trial number 

Table 3  Weight set for responses for decision-maker 1

Response sj kj qj wj

Ra 1 1 0.3872

EC 0.15 1.15 0.8696 0.3367

PF 0.22 1.22 0.7128 0.2760

Table 4  Weight set for responses for decision-maker 2

Response sj kj qj wj

EC 1 1 0.3640

Ra 0.07 1.07 0.9346 0.3402

PF 0.15 1.15 0.8127 0.2958

Table 5  Weight set for responses for decision-maker 3

Response sj kj qj wj

PF 1 1 0.3689

Ra 0.08 1.08 0.9259 0.3416

EC 0.18 1.18 0.7847 0.2895
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22 with parametric combination as V = 160 m/min, a = 0.6 mm, f = 0.08 mm/z, and 
r = 0.8 mm, and having the maximum appraisal score of 3.1583 is the most preferred 
choice for attaining the target response order as set by the first decision-maker.

To validate the optimal combination of the dry milling process parameters derived 
using SWARA-CoCoSo method for weight set 1, the related response table is devel-
oped in Table 8 based on the calculated final appraisal scores for the alternative trials. 
These values are obtained while considering the average of the final appraisal scores 
at the corresponding parametric levels of the experimental trials. The highest average 
appraisal scores (shown in bold face) in Table 8 indicate that to attain green manufac-
turing environment and satisfy the requirements of decision-maker 1, the parametric 
condition must be set as V = 160 m/min, a = 0.2 mm, f = 0.08 mm/z, and r = 0.8 mm 
for this milling process. A similar parametric setting is also obtained in Table  9 for 
criteria weight set 2. However, for weight set 3, the parametric combination (shown 
in Table 10) is attained as V = 160 m/min, a = 1 mm, f = 0.08 mm/z, and r = 0.8 
mm, and it is different from the earlier derived setting. The response graph of Fig. 5 
clearly highlights the optimal settings of different milling parameters for three differ-
ent weighting scenarios. Compared to the observations of Nguyen et al. [29], the opti-
mal parametric settings deriving using SWARA-CoCoSo method differ with respect 
to depth of cut and feed rate.

Table 6  Normalized responses and comparability sequence measures for weight set 1

Exp. no. PF EC Ra Pi Si

1 0 0.5830 0.9244 1.8039 0.5542

2 0.9971 0.9080 0.3950 2.6651 0.7339

3 0.3829 0.8283 0.5882 2.5200 0.6123

4 0.2657 0.5395 0.1765 2.0169 0.3233

5 0.9514 1 0.5042 2.7534 0.7945

6 0.6229 0.6840 0.0672 2.1091 0.4283

7 0.4914 0.9534 0.3445 2.4679 0.5900

8 0.4771 0.4681 0.6471 2.4346 0.5398

9 0.5286 0.4347 0.2017 2.1320 0.3704

10 1 0.8915 0.0504 2.2766 0.5957

11 0.6114 0.7780 0.1092 2.2163 0.4730

12 0.5743 0.9422 0.5546 2.6342 0.6905

13 0.9057 0.8845 0.6387 2.7732 0.7951

14 0.0829 0.6009 0.6134 2.1729 0.4627

15 0.4914 0.6577 0.9076 2.6535 0.7085

16 0.1371 0.5347 0.4790 2.1399 0.4033

17 0.0314 0 0.6134 1.2124 0.2462

18 0.4029 0.4068 0.4118 2.2260 0.4076

19 0.4371 0.9523 0.9580 2.7630 0.8122

20 0.6686 0.9305 0 1.8709 0.4978

21 0.3714 0.4260 0.8655 2.4567 0.5811

22 0.9829 0.8921 1 2.9575 0.9588

23 0.1657 0.8718 0.5378 2.3503 0.5475

24 0.4657 0.8101 0.8992 2.7011 0.7495

25 0.9286 0.7308 0.5546 2.6755 0.7171
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To justify the superiority of SWARA-CoCoSo method as an effective multi-objec-
tive optimization tool, three RSM-based equations (considering only the statistically 
significant terms) are developed in Eqs. (12)–(14) correlating the considered milling 

