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Abstract

Reaction wheels are crucial actuators in spacecraft attitude control subsystem (ACS).
The precise modeling of reaction wheels is of fundamental need in spacecraft ACS
for design, analysis, simulation, and fault diagnosis applications. The complex nature
of the reaction wheel leads to modeling difficulties utilizing the conventional
modeling schemes. Additionally, the absence of reaction wheel providers’
parameters is crucial for triggering a new modeling scheme. The Radial Basis
Function Neural Network (RBFNN) has an efficient architecture, alluring generalization
properties, invulnerability against noise, and amazing training capabilities. This
research proposes a promising modeling scheme for the spacecraft reaction wheel
utilizing RBFNN and an improved variant of the Quantum Behaved Particle Swarm
Optimization (QPSO). The problem of enhancing the network parameters of the
RBFNN at the training phase is formed as a nonlinear constrained optimization
problem. Thus, it is proposed to efficiently resolve utilizing an enhanced version of
QPSO with mutation strategy (EQPSO-2M). The proposed technique is compared
with the conventional QPSO algorithm and different variants of PSO algorithms.
Evaluation criteria rely upon convergence speed, mean best fitness value, stability,
and the number of successful runs that has been utilized to assess the proposed
approach. A non-parametric test is utilized to decide the critical contrast between
the results of the proposed algorithm compared with different algorithms. The
simulation results demonstrated that the training of the proposed RBFNN-based
reaction wheel model with enhanced parameters by EQPSO-2M algorithm furnishes
a superior prediction accuracy went with effective network architecture.

Keywords: Attitude control subsystem, Reaction wheel model, Quantum Particle
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Introduction
In spacecraft missions that need a high pointing accuracy, Attitude Control Subsys-

tem (ACS) with specific actuators shall be used. The reaction wheel (RW) is a vital ac-

tuator for the spacecraft ACS [1]. The accurate modeling of the spacecraft reaction

wheel is recommended for the design, simulation, analysis, and fault identification ap-

plications. Meanwhile, increasing the accuracy of the reaction wheel modeling will

improve the overall accuracy of the ACS modeling process. There are three common

approaches for modeling dynamic systems. The noteworthy models are white box,

black box, and gray box models. The white-box modeling is characterized by a good

understanding of model parameters compared to black-box modeling that needs some

measurements for the model inputs and outputs. Furthermore, the high accuracy

modeling process can be achieved by black-box rather than white-box. Despite the

black-box modeling accuracy, the generalization characteristics are proven to be su-

perior in the case of white-box modeling rather than black-box modeling. Due to the

complexity of the reaction wheel modeling, it is recommended to be in a white-box

modeling manner. This is to satisfy the appropriate accuracy and generalization char-

acteristics [2]. Unfortunately, many manufacturers provide insufficient information in

their datasheets, which is needed to accurately model the dynamics of the reaction

wheel. Therefore, building the white-box mathematical model is very difficult. Thus,

the researchers have proposed many artificial intelligence (AI) schemes for modeling

the reaction wheels [3–8]. For instance, Al-Zyoud and Khorasani [3] proposed a dy-

namic multilayer perceptron scheme for modeling the spacecraft reaction wheel. The

dynamic properties were introduced into the multilayer perceptron network by add-

ing delays between layers. Furthermore, the optimal results were obtained using six

neurons at the hidden layers. Thus, a tiny training error was noticed in order of 0.04.

However, the simulation results have shown that the dynamic multilayer perceptron

had an improved performance compared to the linear reaction wheel model. There

are some limitations for dynamic multilayer perceptron like the model complexity

and noticeably low modeling accuracy. In [4], the three-layer Elman neural network is

introduced to model the dynamics of the spacecraft reaction wheel. Therefore, the

proposed Elman neural network had two inputs, 25 hidden neurons, and 1 output.

Moreover, the network was trained through 5000 epochs to get a small mean square

error of about 10−3. Furthermore, simulation results have demonstrated the superior-

ity of the Elman neural network-based observer compared to the linear observer for

fault detection and identification. It was noticed that the former model has a compu-

tational complexity due to a large number of hidden neurons. Thus, this imposes a

long computation time. Later on, Mousavi and Khorasani [5] proposed a reaction

wheel model that represents four spacecraft formation flight missions. Thus, reaction

wheel dynamics have been introduced by using an infinite impulse response filter with

dynamic hidden layer neurons. Therefore, hopeful results were achieved from the four

spacecraft constellations. The first one has a training error of 0.05 using a neural net-

work architecture with ten hidden neurons. Furthermore, the second, third, and

fourth spacecraft have a training error near of 0.018, 0.015, and 0.03 with eight, eight,

and six neurons at their hidden layers, respectively. The drawback of the aforemen-

tioned proposed model is the use of the infinite impulse response filter that consumes

tremendous computational resources.
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Radial Basis Function Neural Networks (RBFNNs) are considered to be promising for mod-

eling nonlinear dynamic systems like spacecraft reaction wheels. Moreover, RBFNN facilitates

the modeling process due to its simple architecture, good generalization performance, low

sensitivity against noise, and training capability [9]. Therefore, to address the drawbacks in re-

lated researches, this research proposes an efficient high accuracy modeling scheme for space-

craft reaction wheel using RBFNN. Many researchers have proposed RBFNN as a modeling

paradigm in different research areas [9–15]. For instance, in [9], RBFNN had been used for

online modeling and adaptive control of nonlinear systems. Furthermore, it is proved that

RBFNN has a noticeable performance with the effect of noise and parameters’ variations.

