
Journal of Engineering
and Applied Science

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47
https://doi.org/10.1186/s44147-021-00045-5

REVIEWS Open Access

A survey on GAN acceleration using
memory compression techniques
Dina Tantawy1,2* , Mohamed Zahran2 and Amr Wassal1

*Correspondence:
dina.tantawy@eng.cu.edu.eg
1Computer Engineering
Department, Faculty of Engineering,
Cairo University, Cairo, Egypt
2Courant institution of
Mathematical Sciences, NewYork
Univeristy, NewYork, USA

Abstract

Since its invention, generative adversarial networks (GANs) have shown outstanding
results in many applications. GANs are powerful, yet resource-hungry deep learning
models. The main difference between GANs and ordinary deep learning models is the
nature of their output and training instability. For example, GANs output can be a
whole image versus other models detecting objects or classifying images. Thus, the
architecture and numeric precision of the network affect the quality and speed of the
solution. Hence, accelerating GANs is pivotal. Data transfer is considered the main
source of energy consumption, that is why memory compression is a very efficient
technique to accelerate and optimize GANs. Two main types of memory compression
exist: lossless and lossy ones. Lossless compression techniques are general among all
models; thus, we will focus in this paper on lossy techniques. Lossy compression
techniques are further classified into (a) pruning, (b) knowledge distillation, (c) low-rank
factorization, (d) lowering numeric precision, and (e) encoding. In this paper, we survey
lossy compression techniques for CNN-based GANs. Our findings showed the
superiority of knowledge distillation over pruning alone and the gaps in the research
field that needs to be explored like encoding and different combination of
compression techniques.

Keywords: Survey, Generative adversarial networks, Compression, Optimization,
Acceleration, Knowledge distillation, Pruning, Quantization

Introduction
Nowadays, deep learning (DL) applications are getting unprecedented popularity. Many
deep learning applications are used daily such as face recognition, voice recognition,
weather predictions, and image super-resolution. Companies and researchers alike com-
pete to present more applications each day and enhance existing ones. They also compete
to make them affordable and usable by everyone.
Deep generative models have been on a rise as well. GAN or generative adversarial

network is one of the most famous generative models [1]. It consists of at least two net-
works competing against each other. It has been used in many applications like speech
synthesis [2], text-to-image translation [3, 4], image-to-image translation [5], image super
resolution [6], music generation [7], and videos synthesis [8].

© Tantawy et al. 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-021-00045-5&domain=pdf
http://orcid.org/0000-0003-0735-3493
mailto: dina.tantawy@eng.cu.edu.eg
http://creativecommons.org/licenses/by/4.0/

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 2 of 23

Having one network in deep learning is very computationally intensive, thus having two
networks or more is even worse. Additionally, GAN training is susceptible to divergence
or mode collapses. GAN training instability adds an extra layer of complexity. Moreover,
there is an increasing need for running generators of GANs on embedded devices which
have limited resources and power. Thus, current techniques and accelerators need to be
revisited and adapted to serve the challenges of GANs.
Accelerating GAN goals are power efficiency, speed, and solution quality. In real world,

it is hard to improve everything, a price must be paid according to the no free-lunch
theorem. Depending on the application, the importance of one goal over the other will
vary and thus the optimization technique as well. Acceleration (optimization) techniques
target three main categories:

• Memory compression: this category uses compression techniques to minimize
memory requirement while preserving solution quality which in turn saves energy
usage.

• Computation optimization: this category uses mathematical transformation and
circuit optimization to decrease the number of mathematical operations or cycles
needed alongside optimizing their needed power and increase their speed.

• Dataflow optimization: this category uses mapping, scheduling, and reordering data
and/or operations to maximize data reuse and minimize ineffectual operations1.
Those optimizations will save energy and enhance throughput.

One bottleneck of running GANs is the huge cost endured by data transfer to/from
accelerating-chip memory followed by the computation cost and eventually the overhead
of data transfer between different units. Thus, main goal of our presented review is to
investigate the memory compression techniques because of its huge cost.
We divided memory compression techniques to lossy techniques and lossless ones.

Lossless techniques are generic one, that’s why we will focus on lossy techniques. In our
taxonomy, we divided the lossy techniques to five categories: (a) pruning, (b) knowledge
distillation, (c) low-rank factorization, (d) lowering numeric precision, and (e) encoding.
Those five techniques are explained thoroughly in this survey, focusing only on methods
applied to GANs.
Several survey papers exist about deep learning compression like [9–12]. However,

those papers discuss general deep learning algorithm not targeting issues specific to
GANs. While some techniques mentioned in the previous surveys might apply to GANs,
GANs propose more challenges and opportunities. First, generative networks are sensi-
tive to number representation. In other words, not all quantization techniques used for
general DL models would be efficient for use with GANs. Second, GAN training suffers
from instability, which makes normal compression and pruning techniques inefficient.
Finally, GAN output resolution is large and correlated as opposed to normal classification
or regression problems whose output are very small.
Another related work is the work done by Gou et al. [13]. Although this work “uses”

GAN to perform distillation, it does not consider GAN themselves for compression.
While the work by Wang and Yoon [14] mentioned briefly the impact of distillation on
image translation tasks using GANs, its focus was using GAN to perform distillation to
other models.
1Multiply by zero is considered an ineffectual operation as we already know the result without multiplying

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 3 of 23

Our work will focus on CNN-based GANs although it applies to other types of GANs as
well. Computational optimization and dataflow optimization are defferred to future work.
Our work is complementary to other survey papers mentioned above as it highlights
special issues facing GANs specifically which are not well covered in other surveys.
This paper has the following contributions:

• To our best knowledge, this is the first paper to survey GAN compression.
• Providing a taxonomy for GAN optimization.
• Summarizing recent research work in accelerating GANs.
• Providing open research questions for accelerating GANs.

The remainder of this paper is organized as follows: the “Memory compression tech-
niques for GANs” section presents a brief background on how GANs work followed by
reviewing different efforts to optimize GANs using compression techniques and even-
tually, it provides open research questions that need to be further studied. Finally, the
“Conclusion” section concludes the work.

Memory compression techniques for GANs
In this section will start by background explanation for GANs and its performance
metrics in the “Background” section, followed by reviewing latest work on lossy com-
pression techniques in the “Memory compression techniques”. It will explain each
technique and show the latest work using them on GAN generators. In the last section
“Results and discussion”, we will provide summary of findings and open research ques-
tions that need to be further studied.