Table 7  Aggregated scores for weight set 1

Exp. no. aia aib aic Ai

1 0.0321 3.7389 0.6021 1.8740

2 0.0462 5.1789 0.8679 2.6232

3 0.0426 4.5656 0.7998 2.3404

4 0.0318 2.9768 0.5976 1.5859

5 0.0482 5.4981 0.9059 2.7724

6 0.0345 3.4790 0.6479 1.8139

7 0.0416 4.4321 0.7808 2.2754

8 0.0404 4.2007 0.7595 2.1721

9 0.0340 3.2627 0.6390 1.7258

10 0.0390 4.2973 0.7334 2.1873

11 0.0366 3.7492 0.6867 1.9456

12 0.0452 4.9773 0.8489 2.5330

13 0.0485 5.5166 0.9111 2.7834

14 0.0358 3.6717 0.6730 1.9058

15 0.0457 5.0662 0.8584 2.5737

16 0.0346 3.4032 0.6494 1.7867

17 0.0198 2.0000 0.3724 1.0428

18 0.0358 3.4915 0.6725 1.8379

19 0.0486 5.5779 0.9129 2.8076

20 0.0322 3.5651 0.6048 1.8117

21 0.0413 4.3865 0.7757 2.2543

22 0.0532 6.3338 1.0000 3.1583

23 0.0394 4.1623 0.7399 2.1422

24 0.0469 5.2719 0.8811 2.6683

25 0.0461 5.1194 0.8663 2.5997

Fig. 4  Ranking of the alternative trials for weight set 1 for example 1
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parameters and responses. Based on these equations, the corresponding response values 
are predicted at the optimal parametric combinations derived using criteria weight sets 
1, 2, and 3. The estimated response values are provided in Table 11 and are also subse-
quently compared with those obtained by Nguyen et al. [29]. It can be observed from 
this table that the response values estimated at the parametric settings for weight sets 1 

Table 8  Response table for final aggregation score for weight set 1

Parameter Level

− 1 0 + 1

Cutting speed 1.7077 2.1805 2.7714
Depth of cut 2.2789 2.1899 2.1800

Feed rate 1.8949 2.3360 2.2473

Nose radius 1.9675 2.1493 2.5793

Table 9  Response table for final aggregation score for weight set 2

Parameter Level

− 1 0 + 1

Cutting speed 1.7923 2.3147 2.9369
Depth of cut 2.3888 2.3162 2.3371

Feed rate 1.9558 2.4698 2.4374

Nose radius 2.0973 2.2741 2.7199

Table 10  Response table for final aggregation score for weight set 3

Parameter Level

− 1 0 + 1

Cutting speed 1.7975 2.3123 2.9487
Depth of cut 2.3380 2.3240 2.3830
Feed rate 1.9552 2.4680 2.4536

Nose radius 2.0660 2.2750 2.7610

Fig. 5  Response graph for final aggregation score for example 1
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and 2 derived using SWARA-CoCOSo clearly outperform those as attained by Nguyen 
et al. [29]. At the proposed optimal settings of the green dry milling parameters for cri-
teria weight sets 1 and 2, 4.01, 3.40, and 15.79% improvements in the values of PF, EC, 
and Ra are respectively achieved against the past observations. The parametric combina-
tion for weight set 3 achieves 17.59 and 3.40% improvements in the values of PF and EC 
respectively, but the Ra is worsened by 12.02% as compared to its previous value.

(12)

PF = 0.4927 − 0.001129 × V − 0.3011 × r + 0.000011 × V 2
+ 0.0797 × a2 + 11.95

× f 2 + 0.2828 × r2 − 0.000575 × V × f + 0.0016 × V × r + 0.578 × a × f

+ 0.772 × f × r

(13)EC = 184.3 − 1.277 × V − 1594 × f + 0.003383 × V 2
+ 5767 × f 2 + 3.3 × r2 + 3.269 × V × f

(14)
Ra = 1.013 + 0.842 × a − 2.327 × r − 0.000023 × V 2

+ 0.2422 × a2 + 87.5 × f 2

+ 1.766 × r2 − 0.001375 × V × a − 0.002125 × V × f − 4.062 × a × f

Table 11  Comparison of response values at different parametric combinations for example 1