Nevertheless, the results also proved that RBFNN has a better performance than the feed-

forward neural network. Ali N. et al. [11] investigated the superiority of RBFNN over multi-

layer perceptron for predicting the welding features. The results proved the effectiveness of

the high accuracy modeling capability for RBFNN over multilayer perceptron in modeling dy-

namic systems. Recently, Yunguang et al. [13–15] suggested an optimization module based on

radial basis function and particle swarm optimization to develop a wheel profile fine-tuning

system. Simulation results have proven that the proposed optimization algorithm can recom-

mend an optimal wheel profile according to train operators’ needs.

Training the RBFNN includes calculating the number of hidden neurons, centers of the

Radial Basis Function (RBF), widths of the hidden layers, and the connection weights.

Therefore, determining the optimal values for these parameters is a crucial factor for the

RBFNN network performance. To address this concern, an optimization algorithm shall

be used to enhance the training performance and then the modeling accuracy. Recently,

different optimization algorithms have revealed promising performance. When compared

to other optimization approaches, Particle Swarm Optimization (PSO) has a robust search

ability, fast computation, and is inexpensive in terms of speed and memory [16]. However,

it was proven that PSO is certifiably not a global optimization algorithm [17]. Therefore,

numerous variants of PSO have been proposed to work on the performance of PSO [18–

23]. Quantum Behaved Particle Swarm Optimization (QPSO) algorithm is another adap-

tation of the conventional PSO that was presented by Sun [24]. It had been started by

quantum mechanics and the analysis of PSO dynamic behavior. Besides, QPSO is a sort

of stochastic algorithm that has iterative equations, which differ from that of the conven-

tional PSO. Moreover, there are limited QPSO parameters that should be adapted com-

pared with conventional PSO. Hence, experimental results showed that QPSO has a

superior performance compared with the standard PSO on various benchmark functions

[25]. In any case, QPSO is a proper algorithm for global optimization issues, yet it suffers

from premature convergence. Consequently, this premature convergence enables per-

formance degradation and inefficiency for solving optimization problems. This conver-

gence is caused because of catching in local optimal. Nevertheless, premature

convergence happens because of the consistent declination of particles' diversity [26].

This research proposes a high accuracy modeling scheme for spacecraft reaction

wheel utilizing RBFNN and a further enhanced version of the QPSO algorithm. As an

improvement, firstly, two progressive mutations were applied to further improve the

exploitation process. Besides, a diversity control strategy is applied to enhance the par-

ticles’ diversity and overcome the premature convergence. Subsequently, expanding the

chance of the swarm to leap out the local minima and discovering new encouraging so-

lutions further improve the algorithm performance. Accordingly, an improved QPSO
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algorithm, signified by Enhanced Quantum Particle Swarm Optimization – 2 Mutation

(EQPSO-2M), is proposed for the training of the RBFNNbased reaction wheel model. The

enhancement aims to improve the search abilities of QPSO and trying not to stick at local

optimal. Moreover, the proposed reaction wheel mathematical model that was proposed

in [27], has been implemented to create the dataset that is needed for the testing of the

RBFNN-based reaction wheel model. The effectiveness of the proposed EQPSO-2M algo-

rithm is investigated using convergence speed, mean best fitness value, stability, and the

number of successful runs. The obtained results indicate the superior performance of the

EQPSO-2M method. Once the optimal parameters of RBFNN are obtained, the perform-

ance of the proposed reaction wheel model has been tested using the simulation results.

Methods
Spacecraft dynamic model

Attitude Control Subsystem (ACS) is one of the vital systems in the spacecraft that provides

the in-orbit attitude control and determination functions. ACS is conceptually composed of

three main parts: attitude sensors, feedback control system, and actuators [28]. Figure 1 il-

lustrates the simplified block diagram of the ACS subsystem. Spacecraft can be represented

as a rigid body where the dynamics can be obtained using Euler’s dynamical formulas.

Euler’s equation is equivalent to Newton’s second law for rotation about the center of

mass. Thus, the body motion equations about its center of mass using reaction wheels

as actuators are described by Euler equations as in [28] as follows:

ω̇x ¼ 1
Ixx

τx þ τdx−ωzωy Izz−Iyy
� �� � ð1Þ

ω̇y ¼ 1
Iyy

τy þ τdy−ωxωz Ixx−Izzð Þ� � ð2Þ

ω̇z ¼ 1
Izz

τz þ τdz−ωyωx Iyy−Ixx
� �� � ð3Þ

where Ixx , Iyy and Izz represent the spacecraft moment of inertia. ωx, ωy, and ωz are

the spacecraft’s angular velocities in body-fixed axes toward inertial coordinate system

along x, y, and z axes, respectively. τdx, τdy, and τdz represent the disturbances torques,

which act on the spacecraft about roll, pitch, and yaw axis respectively. τx, τy, and τz
represent the torque due to the motion of the wheel on each axis. To get the space-

craft’s actual attitude, which are the Euler angles roll, pitch, and yaw, the Eqs. 1, 2, and

3 shall be integrated twice.