Background

Generative Adversarial Network (GAN) is a type of generative model that uses Deep
Learning (DL) techniques to generate data. As mentioned earlier, GAN is more of a way
of training different smaller models to compete against each other than being a newly
devised model.
CNN-based GANs can have many different architectures like DCGAN [15] and Pix2Pix

[16]. Although different CNN-based GAN models have different architectures, most of
the models share the same underlying concept of having competitive networks and using
transpose convolution or upsampling layers. In this section, we will use DCGAN to
explain the idea of GANs in general due to its simplicity and wide use.
Structure: GAN model consists of at least two networks2: generator and discriminator

in an organization like Fig. 1. In training, the generator takes an input noise (z) and gen-
erates data G(z) that looks more like a real data not a synthesized (fake) one, while the
discriminator tries to be better at discriminating the generated (fake) data from the real
ones x. Thus, the goal of the discriminator is opposite to that of the generator. That’s why
it is called “adversarial” as they are competing against each other. The training ends when
(i) the discriminator cannot enhance its accuracy anymore and (ii) the evaluation metrics
are satisfactory. Sometimes the training does not converge, and measures and limits are
used to halt the training process and restart it.

2Some applications like style-transfer requires more than one GAN and more than two networks.

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 4 of 23

Fig. 1 Example of GAN general organization

The optimization problem can be represented as the following equation

Lgan = minGmaxDV (D,G)

= Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1 − D(G(z))] (1)

where G represents the generator, D represents the discriminator, pdata(x) represents the
original data distribution, and pz(z) represents the noise input distribution. The first
part of the equation Ex∼pdata(x)[logD(x)] represents the probability that the discrimina-
tor classifies real data as real. The second part of the equation Ez∼pz(z)[log(1 − D(G(z))]
represents the ability of the discriminator to classify fake data as fake. The discriminator
tries to maximize those two parts of the equation, that’s why we need maxDV (D,G). On
the other hand, the generator tries to fool the discriminator to detect fake images as real,
thus it tries to minimize the second part of the equation, hence adding the minGV (D,G).
Combining the two network optimizations, we get the above equation.
A discriminator network is an ordinary CNN, or LSTM, or any other deep-learning

classification/regression model. In contrast to the discriminator that outputs only a deci-
sion or a prediction, a generator network generates the data itself (e.g., an image, music
notes, and animated character). Thus, the output of the generator network is larger than
its input. Figure 2 shows the generator network in DCGAN. Like most generator net-
works, the input is a noise vector or initial image that gets expanded and reshaped to a
bigger size. This expansion and reshaping are performed to train the convolution to act
as a transposed convolution.

Fig. 2 Generator Model in DCGAN [15]

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 5 of 23

Table 1 Functional metrics (scores) summary

Name Enhancement direction

Inception score (IS) Higher is better

Fréchet inception distance (FID) Lower is better

Peak signal-to-noise ratioa (PSNR) Higher is better

Mean pixel accuracya (mPA) Higher is better

Intersection over uniona (IoU) Higher is better
a
Maximum value is 1 and requires ground truth

Evaluation metrics: GANs have many evaluation metrics. we can split metrics into two
types: (1) functional metrics and (2) performance metrics. Functional metrics measure
how good the result of a GAN towards the target functionality. We can also name them
as “quality” metrics or scores. Most commonly used function metrics are inception score
(IS), Fréchet inception distance (FID), peak signal-to-noise ratio (PSNR), mean pixel accu-
racy (mPA), and intersection over union (IoU) . Both IS and FID measure the quality
of the generated outputs and their diversity. More information about how they are cal-
culated can be found in the following work [17, 18]. The higher the IS, the better the
diversity in the generated data. On the other hand, the lower the FID, the better image
quality is produced. PSNR is also used especially in blending images or creating a super-
resolution image (the higher the better). mPAmeasures themean difference in percentage
between the generated image and the ground truth. IoU measures how close the gener-
ated image to the “real image” (the higher the better, maximum =1). Functional metrics
are summarized in Table 1.
Performance metrics measures the efficiency of the model optimization. The effi-

ciency of a model refers to its speed, power, and used area. These metrics depends
on both software model and hardware architecture and used technology. Focusing on
compression techniques, our main metrics is the compression ratio, number of MACS
(multiply-accumulate operations) and throughput as listed in Table 2.

Memory compression techniques

What is memory compression? Any DL Model needs three items to reside in the mem-
ory: (1) model architecture (control flow or computational graph), (2) model parameters
(weights and biases), and (3) inputs (activations). Compressing memory means minimiz-
ing any/all the above three components.
What are the advantages of using memory compression techniques? It improves storage

space required to store model leading to cross-layer optimization by allowing several lay-
ers to fit into the chip memory at once or even storing the whole model on embedded
system. It also decreases off-chip data-transfer leading to higher throughput and lower
power usage.

Table 2 Performance metrics summary

Name Enhancement direction

Compression ratio (CR) Higher is better

No. multiply-accumulate ops. (#MACs) Lower is better

Throughput (output/s) Higher is better

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 6 of 23

Fig. 3 Classification of memory compression techniques

What is the classification of memory compression techniques? Memory Compression
can be done using several techniques as shown in Fig. 3. Compression techniques are clas-
sified into two main categories: (a) lossless compression techniques and (b) lossy ones.
As the name stated, lossless compression techniques does not impact the accuracy of
the computation, it just optimizes the needed storage and hence memory transfer cost is
reduced. Lossless compression techniques can be further classified into sparse represen-
tation which work on sparse matrices such as compressed sparse column format (CSC),
compressed sparse row format (CSR), etc. [19, 20] and standard compression techniques
like Huffman [21], run length encoding(RLE) [22], etc which depends on the statistical
distribution of the data. In both branches of lossless techniques, the actual data is pre-
served. However, lossless compression techniques require extra software and/or hardware
support to revert compression or apply computation on sparse matrices. On the other
hand, lossy compression techniques introduce losses. That is why finetuning or retrain-
ing the compressed model is advised with lossy techniques such as pruning, distillation,
low-rank factorization, lowering numeric precision, and encoding.
We also classify the techniques according to their granularity, a coarse granularity

would consider compressing the model architecture, while a finer granularity would con-
sider compressing data used by the model (both weights and activation). Combining
several techniques together is always an option, but a careful eye needs to watch the
quality of the solution.
Lossless compression techniques are general ones that can be used with different appli-

cations and are orthogonal to lossy ones, thus why we choose to focus on lossy techniques
in the rest of this section.