Optimal parametric setting V a f r PF EC Ra

Desirability function approach [29] 160 0.42 0.09 0.8 0.8360 20.6300 0.3500

SWARA-CoCoSo (weight sets 1 and 2) 160 0.2 0.08 0.8 0.8695 19.9288 0.2947

Improvement (%) 4.0115 3.3989 15.7897

SWARA-CoCoSo (weight set 3) 160 1 0.08 0.8 0.9830 19.9288 0.3921

Improvement (%) 17.5885 3.3989 -12.0229

Fig. 6  Effects of different green milling parameters on PF. a PF vs. V, a (f = 0.08 mm/z, r =0.40 mm. b PF vs. a, 
f (V = 110 m/min, r = 0.40 mm). c PF vs. f, r (V = 110 m/min, a = 0.6 mm). d PF vs. r, V (a = 0.6 mm, f = 0.08 
mm/z)
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Based on the developed RSM-based equations for the three responses, the corre-
sponding interaction plots are now generated, as shown in Figs.  6, 7, and 8. These 
plots basically demonstrate the effects of the considered dry milling parameters on 
the responses. They would further help the process engineers in clearly understand-
ing and selecting the best combination of milling parameters to fulfill the target 
requirements. As compared to desirability function approach [29], the application 
of SWARA-CoCoSo method suggests lower settings for both depth of cut and feed 

Fig. 7  Effects of milling parameters on EC. a EC vs. V, a (f = 0.08 mm/z, r = 0.40 mm). b EC vs. a, f (V = 110 m/
min, r = 0.40 mm). c EC vs. f, r (V = 110 m/min, a = 0.6 mm). d EC vs. r, V (a = 0.6 mm, f = 0.08 mm/z)

Fig. 8  Effects of milling parameters on Ra (a) Ra vs. V, a (f = 0.08 mm/z, r = 0.40 mm). b Ra vs. a, f (V = 110 
m/min, r = 0.40 mm). (c) Ra vs. f, r (V = 110 m/min, a = 0.6 mm). d Ra vs. r, V (a = 0.6 mm, f = 0.08 mm/z)
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rate for weight sets 1 and 2 to attain sustainable machining performance with quality 
responses. It can be justified that at lower values of depth of cut and feed rate, cut-
ting force required for removal of material from the workpiece would be much lower, 
thus reducing consumption of energy. On the other, lower vibration at smaller val-
ues of depth of cut and feed rate indirectly helps in improving surface quality of the 
machined components.

It can be noticed from Fig. 6 that higher values of cutting speed increase power con-
sumption due to higher motor speed required to meet the increased value of spindle 
speed. This ultimately increases the active power, i.e., useful power resulting in increase 
in PF. With increasing values of both depth of cut and feed rate, the undeformed chip 
section increases. It is responsible for an increase in motor load to remove higher 
amount of material resulting in an increase in active power along with PF. Increase in 
nose radius also causes an increase in the power required to overcome frictional resist-
ance, consuming more power. Thus, at higher nose radius, increase in active power 
causes PF to increase.

In the similar direction, increase in cutting speed triggers rise in temperature at the 
cutting zone reducing hardness and strength of the work material. In this condition, the 
cutting force required for material removal gets reduced, causing reduction in the value 
of EC, as depicted in Fig. 7. At lower depth of cut, requirement of cutting force is also 
low with decreased value of EC. Higher feed rate reduces the cutting time which is indi-
rectly responsible for lower value of EC. Increasing nose radius would make the cutting 
tool blunt, resulting in more power consumption to overcome friction.

As mentioned earlier, at higher cutting speed, temperature at the cutting zone 
increases, thus reducing strength and hardness of the work material. This leads to less 
cutting force required for material removal, reducing the Ra value, as noticed in Fig. 8. 
At lower depth of cut and feed rate, reduced vibration during the cutting operation indi-
rectly helps in improving the value of Ra. Higher nose radius increases the contact area 
between the tool and the workpiece, leading to generation of better surface quality with 
decreased Ra value.

Example 2

Based on Taguchi’s orthogonal array, Khan et al. [12] conducted 27 green face milling 
experiments on AISI 1045 steel to investigate the influences of cutting speed (V), feed 
rate (f), depth of cut (a) and width of cut (w) on MRR, Ra, and active cutting energy 
(ACE). During the experiments, each of the considered milling parameters was varied 
at three different operating levels. The detailed experimental design plan and values of 
the measured responses are provided in Table 12. Using GRA technique, Khan et al. [12] 
determined the optimal parametric combination for the said face milling process as V = 
1200 rev/min, f = 320 mm/min, a = 0.5 mm, and w = 15 mm. This experimental dataset 
is now considered here as the second example to prove the effectiveness of SWARA-
CoCoSo approach in solving parametric optimization problems of green dry milling 
processes.