Fig. 1 Attitude control subsystem block diagram
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Reaction wheel mathematical model

Reaction wheels are the common actuators for three axes stabilized spacecraft ACS,

specifically for unmanned spacecraft. They are simply flywheels mounted to an electric

direct current (DC) motor that can rotate in the desired direction to establish one axis

control for each RW [29]. Furthermore, the reaction wheel is a nonlinear ACS compo-

nent, which consists of several internal loops. Thus, these loops should be considered

to ensure accurate mathematical modeling. Figure 2 illustrates the RW internal loops,

which are described in [27]. The block diagram in Fig. 2 can be described mathematic-

ally as in [30] by Eqs. 4 and 5 as follows :

İm
ẇm

� �
¼

Gdwd Ψ 1 Im;wmð Þ−Ψ 3 wmð Þ−wdIm½ �
1
Jω

ktIm−τcΨ 2 wmð Þ−τυwm½ �

2
4

3
5þ Gdwd

0

� �
Vcom ð4Þ

τ ¼ ktIm ð5Þ

In Eq. 4, Im represents the motor current, kt is the motor torque constant, wm is the

motor angular velocity, Gd is the driver gain, wd is the driver bandwidth, and Ψ1, Ψ2,

and Ψ3 represent the nonlinearities for back-EMF limiting torque, Coulomb friction,

and speed limiter circuit. This research proposes the use of the ITHACO type-A

Fig. 2 Reaction wheel mathematical model
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reaction wheel, which is produced by Goodrich Corporation. Table 1 shows the param-

eters of the ITHACO type-A reaction wheel.

Radial Basis Function Neural Network Architecture

The RBFNNs were firstly proposed in 1988 [31] based on the principle that the bio-

logical neuron has a local response. Moreover, RBFNN has a simple architecture, fast

training time, and efficient approximation capabilities rather than other neural net-

works [9]. A typical architecture of RBFNN includes three layers: input layer, hidden

layer, and output layer as depicted in Fig. 3. The input layer consists of input nodes

that are connecting the inputs to the neural network. The hidden neurons use radial

basis function such as Gaussian function φi(x) as the activation function as follows:

φi xð Þ ¼ exp −
x−cik k2
σ i

2

 !
ð6Þ

where x represents the network input, σi and ci are width and center of the ith neuron,

respectively, and ‖•‖ is the Euclidean distance between two different vectors. The output

layer has a linear activation function that produces the network output corresponding to

the network input [10]. Thus, the output of the network yj can be addressed as follows:

y j ¼
Xn
i¼1

wiφi xð Þ þ bi ð7Þ

In Eq. 7, bi and wi , are the bias and the weight of the ith neuron respectively. There-

fore, to define the proposed RBFNN-based reaction wheel model, it is mandatory to de-

termine some critical parameters. These parameters include the number of input

neurons, number of hidden neurons, output layer’s neurons, and the weights of all neu-

rons. In addition, other important parameters shall be tuned like the centers and the

widths of the hidden neurons. Generally, the number of the problem inputs will deter-

mine the number of input layer neurons [32]. Thus, the input layer of the proposed

RBFNN-based reaction wheel model comprises a single neuron that represents the

torque command voltage. Furthermore, the number of the output layer neurons is

Table 1 ITHACO type-A RW main parameters
Parameter Description Value

Gd Driver gain 0.19 A/V

Kt Motor torque constant 0.029 N.m/A

Ke Motor back-EMF 0.029 V/rad/s

Ks Over-speed circuit gain 95 V/ rad/s

ws Maximum wheel speed 690 rad/s

wd Driver bandwidth 2000 rad/s

Rin Input resistance 2Ω

Kf Voltage feedback gain 0.5 V/V

N Number of motor poles 36

Tc Torque command range − 5 to + 5 V

τc Coulomb fiction 0.002 N.m

J Flywheel inertia 0.0077 N.m.s2
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determined corresponding to the number of model outputs. Because the reaction wheel

has only one output, which is the generated torque, thus the output layer has a single

neuron. The number of hidden layer neurons has a paramount impact on the RBFNN

performance. Generally speaking, the more the neurons in the hidden layer, the better

the network accuracy [33]. However, the addition of hidden neurons after the right

number is reached will not improve the network accuracy, but increase the computa-

tional power and architectural complexity. Therefore, the optimal number of neurons

in the hidden layer needs to be justified experimentally and it is based on the network

designer experience [34] as will be introduced in the experimental results and discus-

sions section. Furthermore, the centers, widths, and weights between the hidden neu-

rons and the output layer shall be estimated. Thus, this research proposes an enhanced

version of QPSO, which is EQPSO-2M to estimate the optimal values of the centers,

widths, and weights.

Standard Particle Swarm Optimization

PSO was proposed by Eberhart and Kennedy [35]. In the PSO algorithm, each particle

is assumed as a point in an N-dimensional Euclidian space. Moreover, at each iteration,

there are three vectors, which are used to describe the behavior of the particle i that

are: the current position vector: Xi;n ¼ ðX1
i;n;X

2
i;n;…;X j

i;n;…;XN
i;nÞ; the velocity vector:

Vi;n ¼ ðV 1
i;n;V

2
i;n;…;V j

i;n;…;VN
i;nÞ , and the personal best position vector; Pi;n ¼ ðP1

i;n;

P2
i;n;…;P j

i;n;…; PN
i;nÞ ; where (1 ≤ j ≤N). Therefore, at the (n + 1) iteration, the particles’

velocity and position vectors are updated as the following [36]:

V j
i;nþ1 ¼ V j

i;n þ c1r
j
i;n P j

i;n−X
j
i;n

� �
þ c2R

j
i;n G j

i;n−X
j
i;n

� �
; ð8Þ

X j
i;nþ1 ¼ X j

i þ V j
i;nþ1 ð9Þ

where c1 and c2 are the acceleration coefficients, r ji;n, R
j
i;n are two different random num-

bers that are distributed uniformly over (0, 1); therefore, fr ji;n : j ¼ 1; 2;…;Ng∈Uð0; 1Þ; f