Pruning

It is the process of eliminating parts of the network model to make it smaller without
much loss of results quality. Pruning is usually done after the model is trained and then
the model is finetuned to adjust the remaining weights as seen in Fig. 4.
Pruning is defined by 4 main decisions as seen in Fig. 5. The first decision is the pruning

criteria or in other words “how to choose the part to be pruned.” Criteria could be totally
random using trial and error or based on the selected element norm using some certain

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 7 of 23

Fig. 4 Pruning process flowchart

threshold a.k.a. norm-threshold [23]. A similarity threshold also could be used when there
are two activations (feature maps) very similar to each other, hence, one of them can be
removed as it introduces no new information [24]. Finally, evolutionary algorithms like
genetic algorithm can be used to choose the elements to be pruned [25].
The second decision is the pruning granularity. The pruning could be unstructured

which means eliminating individual elements from weight/bias matrices. This kind of
pruning leaves the network structure as it is, but it converts its weight matrices to sparse
matrices which could be further compressed [23]. On the other hand, structured pruning
eliminates components from the network leaving it slimmer (less channels or filters) or
shorter (less layers) [24, 25].
The third decision is the application time or “when to apply pruning”. As mentioned

previously, most work apply pruning as post-processing step; however, lately, several tech-
niques are introduced to apply pruning while training as will be explained later in this
section [24]. The post-processing pruning can further be classified to gradual or itera-
tive pruning where the pruning starts with a small threshold and increases the threshold

Fig. 5 Pruning decisions: four decisions to define any pruning technique

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 8 of 23

gradually to avoid accuracy loss [23]. On the contrary, the one-shot pruning is manu-
ally pruning several networks and finetuning all of them at once to get the best pruned
network [23].
The final decision is the module or “which module should be pruned, the generator

module or both the generator and discriminator modules.” Pruning the generator part of
the network is usually the target, however due to instability of training and hence finetun-
ing, some works suggested to prune the discriminator as well to avoid overpowering the
pruned generator while finetuning [23].
In a study made by Chong and Jeff [23], they showed that the quality of results rep-

resented in FID scores [18] degraded significantly using thresholding pruning as seen in
Fig. 6. Thresholding pruning is eliminating the element undertest if it is below a certain
threshold. The element could be a single weight, a filter, or a channel. They implemented
several pruning techniques on StarGAN [5]. They implemented iterative pruning after
training [23], iterative pruning during training [23], pruning both generator and discrim-
inator [23] and one-shot pruning after training [23]. It worth noting that pruning during
training resulted in a lower quality than pruning after training. This indicates that the
model fails to converge. They also presented other non-pruning techniques which we will
explore later.
Instead of using thresholding in pruning, Shu et al. [25] proposed using evolutionary

algorithm like genetic algorithm (GA) to compress the cyclic networks like CYCLEGAN.
The idea is to represent the generator as a bitstream where each bit corresponds to a filter
if the bit = 0, then the filter is pruned. The GA fitness function is a function in three cri-
teria: (a) the size of the network, (b) the compression distance, and (c) the cycle loss. The
compression distance is themean square error between the discriminator output for com-
pressed and uncompressed generators. Whereas the cycle loss is a special loss in training
paired images as explained in [26]. GA achieved a compression ratio between 3.54× and
5.7× compression ratio on CYCLEGAN. GA pruning achieved 0.542 mean pixel accu-
racy compared to 0.218 using thresholding in pruning. It also achieved a better FID score

Fig. 6 FID scores of different pruning techniques for StarGAN. This shows the failure of pruning techniques
to preserve the required quality compared to the original non-pruned version of the algorithm

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 9 of 23

by average of 30 points compared to thresholding pruning while only degrading FID than
the original none-pruned with 8.5 points (calculated using 4 datasets on CYCLEGAN).
Song et al. presented overlapping pruning with training instead of the ordinary train-

prune-finetune approach [24]. In their work, the authors adopted the train-expand-prune
approach. He started by training a small network (called seed network), then progres-
sively expanded it by adding more width (filters) to the network. Then similar feature
maps are pruned and the whole network is fine tuned. They scored 1.25× less flops than
baseline GAN.
Although many combinations of pruning techniques have not been explored in pruning

as seen in the summary (Table 3), the current results indicate that pruning alone is not
enough and there is a significant loss in quality as shown in Fig. 6. This failure is attributed
to the following reasons: (1) the high resolution of the generator output compared to dis-
criminator models makes it more sensitive to noise, (2) The generator evaluation metrics
are more subjective than objective, and (3) the training of GANs is unstable and care
should be taken to avoid discriminator over-powering the generator. To overcome those
challenges, a more general approach called knowledge distillation is used where pruning
is usually a part of it.

Knowledge distillation

It is the transfer of knowledge acquired by the uncompressed generator (called teacher
model) to a smaller model (called student model). To apply knowledge distillation, we
need to define 4 main components as explained in Fig. 7.
First component is the teacher model. While the straight-forward approach suggests

that we should have a pretrained one that we are trying to compress, some works trained
an overly large model from scratch to give them more flexibility in finding the most
optimal student model.
The second component is the reconstruction of the student model. In its simplest form,

pruning is used to generate the student model from the teacher model. Student models
can also be constructed using Network Architecture Search (NAS). Or even it can be
progressively constructed using sub-constructs from the teacher model.
The third component is the training architecture or building blocks. This component is

concerned with which components from the teacher model will be included in the train-
ing and whether to construct a complete student GAN (both generator and discriminator)
or just construct a student generator.

Table 3 Summary of GAN pruning work

Work/aspect Criteria Granularity Application Module

[23](e) Threshold Unstructured After training Generator

[23](f) Threshold Unstructured During training Generator

[23](n) Threshold Unstructured After training Generator

[23](d) Threshold Unstructured After training Both

[25] Evolutionary Structured After training Generator

[24] Similarity Structured During training Generator
(e) Iterative pruning after training
(f) Iterative pruning during training
(n)Pruning both generator and discriminator
(d)One-shot pruning after training

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 10 of 23

Fig. 7 Knowledge distillation components

The last component is the loss function. The loss function determines how good and
how fast the student will learn from the teacher. A lot of loss function has been introduced
that will be explained below.
In [27], Aguinaldo et al. used knowledge distillation to train a student generator to even

beat the teacher generator. They used pretrained teacher generator and discriminator as
seen in Fig. 8. They devised a reconstruction loss (Eq. 3) as a joint function between
gan loss (Eq. 1) and per-pixel loss (Eq. 2). First, they provided the same input to both
student and teacher generators. Second, the output of both generators are fed into the
teacher discriminator. Third, they calculated the reconstruction loss as in (Eq. 3) to train
the compressed generator.