Following the procedural steps of SWARA method, weights of all the responses are 
calculated for the three participating decision-makers. For the first decision-maker, 
maximum importance is allotted to MRR with the corresponding preference order of 
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Table 12  Experimental design plan and responses for example 2 [12]

Exp. no. V (rev/min) f (mm/min) a (mm) w (mm) MRR (mm3/min) Ra (μm) ACE (kJ)

1 1200 220 0.3 5 330 3.30 535.802

2 1200 220 0.4 10 880 2.95 184.929

3 1200 220 0.5 15 1650 1.41 88.519

4 1200 270 0.3 5 405 3.83 426.109

5 1200 270 0.4 10 1080 3.87 146.050

6 1200 270 0.5 15 2025 1.68 69.823

7 1200 320 0.3 5 480 3.97 361.832

8 1200 320 0.4 10 1280 3.53 122.976

9 1200 320 0.5 15 2400 2.29 53.988

10 1700 220 0.3 10 660 1.81 337.042

11 1700 220 0.4 15 1320 1.13 142.727

12 1700 220 0.5 5 550 3.47 299.031

13 1700 270 0.3 10 810 2.85 269.604

14 1700 270 0.4 15 1620 1.41 113.648

15 1700 270 0.5 5 675 3.91 238.476

16 1700 320 0.3 10 960 2.55 213.559

17 1700 320 0.4 15 1920 1.39 92.551

18 1700 320 0.5 5 800 4.12 193.109

19 2200 220 0.3 15 990 1.76 244.303

20 2200 220 0.4 5 440 3.33 425.797

21 2200 220 0.5 10 1100 2.36 165.620

22 2200 270 0.3 15 1215 1.17 193.939

23 2200 270 0.4 5 540 3.72 338.579

24 2200 270 0.5 10 1350 2.58 131.343

25 2200 320 0.3 15 1440 1.41 160.886

26 2200 320 0.4 5 640 3.86 286.850

27 2200 320 0.5 10 1600 2.76 108.147

Fig. 9  Ranking of the experimental trials for weight set 1 for example 2
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the responses set as MRR (0.4000)→Ra (0.3333)→ACE (0.2667). Similarly, the prefer-
ence order of the responses for the second decision-maker is set as Ra (0.3548)→MRR 
(0.3379)→ACE (0.3072). The preference order of the responses for the third decision-
maker is considered as ACE (0.3574)→Ra (0.3437)→EC (0.2989). Likewise the first 
example, based on the application steps of CoCoSo method, the experimental data is 
normalized depending on the type of the responses. The power of weighted compa-
rability sequence, sum of weighted comparability sequence, appraisal score and final 
appraisal score for each of the experimental trials are subsequently computed. Figure 9 
plots these appraisal scores for all the alternative experiment trials for weight set 1. This 
figure reveals that experiment run number 9 (V = 1200 rev/min, f = 320 mm/min, a 
= 0.5 mm, and w = 15 mm) with the maximum appraisal score of 5.8832 is the most 
suitable parametric intermix for the green face milling operation at weight set 1 (when 
maximum importance is assigned to MRR). This observation exactly matches with that 
of Khan et al. [12].

In Table 13, average values of the final appraisal scores at the corresponding paramet-
ric levels of the experimental trials for all the considered weight sets are provided. In 
this table, the maximum values of the average appraisal scores are marked in bold face. 
It can be interestingly noticed that for the three different weight sets, V = 1700 rev/min, 
f = 320 mm/min, a = 0.5 mm, and w = 15 mm emerge out as the optimal parametric 
combination for the green face milling operation. This intermix of the milling param-
eters differs from that derived by Khan et  al. [12] only with respect to cutting speed. 
A lower cutting speed was suggested by Khan et  al. [12], whereas, SWARA-CoCoSo 
method-based analysis recommends a moderate setting of cutting speed. Although a 
lower cutting speed would provide better surface quality of the machined components 
along with consumption of minimum active energy, but the achievable MRR (which is 
proportional to machining/production rate) would decrease. On the other hand, higher 
cutting speed would lead to higher MRR, but it has a detrimental effect on surface qual-
ity with increased consumption of active energy. Thus, the adopted approach suggests 

Table 13  Response table for final aggregation score for the three weight sets for example 2