Fig. 3 Typical structure of the RBFNN
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Rj
i;n : j ¼ 1; 2;…;Ng∈Uð0; 1Þ.Gj

i;n , is the global best position vector. It is noticed that when

c1 is greater than c2, the swarm has a higher local search ability. On the other hand, the

swarm explores the search space more globally when c2 is greater than c1 [37]. To improve

the performance of the standard PSO and minimize the probability of trapping in local opti-

mal, many PSO variants have been proposed. For instance, Ziyu and Dingxue [21] intro-

duced the Time-varying Adaptive PSO (TAPSO) version without using the velocity of the

previous iteration. Thus, the particle’s velocity update can be formulated as follows:

V j
i;nþ1 ¼ c1r

j
i;n P j

i;n−X
j
i;n

� �
þ c2R

j
i;n G j

i;n−X
j
i;n

� �
; ð10Þ

In TAPSO, the reinitialization criterion is based on assuming random velocity to

avoid premature searching for the velocity of a particle at zero. Moreover, the authors

introduced an exponential time-varying acceleration coefficient to enhance the explor-

ation and exploitation capabilities. Therefore, the acceleration coefficients are updated

according to the following equations:

c1 ¼ cmin þ cmax−cminð Þ:e− 4k
Gð Þ2 ð11Þ

c2 ¼ cmin− cmax−cminð Þ:e− 4k
Gð Þ2 ð12Þ

where k represents the current iteration number, and G represents the maximum

number of iterations. PSO is simple to implement, has a fast convergence, and its con-

vergence can be controlled using a few coefficients. For this reason, it has been used

for solving a wide range of optimization problems. However, standard PSO can’t con-

verge to the global optimal when it is used with complex optimization problems [38].

Quantum Behaved Particle Swarm Optimization (QPSO)

QPSO algorithm was introduced by Sun in 2004 based on quantum mechanics and com-

puting [39]. In QPSO, the particle’s state is represented by a wave function. Therefore, the

probability of the particles that appear in position x! can be estimated from the probabil-

ity density function of its position [40]. Regarding PSO convergence analysis, PSO con-

verges when each particle converges to the local attractor pj
i;n that can be represented by:

pj
i;n ¼ φ:P j

i;n− 1−φð Þ:Gj
n;φ � U 0; 1ð Þ ð13Þ

where pj
i;n represents the jth dimension of the particle local attractor, P j

i;n is the particle

best position, and Gj
n is the global best position. It is assumed that the particle i moves in

N-Dimensional space with a δ potential well at pj
i;n to guarantee the algorithm convergence

at n iterations. Using the Monte Carlo method, the position for the jth dimension of the ith

particle at n + 1 iteration is formulated according to Eq. 14 as follows [40]:

X j
i;nþ1 ¼

pj
i;n þ α X j

i;n−C
j
n

��� ���� ln 1
.
uj
i;nþ1

 !
; if m≥0:5

pj
i;n−α X j

i;n−C
j
n

��� ���� ln 1
.
uj
i;nþ1

 !
; if m < 0:5

8>>>><
>>>>:

ð14Þ
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where u and m are two random numbers that are uniformly distributed in [0,1] and

C j
n ¼ ðC1

n;C
2
n;…;CN

n Þ is the average of the best positions for all particles. Thus, it can

be calculated by:

C j
nþ1 ¼

1
M

	 
XM

i¼1
P j
i;n 1≤ j≤Nð Þ ð15Þ

In Eq. 14, α represents the contraction-expansion (CE) coefficient that enhances the

performance of QPSO when it is properly selected [39]. Many proposed methods were

introduced to control the contraction-expansion coefficient such as in [41, 42].

The proposed Enhanced Quantum Behaved Particle Swarm Optimization Algorithm

Although the QPSO algorithm has revealed a good performance to find the optimal so-

lution for many optimization problems [40]. However, it still introduces a deteriorative

performance in searching for the global optimal solution in complex optimization prob-

lems. This performance degradation in QPSO occurs due to the premature conver-

gence. To resolve this problem for QPSO and other PSO variants, this research

proposes an EQPSO-2M algorithm that has two significant improvements. First, the di-

versity of particles is enhanced to guarantee a healthy diversity of the particles during

the search process. Therefore, to avoid the premature convergence of the algorithm.

The particle diversity is calculated using the following formula:

D ¼ 1
M: Aj j

Xm
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

j¼1
X j

i;n−C
j
n

� �2r
ð16Þ

where M represents the swarm size, N represents the dimensions of the problem,

A denotes the length of the longest diagonal in the search space, X j
i;n is the jth

component of the ith particle’s position for the nth iteration, and C
j
n represents

the particles’ mean best position [42]. Meanwhile, the particles’ diversity is moni-

tored during the search process; when it is decreased below the threshold

value dlow; the particles’ mean best position will be reinitialized with values that

maximize the diversity again as follows:

C j
nþ1 ¼

X j
i;nþ1 þ Xmax; if X j

i;nþ1 > 0

X j
i;nþ1 þ Xmin; if X j

i;nþ1≤0

(
ð17Þ

where Xmax and Xmin represent the maximum and minimum boundaries of the search

interval respectively. The main idea behind the reassignment of the mean best position

vector using Eq 17 is to increase the distance between the particle’s position and the

mean best position as we can. Thus, the population diversity will increase monotonic-

ally and this would make the particle escapes the local optima. The other improvement

of the EQPSO-2M is to overcome the premature convergence by adding two consecu-

tive single dimension Gaussian mutations on the particle’s personal best position as

follows:

P j
i;n ¼ P j

i;nr1 þ 0:01P j
i;nr2; r1; r2∼U 0; 1ð Þ ð18Þ
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where r1 and r2 represent two different arrays of uniform distribution random numbers.