Lper_pixel = loss(Gstudent(z),Gteacher(z)) (2)

Lrecon = Lgan + λLper_pixel (3)

where z is the noise used as input to generators, Lgan is the adversarial gan loss from
(Eq. 1), and λ is a weighting parameter between both losses. The authors used a very
large teacher to guide the small network leading 1669× compression ratio while retain-
ing 83% of the teacher’s inception score on MNIST. However, the produced images were

Fig. 8 Training architecture for the work [27] showing per-pixel loss and gan-loss (a.k.a. adversarial loss)

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 11 of 23

Fig. 9 Training architecture for the work [23] showing per-pixel loss and class-loss

very blurred at this compression rate. Yet what makes this work standout is that the dis-
tilled networks using this method always beat the trained-from scratch networks of the
same size.
In [23], Chong and Jeff also used a pretrained generator and discriminator to train a stu-

dent generator as shown in Fig. 9. They measured the loss as follows: first they measured
the per-pixel loss as the loss between the two generators as in (Eq. 2). Per-pixel loss is
usually the mean square error loss, but it could be anything else. Additionally, they mea-
sured class-loss as the loss between the discriminator output of the student and teacher
generators as seen in Eq. 4. The total loss is the weighted sum of the previous two losses
as shown in (Eq. 5).

Lclass_loss = loss(Dteacher(Gstudent(z)),Dteacher(Gteacher(z))) (4)

Ltotal1 = Lper_pixel + λLclass_loss (5)

Similarly, In [28], they used Lgan function using the teacher discriminator. Additionally,
they added another loss term representing intermediate distillation loss. Intermediate dis-
tillation loss is the loss between two corresponding inner-layers outputs as in (Eq. 6). If
the data is paired, then they calculate Lper_pixel between student generated image and the
paired image, else they use the output of the teacher generator to calculate Lper_pixel. The
training architecture is shown in Fig. 10 while the final loss function is seen in (Eq. 7).

Linterdist =
T∑

t=1
||ft(Gteachert (x)) − Gstudentt (x)||2 (6)

Fig. 10 Training architecture for the work [28, 30] showing Intermediate distillation loss, per-pixel loss, and
GAN loss

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 12 of 23

where ft is the mapping function between teacher inner layer and the corresponding
student layer to adjust the size. t is the layer number.

L = Lgan + λper_pixelLper_pixel + λinterdistLinterdist (7)

where different λ are used to weight the different loss functions.
To construct the student model, they used a neural architecture search (NAS). To avoid

the long running time of NAS, they used one shot learning to train a variable number
of networks at once. The idea of one-for-all network training (OFA) also called one-shot
learning in training is best explained in [29]. They reached a compression ratio between
4× and 33× on various datasets and networks.
In contrast to the previous work, the work in [30] suggested to use more constrained

search for the student model instead of unconstrained NAS. They built DART, an
AutoML-like framework for GANs to perform differential search [31] for the opera-
tors at each layer and layer width . They constrained the first and last layers to be like
famous models’ architecture like Cycle-GAN in style-transfer tasks and ESRGAN [32] in
super-resolution tasks.
In the work made by Qing et al., they reconstructed the teacher network to be a large

supernet for image-to-image translation [33]. Thus, pruning and distilling such a large
network would lead to a more efficient student network. The student network is made
by pruning channels of the teacher generator. They used aggregated 4 loss functions.
The training architecture is shown in Fig. 11. First, they used intermediate distillation
using kernel alignment function to map the corresponding intermediate layer sizes. Sec-
ond, they used perceptual loss, which is the loss between intermediate features in the
discriminator between real(teacher) and student images as seen in (Eq. 8).

Lperc =
T∑

t=1

1
Nt

||Dt(x) − Dt(Gstudent(z))||1 (8)

where x is real image or teacher imageGteacher(z), and T is the number of layers and N is
the total number of elements in each layer.
Third, they used gan adversarial loss as all other GANs. Eventually, they used the cyclic-

loss since it is image-to-image translation task. The cycle loss is the loss of converting

Fig. 11 Training architecture for the work [33] showing intermediate distillation loss, perceptual-loss, and
gan-loss

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 13 of 23

from domain A to B then back to A’. The difference between A and A’ is the cycle loss.
This reconstruction method optimized the time required to construct student network
by 10, 000× compared to unconstrained NAS with better FID scores.
Another work by Chen et al. distilled both generator and discriminator. They used

two discriminators instead of one as shown in Fig. 12. The distillation of the generator
required two loss functions: perceptual-loss, per-pixel loss and adversarial-loss. To distill
the discriminator, they used the adversarial loss, intermediate distillation loss on discrim-
inator and introduced another loss term, which is triple loss. The idea of this loss term
is to consider that the distance between teacher generated and student generated images
will be smaller than the distance between real images and student generated images, thus
they added an extra parameter to weight the two differences in the loss function.
In [35], the authors combined intermediate distillation loss, perceptual loss and per-

pixel loss as shown in Fig. 13. They also used a content aware approach to enhance
distillation. This is done by detecting the areas of interest using an auxiliary segmentation
network (content-aware network) and mask the corresponding images before calculating
loss leading to 10× to 11.5× compression ratios compared to several original GANs with
FIDs ∼7.5 for FFHQ dataset (original FID 2.7∼4.5). Zhang et al. also combined interme-
diate distillation loss from discriminator and generator in their work presented PKDGAN
[36]. However, it is only applied on novelty detection, so a further work needs to compare
it with other GAN methods.
In a work done by Haotoa et al., they presented a unified framework called ganslimming

to stack several memory compression techniques together [37]. They used distillation
to compress the generator. The student generator is automatically and adaptively gen-
erated from the teacher generator by channel-pruning and quantization. They used the
normalization layer scale parameter to guide the pruning during training and adapted
the adversarial-loss, per-pixel loss, and the added normalization scale parameter as the
combined loss function.
Table 4 summarizes the above-mentioned works and how their four main components

are selected. While Fig. 14 shows the difference performance of the above techniques

Fig. 12 Training architecture for the work [34] showing both generator and discriminator distillation

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 14 of 23

Fig. 13 Training architecture for the work [35] showing both generator and discriminator distillation and
using segmentation network to allow content-aware distillation

