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Abstract

Bio-CaCO3 nanoparticles have several applications and have attracted significant
attention in current research. N,N-dimethylformamide (DMF) has been proven to be
an effective non-volatile solvent for synthesizing bio-CaCO3 nanomaterials from
eggshell. However, the optimum ratio of eggshell and DMF need to be specified to
achieve maximum nano-CaCO3 production for large-scale purposes. Thus, this work
investigated the effect of eggshell/DMF mixing ratios on the production of CaCO3

nanoparticles from the chicken eggshell. The nano-CaCO3 were synthesized via dry
milling and then sonication at a frequency of 40 kHz for 6 h in the presence of DMF.
The eggshell mass was varied from 0.5 to 20 g per 100 mL of DMF. The synthesized
CaCO3 materials were characterized using SEM, TEM, EDX, XRD, and BET surface
analysis. The eggshell/DMF ratio was optimized to maximize the production of
CaCO3 nanoparticles, and its effect on the size, crystallinity, surface area, and porosity
of the CaCO3 particles were discussed. Increasing eggshell/DMF ratio decreased the
sonication efficiency with increasing crystallite and particle size. The specific surface
area of the synthesized CaCO3 particles decreased with increasing eggshell/DMF
ratio. 1 g/100 mL was the optimum or highest ratio to obtain 100% nano-CaCO3. At
1 g/100mL ratio, the bio-CaCO3 contained a crystallite size of 23.08 nm, particle size
between 5 and 30 nm and surface area of 47.44 m2 g−1.
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Introduction
Current waste management strategies involve minimizing waste, as well as collection

and storage/treatment [1, 2]. However, waste such as biomass generated from agricul-

tural and domestic activities is inevitable [3]. These biomasses like eggshells are gener-

ated daily in enormous quantities since their main products are life-dependent: source

of food [4, 5]. Although agro-biomass is biodegradable in the natural environment, the

biomass contains vital compounds or elements that have many uses [6]. For instance,

carbon found in biomass can serve as a precursor for producing fuels, gas, adsorbents,

and several others [5, 7–10]. Hence, waste biomasses are valuable materials, and the
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valorization of such waste is sustainable, economical, and generally eco-friendly [11,

12]. Moreover, recycling waste offers a more cost-effective approach to managing waste

and preventing environmental pollution [13].

Eggshells are industrial and household byproducts; thus, they are abundant and avail-

able at a low cost. The global egg production is around 77 million tonnes, resulting in

over a million tonnes of eggshell biomass created as waste each year [14, 15]. However,

the majority of eggshells are disposed in landfills [5]. Meanwhile, eggshell is a bio-

degradable material with extraordinary properties such as a unique natural porous

structure and a high calcium carbonate (bio-CaCO3) concentration (95 wt%) in the

form of calcite [16, 17]. Thus, eggshells can be used in various applications, including

as a biosorbent for environmental treatment, where it has a strong affinity for heavy

metal ions and dyes [18, 19]. The calcite in eggshell can also be used: in the production

of biocompatible ceramic materials, as an abrasive ingredient in toothpaste, coating pig-

ments for ink-jet printing paper, as bio-filler to improve the properties of polymer

nanocomposites, to improve the mechanical behavior and tensile properties of polypro-

pylene composites, controlled epoxy resin composite, and improve the thermal stability

and glass transition temperature of normal corn starch foams [12, 17, 20, 21].

On the other hand, nanotechnology involves the conversion of bulk materials to nano-

metric size (< 100 nm) [22, 23]. Nanotechnology introduces unique characteristics into

materials and makes them widely applicable as catalysts, structural components, informa-

tion storage, electronics, and sensors [24–28]. Hence, nanomaterials have been the focus

of current research [28, 29]. Studies have shown that the conversion of eggshells into

nanometric size presents significant advantages over bulk or micrometer-sized eggshells

[17, 30]. Nanometric eggshell has a relatively high surface area and uniform pore distribu-

tion. Therefore, nano-eggshell is used as a more efficient adsorbent for dyes and metals in

solution and additive for plastics and ceramic composites to improve their properties [17].

Other studies have shown that nanometric eggshells can be more effectively deposited on

the biochar matrix to improve the adsorption capabilities [18].

Meanwhile, several top-bottom methods can be used to synthesize nanomaterials

[31]. High-energy ball milling is the most widely used method in producing nanomater-

ials because ball milling is simple, applicable for numerous materials, and can be ad-

vanced quickly for commercial production [32]. However, the comminution of particles

from micrometer to nanometer scale by milling requires much energy and is costly

[32]. Further drawbacks of milling include particle agglomeration and nanomaterial

contamination [32]. Consequently, other methods such as ultrasonic irradiation have

been employed as an effective alternative for synthesizing nanomaterials with remark-

able properties [17].