The two consecutive mutations will help the particles to explore extensively different re-

gions of the search space to find the best positions. Thus, this is to enhance the convergence

speed of the QPSO and to avoid premature convergence. Applying the diversity control and

the two successive single dimension Gaussian mutations will avoid the premature conver-

gence that may occur in the conventional QPSO. Moreover, these two processes can en-

hance the convergence speed of QPSO and prevent the algorithm from trapping in local

minima. The pseudocode for the proposed EQPSO-2M is shown in Algorithm 1 as below:
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In the above algorithm, QPSO is firstly initialized with the swarm size M and dimen-

sions N. Therefore, the number of particles is set to 20. The swarm size selection will

be discussed in the next section. The particles’ positions and the personal best positions

are randomly initialized. Furthermore, the initial global best and the mean best posi-

tions should be estimated. Thus, the value of α shall be set to 0.75 according to [39].

Moreover, the iterative process for updating the particle’s current position X j
i;nþ1 should

be started according to Eq. 14. Therefore, the fitness value is evaluated according to Eq.

19. When the fitness of the current particle’s position is better than the previous one,

the particle’s best position Pi, n should be updated. Hence, two consecutive mutations

are applied on the particle’s personal best position according to equation 18. After each

mutation, the fitness of a new personal best position should be estimated to update the

personal best position and the global best position of the particles Pi, n and Gn, respect-

ively. Further, the particle’s mean best position C j
nþ1 should be calculated using Eq. 15.

Thus, the diversity of the particle should be evaluated using Eq. 16, and then compared

with the threshold value dlow. Meanwhile, when the current diversity is below the

threshold; the mean best position should be estimated according to Eq. 17. The search-

ing process will be continued until the maximum iterations are met.

Results and discussion
In order to evaluate the performance of the proposed modeling scheme, simulation ex-

periments should be done to benchmark the proposed RW model. Furthermore, a 3-

axis ACS nonlinear model was implemented using MATLAB/SIMULINK. It includes

the spacecraft dynamic model, the RW mathematical model, and the Proportional Inte-

gral Derivative (PID) controller. Therefore, the input to the ACS model is the desired

attitude and the output is the actual attitude.

The RW input will be the torque command voltage, and the output is the generated

torque a large number of experiments, the training dataset is suggested for the whole

simulation to run with perspective angles within the range of [−5°, 5°]. Moreover, the

simulation time in every iteration is three hundred seconds. Figures 4 and 5 show RW

input torque command signal and output torque, respectively.

RBFNN hidden layer size analysis

The determination of the suitable number of hidden neurons significantly affects the

RBFNN performance. In this research, the number of hidden neurons is chosen on the

basis that to get the best performance from RBFNN and keep the design of RBFNN as

simple as could be expected. To choose the number of the hidden neurons, we began

according to [43] with one hidden neuron and increment the number of neurons pro-

gressively by one neuron. Table 2 shows the results of this study.

It can be observed from Table 2 that the performance of the RNFNN model is im-

proved when the number of hidden layer neurons increased. The RBFNN with only

one hidden layer neuron has MSE ≈ 1.87E-05. As seen from Table 2, we can notice that

RBFNN with two hidden neurons decreases the mean square error (MSE) to be 6.54E

−07. However, increasing the number of hidden neurons to more than two neurons has

no significant improvement in the model performance. Therefore, it is recommended
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for the number of RBFNN hidden layer neurons for the spacecraft reaction wheel

model to be two neurons.

Fitness function

The problem of the RBFNN model training has been defined as a nonlinearly con-

strained optimization problem, which is settled utilizing the proposed EQPSO-2M. This

optimization problem aims to find the optimal values of the RBFNN parameters that

minimize the error between the RBFNN model output and the target output. Accord-

ingly, to utilize the proposed EQPSO-2M algorithm for the training of the RBFNN-

based reaction wheel model, a fitness function ought to be carried out. In this research,

the well-known MSE has been chosen as the objective function. This function takes the

difference between the RBFNN output and the actual reaction wheel output to com-

pute the mean of the square errors as follows:

MSE ¼ 1
N

XN
i¼1

ti− w1 exp −
xi−c1k k2
σ12

 !
þ w2 exp −

xi−c2k k2
σ22

 !
þ b

 !�����
�����
2

ð19Þ

In Eq. 19, N is the number of the training patterns, ti is the target reaction wheel out-

put torque, w1 is the weight among the first hidden neuron and the output neuron, w2

represents weight among the second hidden neuron and the output neuron c1 and c2
are the centers of the first and the second hidden neuron RBF respectively, σ1 and σ2
are the widths of first and second hidden neurons, respectively, and b is the bias. These

parameters can be obtained when the fitness function in Eq. 19 is minimized.

Swarm size selection assessment

Picking the fitting population size of the QPSO algorithm is a principal factor that in-

fluences its performance. As a rule, the optimal swarm size relies upon the complexity

of the optimization problem to be addressed. However, increasing the population size

might increase the algorithm’s performance, but it will increase the computational time.