Table 4 Summary of GAN distillation works

Work/component Teacher model Student recons. Training architecture Loss function

[23] Pretrained Pruning 2G+ Teacher D Per-pixel

Per-class

[27] Pretrained Pruning 2G+ Teacher D Per-pixel

Adversarial loss

[28] Pretrained NAS 2G+ Teacher D Per-pixel

Adversarial loss

Intermediate loss

[30] Pretrained NAS 2G+ Teacher D Per-pixel

(DART) Adversarial loss

Intermediate loss

[33] Super-large Pruning 2G+ Teacher D Perceptual loss

Adversarial loss

Intermediate loss

Cycle-loss [26]

[34] Pretrained Pruning 2G+ 2D Per-pixel

Perceptual loss

Adversarial loss

Triplet-loss

[35] Pretrained Pruning 2G + D Per-pixel

+ Segmentation Perceptual loss

Network Intermediate loss

Segmentation-loss

[37] Pretrained Pruning 2G+ Teacher D Per-pixel

Adversarial loss

Normalization-loss[38]

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 15 of 23

Fig. 14 Comparison between different distillation and pruning techniques using cyclegan model and
horse2zebra dataset. a, b, c, d, e, and f represents the works in [25, 28, 30, 33, 34, 37], respectively. (f) [25] is a
pruning technique, while all the others are distillation. In e, we only reported the distillation results and
omitted the quantization effect for a fair comparison. Work a, c had stronger teacher than the rest. In c, we
estimated the compression ratio as the ratio between the number mac operations

with respect to each other and with a sample from pruning techniques as well. For a fair
comparison, we used only techniques with Cyclegan and horse2zebra dataset. The axes
names in Fig. 14a, b, c, d, e, and f represent the following works [28], [30], [33], [34], [37],
[25], respectively. Chen et al. [34] did not report the FID score in his paper, that is why it is
omitted from the graph. In works [28, 33], their teacher model FID score was better than
the others. This justifies why they have much better FID score because they had a better
teacher. However, Wang et al. in [37] managed to score very close to them despite starting
from a weaker teacher although its compression ratio is one of the lowest compared to
others. It worth noting that the pruning technique done by [25] has the worst compression
ratio and the worst FID score, which is consistent with our conclusion in pruning section,
that pruning alone is not enough.

Low-rank factorization

Low-rank factorization is very famous in optimizing both storage and computation for
sparse matrices [39]. Low-rank factorization is a lossy technique and introduces some
loss in contrast to other lossless sparse representations. It uses a matrix (filter) of a lower
rank (hence less storage and less computation) to perform the operation. Low-rank fac-
torization is a very wide field that is applicable to many applications not just GANs. A
good reference is in [40, 41]. Most computational engines like Tensorflow [42], Pytorch
[43] make computational optimization seamlessly, which explains why very few works
reported for using them.
Wu et al. used low-rank factorization in his work PDGAN [44]. Despite approxima-

tion, PDGAN achieved close score to other state-of-the-art methods in recommendation
systems. Unfortunetly computational and compression performance are not reported.

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 16 of 23

Fig. 15 Impact of precision on performance metrics

Lowering numeric precision

As the name stated, it is using less bits to represent a number. Lowering numeric precision
is not unique toMachine Learning. As the precision increases the accuracy and numerical
stability increases. On the other hand, as the precision decreases, the speed, memory
footprint and hardware area get improved as shown in Fig. 15. Despite that, the relation
is not linear, and it differs according to the application.
As mentioned earlier, GAN generators are more sensitive to precision due to the reso-

lution of the output. Thus, in this section, we will show the impact of such optimization
on generators and explore different numeric formats. Changing numeric precision can
be done by using standard formats like single precision (float32), half precision (float16)
or fixed-point representation which can take many forms depending on the place of
the fixed-point. Those standard format has more adoption in hardware since they are
“standard.” On the contrary, Non-standard formats use out-of-the-box ideas such as
Bfloat3 and FlexPoint. Those out-of-the-box formats need dedicated hardware support to
be used.
Lowering numeric precision to fixed-point integer is usually called quantization in liter-

ature whenever the quantization follows the affine mapping as in Eq. 9. The advantage of
using affine transformation is that themultiplication and addition can be carried out with-
out the need to revert the mapping [45]. Other types of quantization requiring reverting
back the conversion before calculations is considered as a type of encoding.

Quantized_number = Full_precision − Zero_point
Scale_factor

(9)

To perform quantization, we need to define the necessary decisions shown in Fig. 16. First
decision is the general numeric format; whether the number format is float-like or integer-
like. Float-like format is (sign, exponent, mantissa) format. The integer-like format like
fixed point format requires (integer, scale factor, zero-point) format.
Second decision is the quantization function. Determining the quantization function

determines how the full-precision number is converted to the quantized one as shown in
Eq. 9. The quantization could be uniform or could give a higher priority to certain range
depending on the data distribution using log or tanh function.

3Although Bfloat is not IEEE standardized, however, Google TPU support for it makes it common to use and supported
by different optimized deep learning libraries.

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 17 of 23

Fig. 16 Quantization decisions

Third to Fifth decisions are about what part of the network to apply quantization
to. Starting by the granularity whether the same quantization should be applied to all
layers, or each layer should have different quantization. The quantization could be per-
tensor, per-channel, per-layer, or per-network. The fourth decision is whether to quantize
weights, activations, or both. If only one type of data is quantized, then the saving will be
in storage only not in calculation as it must cast back to the largest of the two formats.
And the fifth one is whether to quantize both networks or the generator only.
Last decision is when to apply the quantization. Post-training quantization requires

finetuning while during training or called “Training-aware quantization” does not need
any additional finetuning.
Wang introduced a method to quantize GAN called QGAN [46]. In his study, he

showed that normal quantization methods like (uniform, log, tanh) are not sufficient for
a stable and convergent GAN in a very low-bit quantization. Moreover, generator (G)
and discriminator (D) sensitivity to quantization is different. Though eventually, only
the generator is needed, but finetuning it needs a balanced discriminator. Thus, quan-
tizing both discriminator and generator leads to a convergent finetuning. This leads to
proposing multi-precision quantization for G and D separately from each other. Then he
used the expectation-maximization (EM) algorithm to find the optimal zero_point and
scale_factor parameters from Eq. 9. Quantized weight is calculated from the Eq. 10. The
EM algorithm tries tominimize themean square error between the non-quantized weight
and the quantized one.