Parameter Weight set 1 Weight set 2 Weight set 3

Level Level Level

1 2 3 1 2 3 1 2 3

Cutting speed 3.5669 3.8295 3.7969 3.5287 3.8313 3.7911 3.8491 4.1165 4.0642

Feed rate 3.5252 3.7151 3.9529 3.5347 3.7017 3.9146 3.7551 4.0026 4.2721
Depth of cut 3.2452 3.7348 4.2133 3.2553 3.7237 4.1720 3.4387 4.0329 4.5583
Width of cut 1.9998 3.8491 5.3444 2.0346 3.8456 5.2708 2.1850 4.1702 5.6747

Table 14  Comparison of responses at different parametric combinations for example 2

Optimal parametric setting V f a w MRR Ra ACE

GRA [12] 1200 320 0.5 15 2400 2.2900 53.9800

CoCoSo method (weight sets 1, 2, and 3) 1700 320 0.5 15 2400 1.9434 52.7740

Improvement (%) 15.1354 2.2342
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a moderate setting of cutting speed leading to simultaneous optimization of all the 
responses under consideration.

Using the RSM-based equations developed taking into account only the statistically 
significant terms, the corresponding response values at the SWARA-CoCoSo method-
based parametric combination are now derived, as shown in Table  14. This table also 
provides the response values as obtained by Khan et al. [12] while solving this problem 
using GRA technique. It can be noticed that although the optimal parametric inter-
mix derived using SWARA-CoCoSo method predicts the same MRR value, but there 
are respectively 15.13 and 2.23% improvements in the values of Ra and ACE. This again 
proves the applicability and potentiality of SWARA-CoCoSo approach in solving para-
metric optimization problems of green dry milling processes. For this problem, inter-
action plots (not shown here due to paucity of space) can also be developed to depict 
influences of different milling parameters on the considered responses.

Conclusions
This paper proposes an integrated application of SWARA and CoCoSo methods for 
solving parametric optimization problems for two green dry milling process leading to 
sustainable manufacturing environment. Based on the detailed analysis, the following 
conclusions can be drawn:

a)	 Instead of assigning equal weights to the considered responses, SWARA method 
allocates different weight sets to those responses keeping in mind varying require-
ments of all the stakeholders. This may lead to different parametric intermixes for 
fullest exploration of the machining capability of the said process.

b)	 In the first example, the optimal parametric condition as V = 160 m/min, a = 0.2 
mm, f = 0.08 mm/z, and r = 0.8 mm for weight sets 1 and 2 would result in 4.01, 
3.40, and 15.79% improvements in the values of PF, EC, and Ra respectively against 
the past observations.

c)	 On the other, for the first example, the parametric mix as V = 160 m/min, a = 1 mm, 
f = 0.08 mm/z, and r = 0.8 mm for weight set 3 achieves 17.59 and 3.40% improve-
ments for PF and EC respectively, but the Ra value is worsened by 12.02% as com-
pared to the past findings.

d)	 In the second example, the optimal parametric intermix as V = 1700 rev/min, f = 
320 mm/min, a = 0.5 mm and w = 15 mm for all the weight sets provides 15.13 and 
2.23% improvements in the values of Ra and ACE respectively, but the MRR value 
remains the same.

e)	 The interaction plots would help in studying the influences of the milling parameters 
on the responses.

f )	 Thus, this integrated method, being simple, easy to implement and free from any 
complex calculation, can act as an effective multi-objective optimization tool for 
identifying the optimal parametric mixes for various machining processes.

In this paper, as all the analyses are performed based on past experimental data, there 
is no scope for validation of the derived results using confirmatory trials. Involvement 
of different stakeholders (manufacturers, machine operators, and end users) while 
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assigning varying importance to the responses, aggregation of power of weighted and 
sum of weighted comparability sequences, easily understandable mathematical steps, 
minimum dependency on algorithm-specific parameters etc. may make this approach 
as an effective multi-objective optimization tool for solving parametric optimization 
problems of diverse machining processes. The potentiality of other subjective crite-
ria weighting techniques, like pivot pairwise relative criteria importance assessment 
(PIPRECIA) and best worst method, may be explored for assigning relative importance 
to the responses. As a future scope, SWARA method may also be combined with other 
yet to be popular MCDM techniques, like multi-attributive border approximation area 
comparison (MABAC) and multi-attributive real-ideal comparative analysis (MARICA) 
for solving parametric optimization problems for green and sustainable machining 
processes.
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