Then again, decreasing the number of particles to a specific limit might cause the

Fig. 4 Reaction wheel torque command
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optimization process to fail. Danial J et al. [44] suggested that the population size is

regularly changed from 20 to 50 particles. In addition, to choose the proper population

size, five experiments have been done. Each experiment was executed 20 times with a

most extreme number of cycles up to 3000. Further, the five experiments were analyzed

in terms of standard deviation (STD) of the fitness values, mean of best fitness values,

and success rate (SR)

The SR is computed as follows:

SR ¼ NSR
TNR

�100% ð20Þ

where NSR addresses the number of successful runs and TNR is the total number of

runs, which are 20 runs in runs in all the experiments. Besides, it is considered for the

single run to be effective at the end of 3000 iterations in a manner that MSE ≈6.5E−7.

The results acquired from these trials are given in Table 3 and Fig. 6. As per the results

in Table 3, it can be observed that the QPSO algorithm with 20 particles has a 50%

success rate. The STD of the best fitness value for the four cases is around something

similar. It can be observed from Fig. 6 that the four cases have approximately the same

average fitness values. Although, QPSO with 50 particles has a slightly fast convergence

speed, but expanding the population size will increment the computational time and

the calculation intricacy. Consequently, we chose the population size to be 20 particles.

Fig. 5 Reaction wheel output torque

Table 2 QPSO-trained RBFNN performance at different hidden layer neurons

Hidden layer neurons Performance, mean square error (MSE)

1 1.87E−05

2 6.54E−07

3 6.44E−07

4 6.32E−07

5 6.44E−07
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Experiments and analysis

Evaluation criteria

In this subsection, the benchmark results of various algorithms including EQPSO-2M

were compared in terms of convergence speed, mean best fitness, STD, SR, Minimum

best fitness, and Maximum best fitness. Moreover, every one of the outcomes is tested

with a nonparametric statistical investigation utilizing Wilcoxon rank-sum test. To in-

vestigate the efficiency of the proposed approach for optimizing the RBFNN parame-

ters, it is compared with other optimization algorithms. These algorithms incorporate

the TAPSO [21], Modified PSO (MPSO) [20], Autonomous Groups PSO (AGPSO)

[22], enhanced leader PSO (ELPSO) ELPSO [23], modified PSO with inertia weight co-

efficient (PSO-In) [45], and the traditional QPSO algorithm [39]. Moreover, the pro-

posed scheme is compared with an enhanced QPSO algorithm (EQPSO-1M) that was

developed during this research dependent on diversity control and just a one mutation

strategy. To ensure the fairness of the comparison, every one of the outcomes is gotten

dependent on the results of 30 free experiments through 2000 cycles. Meanwhile, all

tests are done utilizing a similar PC and with similar conditions. MATLAB 2019B soft-

ware is utilized for creating and testing during every one of the investigations.

Parameter settings

The problem dimension is set to seven variables that represent the proposed RBFNN

architecture. All the control parameters of the algorithms are chosen by the suggestions

from the original literature. Concerning the TAPSO algorithm [21], the acceleration co-

efficients c1 and c2 are refreshed by Eqs. 11 and 12. The values of cmax and cmin are set

to 2.5 and 0.5, respectively. In the MPSO algorithm [20], c1 and c2 are updated during

the search process utilizing Eqs. 14 and 15. c1max is set to 2.25, and c1max = 1.25, c2max

is set to 2.55, and c2min is set to 0.5. The inertia weight coefficient w is diminished

linearly from 1 to 0.4. As to the AGPSO algorithm [22], the particles are divided into

groups, where c1 and c2 for each group are refreshed by Table 4: In Table 4, T repre-

sents the greatest number of iterations, and t shows the current iteration.

Besides, the inertia weight parameter w is diminished step by step from 0.9 to 0.4. In

the ELPSO calculation c1= c2 = 2, w is decreased linearly from 0.9 to 0.4. the STD of

the gaussian mutation is set to 1, and the scale parameter of Cauchy mutation is 2. In

PSO with inertia weight coefficient, the inertia weight coefficient is set to 0.5, c1= c2=

1.5. Therefore, the values of the coefficients are updated according to the following

equation [45]:

Table 3 Effect of swarm size change on QPSO-RBFNN performance

Swarm size Iterations Mean best fitness value STD Success rate, %

20 3000 4.1130E−06 4.8996E−06 50%

30 3000 3.6148E−06 4.1460E−06 30%

40 3000 3.4110E−06 4.5874E−06 25 %

50 3000 3.0094E−06 4.6556E−06 30%
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c1 þ c2 <
24 1−ω2ð Þ
7−5ω

ð21Þ

For the QPSO algorithm, the upper and lower limits of the search interval are [-5, 5],

and the threshold of the diversity is set to 1E-05 as experimentally seen from the

simulation.

Discussion

The statistical results acquired by the proposed EQPSO-2M and different algorithms

are introduced in Table 5. As can be acquired from the results in Table 5, the proposed

EQPSO-2M outperforms all other peers in terms of Max best fitness value, mean best

fitness value, STD, and SR. In the meantime, the SR of 96.7% at the proposed algorithm

shows that the algorithm converges to the global minima at 29 of the 30 experiments.