Sonochemistry is an acoustic cavitation process that involves the creation, growth,

and implosive collapse of bubbles in a liquid medium [33]. This result in extreme

conditions such as high temperatures (> 5000 K), high pressure (> 20 MPa), and high

cooling rate (> 107 K s−1) [34]. These extreme conditions introduce many unique prop-

erties in the irradiated solution, affecting the size reduction [34]. Sonication is a suitable

method for reducing the particle size of many inorganic materials while preserving the

crystalline structure [35]. A study by Hassan et al. (2013) investigated the preparation

of bio-CaCO3 nanoparticles from eggshell using wet ball milling with polypropylene

glycol. The ball-milled eggshell particles were then irradiated a sonochemical process in

Mensah et al. Journal of Engineering and Applied Science           (2022) 69:16 Page 2 of 12



the presence of N,N-dimethylformamide (DMF), decahydronaphthalene (Decalin), and

tetrahydrofuran (THF). DMF was reported as the most effective solvent [17]. Low vola-

tile solvents like DMF have relatively low vapor pressures and are effective solvents for

synthesizing biobased nanomaterials via the sonochemical process [17, 35].

Nevertheless, a crucial aspect of the nano-CaCO3 preparation via the sonochemical

process which includes optimizing the mixing ratios between the eggshell powder and

solvent has not been discussed [36–39]. Such study is vital to the large-scale production

of the bio-CaCO3 nanoparticles from this process. This can specify the maximum

eggshell/DMF ratio required to produce high yield eggshell nanoparticles via the

sonochemical process. Moreover, studies have shown that the efficiency of sonochem-

ical processes is critically dependent on the solid/solvent ratio [40].

This present study investigates the effect of eggshell/DMF mixing ratios on the sono-

chemical production of CaCO3 nanoparticles for large-scale applications. This is the

first study that examines the eggshell/DMF mixing ratios and optimizes the ratios to

maximize CaCO3 nanoparticle production. This work further discusses the effect of the

mixing ratios on the size, crystallinity, and porosity of the CaCO3 nanoparticles.

Materials and experimental method
Materials and reagents

Chicken eggshells were collected from a local restaurant in Borg El Arab, Egypt. Acet-

one (99.8%) was purchased from Fisher Scientific in the UK. N,N-dimethylformamide

(99.8% DMF) was purchased from Sigma-Aldrich in Germany. Ethanol (70%) was pro-

cured from Brand Chemicals in Egypt.

Synthesis of CaCO3 nanoparticles

A modified method of synthesizing CaCO3 nanoparticles from the chicken eggshell

powder was used, as illustrated in Fig. 1a–f [17, 18]. The eggshells were thoroughly

washed with demineralized water and dried overnight in a 110 °C oven (Fig. 1a). The

dry eggshells were pulverized for 5 min using a blender to obtain an eggshell powder.

The fine eggshell powder was then soaked in acetone and stirred for 2 h. The shells

were then dried in an oven at 60 °C for 2 h. The dried eggshell powder was ground to

Fig. 1 Synthesis of biobased CaCO3 nanoparticles from chicken eggshell
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below 106 μm sizes using a Retsch PM 400 planetary mill with 1 mm diameter ceramic

balls at a ratio of 1:1 for 5 h (Fig. 1b). An amount of the eggshell powder (Fig. 1c) was

irradiated in the presence of a fixed 100 mL DMF in a glass beaker at a frequency of 40

kHz using Cole-Parmer digital ultrasonicator for 6 h (Fig. 1c). The suspensions were

manually stirred regularly to reduce particle settling. After the sonochemical reaction,

the particles were collected and washed repeatedly with ethanol (Fig. 1e). The final

product was centrifuged at 6000 rpm for 30 min using Hettich EBA 20 centrifuge to

separate the eggshell particles from the solvents. Eggshell particles were then dried

under vacuum for 24 h (Fig. 1f) and stored in a vacuum desiccator. The samples were

labelled ES-1, ES-2, ES-3, ES-4, ES-5, and ES-6, corresponding to an eggshell powder

mass of 0.5, 1, 2, 5, 10, and 20 g, respectively.

Characterization techniques for the CaCO3 nanoparticles

Surface morphological analysis and size measurement of the prepared CaCO3 samples

was conducted using a scanning electron microscope (SEM) (JEOL, JSM-6010LV,

Japan). Higher-resolution micrographs of the morphology, nano-size particle measure-

ment, and elemental composition of the samples were determined using a transmission

electron microscope (TEM) equipped with energy dispersion X-ray spectroscopy (EDX)

(JEOL, JEM-2100F, Japan). Bruker D2 Phaser was used to generate X-ray diffraction

(XRD) crystallographic information of the CaCO3 samples. Nitrogen gas (N2)

adsorption-desorption test and the Barrett, Joyner, and Halenda (BJH) analysis were

conducted to examine the surface texture and pore size distributions. The Brunauer-

Emmett-Teller (BET) surface area, mean pore size and total pore volume of the char

products were analyzed with Microtrac MRB Belsorp Mini X, Japan.