Wq = scale_factor ∗ round(quantized_number) + zero_point (10)

where scale_factor, quantized_number, zero_point are same parameters from Eq. 9. Wq
is the quantized weight, round(quantized_number) is the integer part of the fixed-point
number that will be used in the calculation.
QGAN has been applied to several GANs like DCGAN [15], WGAN [47], and LSGAN

[48]. With a quantization to 1–4 bits, QGAN achieved a compression ratio from 8× up to
32× with a small loss in inception score.
A study made by Deng et al. using a PATCH-GAN-like generator to reconstruct face

images showed that as the number of bits decreases, the peak signal-to-noise ratio (PSNR)
gets worse while the memory footprint improves, which is not surprising [49]. In their
study for quantized GAN for mobiles (QMGAN), they found that 32-bit representation

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 18 of 23

(single precision) has ∼2.5× improvement in PSNR over the 1-bit quantized (binary)
network. However, the 1-bit quantized network has better memory size by 35× over sin-
gle precision. They tried different values for quantization, what worth noting is that the
PSNR of 32-bit is almost the same as the PSNR of 6-bits while the 6-bit has around 5.4×
memory size improvement.
Haotao et al. continued their work on ganslimming [37] by applying both quantiza-

tion and knowledge distillation. He used the uniform quantization on both activations
and weights on the generator model. They unified the quantization on all layers so that
it would be HW friendly. They performed 4×∼8× compression ratios on style-transfer
problems with a very competitive result.
In [50], the authors of ApGAN used memory compression on a ReRam accelerator 4.

They quantized all weights and activations to 1-bit (sign-bit)which simplified MACs to
just ANDing followed by ORing. This technique decreases the weights storage size. How-
ever, that comes at a cost of accuracy and speed of convergence. An experiment done
by [50] compared fully-binarized DCGAN to full-precision, after 20 epochs the loss of
binarized version is 3x the loss of full precision. For that reason, instead of binarizing all
layers, they used variable layers quantization based on the data redundancymeasure. Data
redundancy measure is defined as (ci − hi ∗wi) where i is the layer number ci is the num-
ber of channels of layer input i, and hi,wi are the input height and width respectively of
the ith layer. A negative redundancy measure indicates a high sensitivity for quantization
error; thus, it is not recommended to quantize such layers. Other layers with high redun-
dancy measure are binarized by taking the sign bit of the weight and the average weight is
considered the scale factor. Multiplication computations turns into just signmanipulation
operation followed by scaling.
In [51], Rakin et al. proposed TGAN, a GAN that ternarize weights to {-1,0,1}. The

ternarization depends on the sign of the weight like ApGAN. They applied the quanti-
zation schema on both generator and discriminator in the forward path and used the
backward path to update the scale factor. They achieved on average ∼ 85% of IS of the
full-precision network.
A work by Köster et al. proposed using non-standard numeric format called Flex-point

[52]. The new format makes one shared exponent for each tensor; thus, the tensor opera-
tions are handled as if they were fixed-point operations, and an extra circuit is needed to
manage exponent which is faster than the floating-point operation with different expo-
nent for each number. Flex-point format stores the tensor as 16-bit mantissa for each
element and one shared 5-bits exponent for the whole tensor. In contrast to floating point,
the exponent is shared across tensor elements, and different from fixed point, the expo-
nent is updated automatically every time a tensor is written. By implementing several
networks using, the flex-point format, the FID score of those networks was comparable to
the same networks implemented using float32 and better than the ones implemented with
fixed-point or float16. Flex-point has the advantage of supporting training and applying
all techniques of floating-point with even faster calculation given their newly Flex-point
format.
Table 5 summarizes the design decisions taken by different works. Because each work

uses a different network it is hard to make a fair comparison using metrics like IS or

4ReRam accelerator is processing in memory using analog crossbar circuit

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 19 of 23

Table 5 Summary of quantization works

Decision/work Rep. Func. Granularity Target Module App.

QGAN [46] Int EM Network W G and D Post

QMGAN [49] Int Uni Network W G Post

ApGAN [50]+ Int Uni Layer W G and D During

TGAN [51]+ Int Uni Layer W G and D During

Flexpoint [52]+ Float Cust. Tensor A and W G and D During

GANslim [37] Int Uni Network A and W G Post

Int integer-like, Uni uniform, A activation, + customized accelerator, Cust customized,W weight

FID. Figure 17 shows the number of bits that each quantization method reported for best
results.

Encoding

It is a form of lossy compression used to minimize the data transfer using fewer bits. The
data transferred to the chip is not the real data, but an index or key used to get the real
data from a preloaded codebook or using a predefined hash function.
This technique has been extensively used in deep learning like in [53–57] . However,

to the best of our knowledge, we found no work applied to GANs and it is one of the
opportunities to seek.

Results and discussion

In this section, we will discuss the open opportunities and challenges for optimizing
GANs. No doubt that minimizing the memory footprint enhances storage, speed, and
power efficiency of running GANs, however there are some areas such as “encoding” that
is not explored at all in GANs.
Another opportunity exists in optimizing GANs is to fill in the gaps and mix between

different compression techniques. As seen from Tables 3, 4, and 5, a lot of combinations

Fig. 17 No. of quantized bits that resulted in the best performance for the GAN undertest. Each technique is
tested on different GAN. The works QGAN [46], QMGAN [49], GanSlim [37], Flexpoint [52], and TGAN [51] are
fully quantized. While ApGan [50] has mixed quantized and non-quantized layers. Also, FlexPoint, ApGAN and
TGAN quantization is used during training

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 20 of 23

can still be explored like using similarity-pruning with knowledge distillation. In addi-
tion, combining losses introduced in knowledge distillation with quantization needsmore
exploration.
A challenge that exists with all the mentioned optimization techniques is how to unify

measures (both qualitative and quantitative) and benchmark between several methods.
With no unifiedmeasures, benchmarks, and platforms, we can hardly evaluate techniques
compared to each other.
While compression is very plausible, some techniques are not hardware friendly though

they give high compression ratio and accuracy. An opportunity exists in enhancing index-
ing methods in accelerators or building a cache like system to support clustering or
hashing-based quantization. Also, the support for processing compressed elements or
quantized element should be considered without uncompressing them.
Optimizing GANs is not limited to GAN compression, on the other opposite, compres-

sion is just one technique. Other optimization methods like computational optimization
and dataflow optimization are still open areas for exploration.
We can summarize the possible future work as follows:

• Unify the design metrics between different designs and provide an evaluation study
using several dataset.

• Explore the missing areas like encoding in GANs.
• Study systems with combinations of optimization techniques.
• Study the impact of optimization on different platform (FPGA, ASIC, RERAMs,

GPUS, etc.)
• Explore computational optimization.
• Explore dataflow optimization.