Besides, the STD results demonstrate the higher stability of the proposed algorithm in

optimizing the RBFNN parameters. It very well may be seen from Table 5 that the pro-

posed algorithm outperforms any remaining peers by 1.6E-07 of STD. The second-best

outcomes in terms of STD, SR, mean best fitness, and the Max best fitness are acquired

by the EQPSO-1M algorithm. It is obvious that applying the diversity control and a sin-

gle mutation has further improved the SR of the EQPSO-1M by 43% compared with

conventional QPSO. However, using the diversity control and two progressive muta-

tions have enhanced the SR of the EQPSO-2M by 53%. The third best outcomes in

terms of SR and mean best fitness are accomplished by PSO-In, TAPSO, and QPSO al-

gorithms, respectively. Therefore, in light of STD, EQPSO-2M is positioned one

followed by EQPSO-1M, AGPSO, MPSO, ELSPO, TAPSO, PSO-In, and QPSO, re-

spectively. In terms of the mean best fitness, the best four outcomes are accomplished

by EQPSO-2M, EQPSO-1M, PSO-In, and TAPSO, individually. The ELPSO and MPSO

algorithms have a similar SR of ≈13 %. The improvement in the results of the PSO-In

is because of the legitimate determination of the PSO control parameters ω, c1, and c2.

Besides, the TAPSO algorithm profits by the dramatic time-fluctuating acceleration co-

efficients that enhanced the exploration in the beginning stage and the exploitation in

the later period of the search cycle. The fundamental justification of the bad outcomes

got by the ELPSO algorithm is the utilization of constant values for c1 = c2. Hence, the

algorithm fails to make a balance between global and local searching stages, and it is

Fig. 6 Convergence speed of QPSO algorithm at different population size
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caught in local minima at 26 experiments. Moreover, the observed outcomes reveal that

the AGPSO and MPSO algorithms failed to accomplish a decent harmony among ex-

ploration and exploitation. In this way, the algorithms get trapped in most of the exper-

iments and have the most exceedingly awful mean best fitness.

The convergence speed is a significant factor that can be utilized to assess

optimization problems. Therefore, to additionally assess the performance of the pro-

posed EQPSO-2M strategy, its convergence speed is compared with different algo-

rithms. Figure 7 shows the average convergence curves that are plotted in a logarithmic

scale for the proposed EQPSO-2M and different algorithms. As can be seen from Fig.

7, that the average fitness of the EQPSO-2M algorithm is the minimum. In addition,

the EQPSO-2M algorithm shows the best convergence speed compared with different

peers. It converges to an average fitness value of ≈ 6.5E-07 at around 300 iterations. Be-

sides, EQPSO-1M has the convergence speed after the proposed algorithm. Thanks for

applying the diversity control and the single mutation. Based on the convergence speed,

the second-best result is obtained by the PSO-In algorithm. This improvement in the

results of the PSO-In ensures strong relation between the PSO convergence behavior

and the control parameters selection. The acquired results demonstrate that the other

algorithms (ELSPO, AGPSO, QPSO, MPSO, and TAPSO) show less performance and

they have a slow convergence to the optimal minimum value. These algorithms have a

delay in converging to the minimum best values due to stagnation conditions. The

main reason for the high convergence rate of the proposed EQPSO-2M is that the

utilization of the two successive mutations mechanism helps the swarm in each iter-

ation to explore the search space extensively near the personal best position to find

more best positions. In addition, the utilization of diversity control improves the diver-

sity of the particles. Consequently, it reveals a better performance and more efficacy in

jumping out from local minima in case of stagnation, and hence obtaining more high-

Table 4 AGPSO coefficients updating strategies

Group c1 c2

Group 1
1:95−2t

1

3=T

1

3 2t

1

3=T

1

3 þ 0:05

Group 2 (−2t3/T3) + 2.5 (2t3/T3) + 0.5

Group 3
1:95−2t

1


3=T

1


3

(2t3/T3) + 0.5

Group 4 (−2t3/T3) + 2.5
2t
1


3=T
1


3 þ 0:05

Table 5 Comparison results between EQPSO-2M and other algorithms

Algorithm Minimum best
fitness

Maximum best
fitness

Mean best
fitness

STD Success rate,
%

TAPSO 6.7E−07 0.3229 4.4E−06 6.1E−06 63.3

PSO-In 6.5E−07 0.4624 3.9E−06 6.4E−06 73.3

MPSO 6.6E−07 0.6003 1.0E−05 4.8E−06 13.3

AGPSO 6.7E−07 0.4677 8.4E−06 3.9E−06 20

ELPSO 7.0E−07 0.1998 1.1E−05 5.8E−06 13.1

QPSO 6.6E−07 0.3977 6.2E−06 6.5E−06 43.3

EQPSO-1M 6.5E−07 0.0393 3.2E−06 1.8E−06 86.7

EQPSO-
2M

6.5E−07 0.0088 6.9E−07 1.6E
−07

96.7
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quality positions. Consequently, the proposed EQPSO-2M achieves a better perform-

ance in terms of exploration and exploitation.

From Table 5 and Fig. 7, the proposed EQPSO-2M algorithm has the best results

compared to all other algorithms in terms of convergence accuracy and speed. The

EQPSO-2M benefits from the diversity control and mutation strategies that allow the

QPSO algorithm to generate a better global search ability and converge faster than the

other algorithms. Moreover, the proposed algorithm achieves a good balance between

exploration and exploitation. Thus, it has an efficient performance that allows escaping

from the local minimum for finding the optimal parameters of the RBFNN-based reac-

tion wheel model.