Results and discussion
The XRD patterns of the prepared bio-CaCO3 (Fig. 2) show peaks at 2θ° of approxi-

mately 23°, 29°, 36°, 39°. 43°, 47°, 48°, 57°, 61°, and 65° corresponding to the (012),

(104), (110), (113), (202), (016), (018), (122), (224), and (036) diffraction planes of cal-

cite phase of CaCO3 (JCPDS card No. 47-1743) [17, 21]. The presence of sharp peaks

indicates highly crystalline CaCO3 in all samples. The characteristic calcite diffraction

peaks present in all samples are positioned at approximately the same angles indicating

that the sonochemical irradiation caused no structural changes to the chemical com-

position of the sonicated samples. Moreover, calcite is the most stable polymorph of

calcium carbonate and will not easily undergo any structural changes [21, 41, 42]. The

EDX spectra (Fig. 3) confirm peaks of calcium (Ca), carbon (C), and oxygen (O), con-

firming the presence of CaCO3 with no impurities in all prepared bio-CaCO3.

OriginPro 9.8 software was used to estimate the full width at half maximum (FWHM)

for all the bio-CaCO3 samples by fitting the Gaussian model on the most intense (104)

peak at 2θ° of ~ 29°. The obtained FWHM values were used to calculate the crystallite

size of the prepared bio-CaCO3 using the conventional Scherrer Equation at an X-ray

wavelength of 0.154 nm and shape factor of 0.94. The FWHM value of the (104) peak

of the bio-CaCO3 particles decreased with the increasing ratio of eggshell/DMF with a

corresponding increase in crystallite size (Table 1). This indicates that the smaller sizes

of bio-CaCO3 particles are achievable at lower eggshell/DMF ratios. Studies have
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shown that solid particles tend to aggregate quickly in their suspensions when the

solids mass increases [10]. Consequently, increasing CaCO3 particles aggregation with

increasing eggshell mass caused the eggshell particles to settle quickly, impeding sono-

chemical process efficiency at higher eggshell concentrations [40, 43]. Moreover, the 1

transfer principle states that the increasing concentration gradient between the sub-

stance and the solvent is the driving factor for mass transfer [40]. Hence, increasing the

eggshell mass causes rapid saturation of the DMF solvent, which reduces the efficiency

of solids dispersion and accordingly decreases the sonochemical process efficiency [40,

43]. Contrarily, larger volume of solvent enhances the solvent extraction capability, pre-

venting early saturation and enabling a higher production of nano-CaCO3 [40]. The

crystallite sizes of ES-1 and ES-2 (18.07 and 23.08 respectively) are close to the crystal-

line size of nano-CaCO3 particles that were synthesized through the precipitation of

dissolved Ca(NO3)2·4H2O [44]. This indicates a possible production of nano-CaCO3

particles from ES-1 and ES-2.

SEM micrographs of the bio-CaCO3 show clusters and agglomerations of calcite

particles with irregular sizes and shapes (Fig. 4). Several fragmented bio-CaCO3

particles were observed in ES-1 (Fig. 4a) and ES-2 (Fig. 4b), illustrating the impact of

sono-irradiation in breaking down the eggshell particles. However, the particle size of

the prepared bio-CaCO3 increased with increasing eggshell/DMF ratio. From Fig. 4c

(ES-3), Fig. 4d (ES-4), Fig. 4e (ES-5), and Fig. 4f (ES-6), a blend of fragmented and lar-

ger lumps of bio-CaCO3 are observed with an increasing amount of larger lumps with

higher eggshell/DMF ratio. This confirms the results from the XRD analysis illustrating

the effect of eggshell/DMF mixing ratio on the sonochemical production of bio-CaCO3.

TEM analysis provided further detailed imagery of the morphology (Fig. 5) and

measurements of the particle sizes of the synthesized bio-CaCO3 (Table 2). The TEM

Fig. 2 XRD pattern of bio-CaCO3 samples
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Fig. 3 EDX spectra of a ES-1, b ES-2, c ES-3, d ES-4, e ES-5, and f ES-6

Table 1 Crystallite size of bio-CaCO3

Sample FWHM at 29° 2θ° Crystallite sze at 29° 2θ° (nm)

ES-1 0.474 18.07

ES-2 0.371 23.08

ES-3 0.349 24.54

ES-4 0.277 30.92

ES-5 0.275 31.14

ES-6 0.246 34.81
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micrographs show the presence of CaCO3 platelets in all samples with shadows depict-

ing agglomerations (Fig. 5). ES-1 (Fig. 5a) and ES-2 (Fig. 5b) contain irregular shapes of

CaCO3 nano-platelets (< 100 nm). However, ES-3 (Fig. 5c) contains similar irregular

shapes of both nano and micro sizes. Meanwhile, ES-4 (Fig. 5d), ES-5 (Fig. 5e), and ES-

6 (Fig. 5f) contain a blend of nanometric and micro-size CaCO3 platelets with an in-

creasing amount of micro-size CaCO3 particles as the eggshell concentration increases.