Conclusion
In this paper, we surveyed the lossy compression techniques used to optimize GANs.
GANs differ from other DL models because of training instability and the high output
resolution. Those challenges make GANs optimization more challenging.
We divided lossy compression techniques to five categories: (a) pruning, (b) knowledge

distillation, (c) low-rank factorization, (d) lowering numeric precision, and (e) encoding.
Those techniques can be overlapped with each other to produce more robust model after
compression.
By surveying several works, it is found that pruning alone is not enough to preserve

the model quality, thus why knowledge distillation is combined with pruning for better
results. Knowledge distillation is a very powerful technique to handle the training insta-
bility as it simplifies the problem from satisifying a general quality criteria to mimicing
the teacher model.
Lowering numeric precision is a commonly used technique as can be called “quan-

tization.” It has a wide varity of options depending on the hardware support available.
Processing in memory is best used with binary and trenary data. Finetuning is required
with lowering numeric precision.
Low-rank factorization and encoding techniques are not well explored in the domain

of GANs which needs further investigation. Additionally, the combination of several
techniques needs to be explored as well.

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 21 of 23

Our contributions can be summarized in being the first paper dedicated to survey GAN
compression techniques, providing a taxonomy for the compression techniques, sum-
marizing recent work in this area and providing open research areas for exploration in
accelerating GANs.

Abbreviations
GANs: Generative adversarial networks; DL: Deep learning; CNN: Convolution neural network; IS: Inception score; FID:
Fréchet inception distance; PSNR: Peak signal-to-noise ratio; mPA: Mean pixel accuracy; IoU: Intersection over union;
MACs: Multiply-accumulate operations; CR: Compression ratio; G: Generator; D: Discriminator

Acknowledgements
I would like to thank Eman Hosam and Mayada Hadhoud for their valuable contributions in proof reading, language
editing, and article organization.

Authors’ contributions
This review article is made during internship in NYU by Dina Tantawy under the supervision of Prof. Mohamed Zahran
from NYU and Prof. Amr Wassal from Cairo University. The authors read and approved the final manuscript.

Funding
No funding was provided for this work.

Availability of data andmaterials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable as it has no human or animal participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests beyond their current affliations.

Received: 3 September 2021 Accepted: 11 November 2021

References
1. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative

adversarial nets. In: Advances in Neural Information Processing Systems. pp 2672–2680
2. Bollepalli B, Juvela L, Alku P (2019) Generative adversarial network-based glottal waveform model for statistical

parametric speech synthesis. arXiv preprint arXiv:1903.05955
3. Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas D (2017) Stackgan: Text to photo-realistic image synthesis

with stacked generative adversarial networks. Proc IEEE Int Conf Comp Vision:5907–5915
4. Zhang Z, Xie Y, Yang L (2018) Photographic text-to-image synthesis with a hierarchically-nested adversarial network.

Proc IEEE Conf Comput Vis Pattern Recognit:6199–6208
5. Choi Y, Choi M, Kim M, Ha J-W, Kim S, Choo J (2018) Stargan: Unified generative adversarial networks for

multi-domain image-to-image translation. Proc IEEE Conf Comput Visi Pattern Recognit:8789–8797
6. Wang T-C, Liu M-Y, Zhu J-Y, Tao A, Kautz J, Catanzaro B (2018) High-resolution image synthesis and semantic

manipulation with conditional gans Vol. Proc IEEE Conf Comput Visi Pattern Recognit. pp 8798–8807
7. Engel J, Agrawal K, Chen S, Gulrajani I, Donahue C, Roberts A (2019) Gansynth: Adversarial neural audio synthesis.

arXiv preprint arXiv:1902.08710
8. Clark A, Donahue J, Simonyan K (2019) Efficient video generation on complex datasets. arXiv preprint

arXiv:1907.06571
9. Cheng Y, Wang D, Zhou P, Zhang T (2017) A survey of model compression and acceleration for deep neural

networks. arXiv preprint arXiv:1710.09282
10. Cheng Y, Wang D, Zhou P, Zhang T (2018) Model compression and acceleration for deep neural networks: The

principles, progress, and challenges. IEEE Signal Proc Mag 35(1):126–136
11. Cheng J, Wang P, Li G, Hu Q, Lu H (2018) Recent advances in efficient computation of deep convolutional neural

networks. Front Inform Technol Electron Eng 19:64–77
12. Choudhary T, Mishra V, Goswami A, Sarangapani J (2020) A comprehensive survey on model compression and

acceleration. Artif Intell Rev 53(7):5113–5155
13. Gou J, Yu B, Maybank S, Tao D (2021) Knowledge distillation: A survey. Int J Comput Vis 129(6):1789–1819
14. Wang L, Yoon K-J (2021) Knowledge distillation and student-teacher learning for visual intelligence: A review and

new outlooks. IEEE Trans pattern Anal Mach Intell PP
15. Gao F, Yang Y, Wang J, Sun J, Yang E, Zhou H (2018) A deep convolutional generative adversarial networks

(dcgans)-based semi-supervised method for object recognition in synthetic aperture radar (sar) images. Remote
Sens 10(6):846

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 22 of 23

16. Isola P, Zhu J-Y, Zhou T, Efros A (2017) Image-to-image translation with conditional adversarial networks. Proc IEEE
Conf Comput Vis Pattern Recognit:1125–1134

17. Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for training gans.
Adv Neural Inf Process Syst:2234–2242

18. Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) Gans trained by a two time-scale update rule
converge to a local nash equilibrium. Adv Neural Inf Process Syst:6626–6637

19. Vuduc R (2003) Automatic Performance Tuning of Sparse Matrix Kernels. University of California, Berkeley
20. Gilbert J, Moler C, Schreiber R (1992) Sparse matrices in matlab: Design and implementation. SIAM J Matrix Anal Appl

13(1):333–356
21. Knuth D (1985) Dynamic huffman coding. J Algorithms 6(2):163–180
22. Bradley S (1969) Optimizing a scheme for run length encoding. Proce IEEE 57(1):108–109
23. Yu C, Pool J (2020) Self-supervised gan compression. arXiv:2007.01491v2
24. Song X, Chen Y, Feng Z-H, Hu G, Yu D-J, Wu X-J (2020) Sp-gan: Self-growing and pruning generative adversarial

networks. IEEE Trans Neural Netw Learn Syst 32(6):2458–2469
25. Shu H, Wang Y, Jia X, Han K, Chen H, Xu C, Tian Q, Xu C (2019) Co-evolutionary compression for unpaired image

translation. Proc IEEE/CVF Int Conf Comput Vis:3235–3244
26. Zhu J-Y, Park T, Isola P, Efros A (2017) Unpaired image-to-image translation using cycle-consistent adversarial

networks. Proc IEEE Int Conf Comput Vis:2223–2232
27. Aguinaldo A, Chiang P-Y, Gain A, Patil A, Pearson K, Feizi S (2019) Compressing gans using knowledge distillation.