Wilcoxon rank-sum test analysis

Wilcoxon rank-sum test is a non-parametric test strategy of the t-test for two inde-

pendent samples. It is utilized primarily to test that there are differences between two

groups of samples. Moreover, it is utilized to test the invalid speculation that two sam-

ples are procured from a continuous distribution with equivalent means [46]. Addition-

ally, utilizing the mean and STD values for assessing the performance of the proposed

algorithm compared with different algorithms might be questionable. To determine this

issue, the Wilcoxon rank-sum test as a nonparametric test method is utilized as evi-

dence that the results of the EQPSO-2M mechanism are not the same as those of dif-

ferent mechanisms. The significance level α is set to 0.05. In the interim, if the p-value

is greater than 0.05, this implies that there is no huge distinction between the results of

the two algorithms [47]. Something else, if the p value is lower than the significance

level α, it implies that there is a huge contrast between the results of the compared al-

gorithms. Table 6 shows the p values got by Wilcoxon rank total test at 0.05

Fig. 7 Average fitness curves for different algorithms
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significance level of EQPSO-2M outcomes against the consequences of QPSO-1M,

QPSO, ELSPO, AGPSO, MPSO, TAPSO, and PSO-In.

As displayed in Table 6, the p values that are lower than 0.05 show the predominance

of the proposed algorithm. Notwithstanding, there is no huge contrast between the pro-

posed algorithm and the PSO-In with coefficients controlled by [45]. However, the pro-

posed EQPSO-2M algorithm reveals better performance in terms of convergence

speed, SR, stability, and the mean best fitness.

Modeling scheme performance evaluation

Based on the results of the proposed EQPSO-2M algorithm, three RBFNN-based Reac-

tion Wheel models have been created for the spacecraft roll, pitch, and yaw axes. In the

meantime, the global best positions of EQPSO-2M represent the optimal values of the

RBFNN coefficients. To evaluate the performance of the proposed models, they were

tested for various tilting angles. Figure 8 shows the outputs of the developed RBFNN-

based RW models compared with the actual reaction wheel outputs for 10° roll, pitch,

and yaw tilting angles. Furthermore, from Fig. 8, it very well may be seen that there is a

good agreement between the models' outputs and the actual RW outputs. Moreover,

the MSE error is about 3.9E−07 for roll, 3.5E−07 for pitch, and 5.9E−07 for yaw angles.

Moreover, Fig. 8 reveals the superior matching between the models' outputs and the ac-

tual RW outputs at various working conditions.

Modeling scheme generalization evaluation

To explore the generalization of the proposed modeling scheme, the performance of

the developed models was tested for tilting angles in the scope of [− 90°, 90°] for roll,

pitch, and yaw. Figure 9 shows how the mean square errors between the models' out-

puts and the actual outputs change with the tilting angles. The results show that the

three models can foresee the RW output torque with high precision. The MSE during

the interval of [− 20°,20°] is about 6E−7 for roll, pitch, and yaw. It increases to arrive at

4E−6 at the interval limits. These tiny MSE values show the predominant presentation

of the proposed RW models. Furthermore, Fig. 9 shows the generalization ability of the

proposed modeling scheme that has demonstrated the ability of the models to work in

a wide working scope of tilting angles with a high pointing accuracy.

Table 6 p-values of Wilcoxon rank sum test comparison between the results of EQPSO-2M and
other algorithms

EGPSO-2M Vs. p value

EGPSO-1M 0.0138

QPSO 6.11E−10

ELSPO 4.50E−11

AGPSO 7.39E−11

MPSO 8.99E−11

TAPSO 6.71E−10

PSO-In 0.0574
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Conclusions
This research proposes another modeling scheme for the spacecraft reaction wheel util-

izing RBFNN with an enhanced version of QPSO. In light of the principles of the diver-

sity control and mutation strategy, EQPSO-2M is proposed to ameliorate the RBFNN

parameters. In this way, the estimation of the RBFNN parameters is demonstrated as

an optimization problem that was settled in terms of the EQPSO-2M algorithm. Add-

itionally, the performance of the proposed algorithm was compared with other strat-

egies like ELPSO, AGPSO, PSO-In, MPSO, TAPSO, and the conventional QPSO

algorithm. Statistical benchmark rules dependent on the SR, convergence speed, and

Fig. 8 Output of reaction wheel model compared to the actual output at 10° (a) Roll output, (b) Pitch
output, (c) Yaw output

Fig. 9 Performance of the developed RW models measured at tilting angle from − 90° to 90° roll, pitch,
and yaw
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stability have shown the superiority and effectiveness of the proposed EQPSO-2M.

Thanks to the EQPSO-2M algorithm for efficient performance and to accurately find

the best particles’ positions. Consequently, further improving the global search ability,

helps the particles from stagnation in nearby optima and overcomes the premature

convergence of the conventional QPSO.

In addition, the simulation results revealed that the proposed EQPSO-2M has a su-

perior performance in terms of stability, mean best fitness value, SR, and convergence

speed. Moreover, three RBFNN-based reaction wheel models that are roll, pitch, and

yaw were developed and then validated with MATLAB mathematical model. Extensive

simulation has been done to evaluate the models’ performance. Therefore, the very

small value of MSE, which is close to 6.5E−7 indicates a distinct performance and sta-

bility of the proposed modeling scheme.

To further investigate the generalization of the proposed reaction wheels’ models,

they were tested for roll, pitch, and yaw angles in the range of [− 90°, 90°]. The super-

iority of the proposed approach additionally emanates from the MSE value, which is

approximately proximate to 4E−6. Thus, the efficiency of testing results proves the cap-

ability of the proposed RBFNN modeling scheme. In fact, the EQPSO-2M algorithm is

an efficient mechanism for optimizing the RBFNN parameters. Furthermore, the pro-

posed modeling scheme is considered to be superior for modeling dynamic systems like

spacecraft reaction wheels. It is recommended for the future work to utilize the devel-

oped model for the detection and identification of reaction wheel faults.
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