Thus, 1 g/100 mL (ES-2) is the maximum eggshell/DMF ratio to produce 100% CaCO3

nanoparticles (less than 100 nm sizes).

The N2 adsorption and desorption isotherm curves of the bio-CaCO3 samples

show increasing N2 sorption at high relative pressures as shown in Fig. 6a, which

is characteristic of type-III isotherm according to the International Union of Pure

and Applied Chemistry (IUPAC) classification [45]. This describes a mesoporous

texture of all prepared bio-CaCO3 [46]. Meanwhile, for an equal volume of a spe-

cific material, the samples with smaller sizes have relatively high specific surface

Fig. 4 SEM micrographs of a ES-1, b ES-2, c ES-3, d ES-4, e ES-5, and f ES-6

Mensah et al. Journal of Engineering and Applied Science           (2022) 69:16 Page 7 of 12



area [43, 47, 48]. Accordingly, the N2 adsorption capacity increased with decreasing

eggshell concentration depicting a relatively high surface of CaCO3 prepared from

lower eggshell/DMF ratios (ES-1 >> ES-6). This result confirms the production of

smaller bio-CaCO3 particles with decreasing eggshell concentrations due to the

subsequent improvement in the sonochemical process (slow saturation, lower

Fig. 5 TEM micrographs of a ES-1, b ES-2, c ES-3, d ES-4, e ES-5, and f ES-6

Table 2 Particle size and morphology of bio-CaCO3

Sample Particle size range (nm) Morpholgy

ES-1 5–20 Irregular-shaped platelets

ES-2 5–30 Irregular-shaped platelets

ES-3 10–4 × 104 Irregular -shaped platelets

ES-4 10–7 × 104 Blend of irregular and few rectangular platelets

ES-5 15–105 Blend of irregular and rectangular platelets

ES-6 20–105 Predominantly rectangular platelets
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tendency of particle agglomeration, and slower rate settling at lower eggshell

concentration) at lower eggshell/DMF ratio. On the other hand, all the prepared

bio-CaCO3 samples have broadly distributed pores ranging from 10 to > 100 nm

(Fig. 6b). This shows that the sonochemical process had less impact on the poros-

ity of the prepared bio-CaCO3.The BET surface area, average pore diameter and

total pore volume of the prepared bio-CaCO3 are summarized in Table 3.

Conclusion
This work studied the effect of eggshell/DMF mixing ratio (0.5 to 20 g eggshell

powder per 100 mL of DMF) on the sonochemical production of bio-CaCO3 nano-

particles. The size of the prepared bio-CaCO3 platelets increased with increasing

eggshell/DMF ratio due to particle agglomeration, solvent saturation and rapid set-

tling. The eggshell/DMF ratio was optimized to achieve maximum production of

Fig. 6 a N2 adsorption-desorption isotherms and b pore distribution of bio-CaCO3 samples

Table 3 Textural properties of bio-CaCO3

Sample BET surface area (m2 g−1) Total pore volume (cm3 g−1) Mean pore diameter (nm)

ES-1 52.62 0.181 39.30

ES-2 47.44 0.179 41.22

ES-3 42.38 0.164 35.27

ES-4 27.39 0.159 36.01

ES-5 14.43 0.154 48.08

ES-6 13.25 0.142 39.35
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100% nano-CaCO3 at ES-2 (1 g/100 mL eggshell/DMF ratio) and a sonication fre-

quency of 40 kHz for 6 h. The prepared nano-CaCO3 from ES-2 has a crystallite

size of 23.08 nm and particle sizes between 5 and 30 nm. The surface area of the

prepared bio-CaCO3 decreased with increasing eggshell/DMF ratio due to the pres-

ence of large and lumpy CaCO3 fragments that remained at higher eggshell/DMF

ratios (≥ 2 g/100 mL). At ES-2 (1 g/100 mL eggshell/DMF ratio), the BET surface

area, pore volume and average pore diameter of the prepared nano-CaCO3 were

47.44 m2 g−1, 0.179 cm3 g−1, and 41.22 nm, respectively. The prepared bio-CaCO3

nanoparticles can be used in large-scale applications such as adsorption, polymer

composites, and catalyst.
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