arXiv preprint arXiv:1902.00159
28. Li M, Lin J, Ding Y, Liu Z, Zhu J-Y, Han S (2020) Gan compression: Efficient architectures for interactive conditional

gans. Proc IEEE/CVF Conf Comput Vis Pattern Recog:5284–5294
29. Cai H, Gan C, Wang T, Zhang Z, Han S (2019) Once-for-all: Train one network and specialize it for efficient

deployment. arXiv preprint arXiv:1908.09791
30. Fu Y, Chen W, Wang H, Li H, Lin Y, Wang Z (2020) Autogan-distiller: Searching to compress generative adversarial

networks. arXiv preprint arXiv:2006.08198
31. Liu H, Simonyan K, Yang Y (2018) Darts: Differentiable architecture search. arXiv preprint arXiv:1806.09055
32. Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, Qiao Y, Change Loy C (2018) Esrgan: Enhanced super-resolution generative

adversarial networks. Proc Eur Conf Comput Vis (ECCV) Workshops
33. Jin Q, Ren J, Woodford O, Wang J, Yuan G, Wang Y, Tulyakov S (2021) Teachers do more than teach: Compressing

image-to-image models. arXiv preprint arXiv:2103.03467
34. Chen H, Wang Y, Shu H, Wen C, Xu C, Shi B, Xu C, Xu C (2020) Distilling portable generative adversarial networks for

image translation. Proc AAAI Conf Artif Intell 34:3585–3592
35. Liu Y, Shu Z, Li Y, Lin Z, Perazzi F, Kung S (2021) Content-aware gan compression. arXiv preprint arXiv:2104.02244
36. Zhang Z, Chen S, Sun L (2020) P-kdgan: Progressive knowledge distillation with gans for one-class novelty detection.

arXiv preprint arXiv:2007.06963
37. Wang H, Gui S, Yang H, Liu J, Wang Z (2020) Gan slimming: All-in-one gan compression by a unified optimization

framework. In: European Conference on Computer Vision. Springer, Cham. pp 54–73
38. Liu Z, Li J, Shen Z, Huang G, Yan S, Zhang C (2017) Learning efficient convolutional networks through network

slimming. Proc IEEE Int Conf Comput Vis:2736–2744
39. Jaderberg M, Vedaldi A, Zisserman A (2014) Speeding up convolutional neural networks with low rank expansions.

arXiv preprint arXiv:1405.3866
40. Swaminathan S, Garg D, Kannan R, Andres F (2020) Sparse low rank factorization for deep neural network

compression. Neurocomputing 398:185–196
41. Bouwmans T, Aybat N, Zahzah E-h (2016). CRC Press
42. Abadi M, Agarwal A, Barham P, et. al. (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.

http://tensorflow.org/
43. Paszke A, Gross S, Massa F, et.al. (2019) Pytorch: An imperative style, high-performance deep learning library. In:

Wallach H, Larochelle H, Beygelzimer A, d′ Alché-Buc F, Fox E, Garnett R (eds). Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., Vancouver. pp 8024–8035. http://papers.neurips.cc/paper/9015-
pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

44. Wu Q, Liu Y, Miao C, Zhao B, Zhao Y, Guan L (2019) Pd-gan: Adversarial learning for personalized diversity-promoting
recommendation. IJCAI 19:3870–3876

45. Jacob B, Kligys S, Chen B, Zhu M, Tang M, Howard A, Adam H, Kalenichenko D (2018) Quantization and training of
neural networks for efficient integer-arithmetic-only inference. Proc IEEE Conf Comput Vis Pattern Recog:2704–2713

46. Wang P (2019) “QGAN: Quantized Generative Adversarial Networks”. “arXiv preprint”
47. Gulrajani I, Ahmed F, Arjovsky M, Dumoulin V, Courville A (2017) Improved training of wasserstein gans. arXiv

preprint arXiv:1704.00028
48. Mao X, Li Q, Xie H, Lau R, Wang Z, Paul Smolley S (2017) Least squares generative adversarial networks. Proc IEEE Int

Conf Comput Vis:2794–2802
49. Deng A, Looi W, Tsun A (2019) Quantized GANs for Mobile Image Reconstruction
50. Roohi A, Sheikhfaal S, Angizi S, Fan D, DeMara R (2019) Apgan: Approximate gan for robust low energy learning from

imprecise components. IEEE Trans Comput 69(3):349–360
51. Rakin A, Angizi S, He Z, Fan D (2018) Pim-tgan: A processing-in-memory accelerator for ternary generative adversarial

networks. In: 2018 IEEE 36th International Conference on Computer Design (ICCD). IEEE, Orlando. pp 266–273
52. Köster U, Webb T, Wang X, Nassar M, Bansal A, Constable W, Elibol O, Gray S, Hall S, Hornof L, et al (2017) Flexpoint:

An adaptive numerical format for efficient training of deep neural networks. Adv Neural Inf Process Syst:1742–1752
53. Han S, Mao H, Dally W (2015) A deep neural network compression pipeline: Pruning, quantization, huffman

encoding. arXiv preprint arXiv:1510.00149 10
54. Ullrich K, Meeds E, Welling M (2017) Soft weight-sharing for neural network compression. arXiv preprint

arXiv:1702.04008

http://tensorflow.org/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Tantawy et al. Journal of Engineering and Applied Science (2021) 68:47 Page 23 of 23

55. Chen W, Wilson J, Tyree S, Weinberger K, Chen Y (2015) Compressing neural networks with the hashing trick. Int
Conf Mach Learning:2285–2294

56. Zhu J, Qian Z, Tsui C-Y (2017) Bhnn: A memory-efficient accelerator for compressing deep neural networks with
blocked hashing techniques. In: 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE,
Japan. pp 690–695

57. Eban E, Movshovitz-Attias Y, Wu H, Sandler M, Poon A, Idelbayev Y, Carreira-Perpinan M (2019) Structured
multi-hashing for model compression. arXiv preprint arXiv:1911.11177

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Abstract
	Keywords

	Introduction
	Memory compression techniques for GANs
	Background
	Memory compression techniques
	Pruning
	Knowledge distillation
	Low-rank factorization
	Lowering numeric precision
	Encoding

	Results and discussion

	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

