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Abstract

Reliable and real-time propagation loss modeling play a significant role in the
efficient planning, development, and optimization of macrocellular communication
networks in a given terrain. Thus, the need to adapt or tune an existing model to
enhance its signal prediction accuracy in a specified terrain becomes imperative. In
this paper, we proposed and applied a non-linear square regression method based
on the Levenberg-Marquart (LM) algorithm to adapt and improve the empirical
propagation loss estimation accuracy of the Egli model for two major cities in
Nigeria. A comprehensive propagation loss measurement acquired over Long Term
Evolution (LTE) mobile broadband networks operating at 2630 MHz for four different
cities was collected using TEMS investigation tools to achieve the Egli model
adaption. Results indicate that the adapted Egli model displays a high estimation
accuracy over the Gauss-Newton (GN) algorithm leveraging the non-linear regression
method employed to benchmark the propagation loss estimation. Using six standard
statistical indicators, the adapted Egli model displayed lower estimation errors than
the classical Egli model across the tested locations in the two cities investigated.
Finally, the LM-adapted Egli model was compared with extensive measurements
from another eNodeB in Port Harcourt different from the initial four eNodeBs
investigated. The results indicate that the adapted model is suitable for deployment
in related macrocellular environments.

Keywords: Radio wave propagation, Terrestrial terrains, Egli model adaptation,
Propagation loss, Non-linear square regression, Levenberg-Marquart algorithm,
Efficient network planning

Introduction
Radio wave propagation in typical terrestrial terrains is a stochastic phenomenon

whose characteristics vary in time due to atmospheric conditions and in space due to

other clutter and environmental obstructions [1]. Primarily, this is the situation at the

ultra-high frequency (UHF) radio propagation domain wherein a clutter of physical

buildings, trees, hills, human activities, and vehicular movements, including the ever-

constant changing and uncontrollable atmospheric conditions, dominate [2, 3]. The
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resultant effect of this stochastic phenomenon is large-scale attenuation and reduction

of the propagated signal from radio waves between the transmitting and receiving

channels [4]. Such reduction in strength or power of the propagated radio signal over a

communication channel is known as propagation path loss [5–7].

Over the past few decades, several researchers have attempted to develop differ-

ent models that can reliably estimate the signal propagation path loss over two

or more radio communication terminals [8, 9]. Such reliable path loss estimations

play a crucial role in the proper planning, development, and management of any

wireless communication systems networks [10, 11]. The problem with the existing

models is that none can be generalized to all environments, urban, rural, or sub-

urban terrain. All existing models were developed to estimate path loss at a par-

ticular operating frequency in a specified environment [2]. One of such terrain-

based models is the Egli propagation model developed from terrain-based mea-

surements [12].

In order to adaptively modify an existing propagation model parameters to fit

into practical field loss data, the use of least-squares (LS) regression has generally

been the thriving method reported in several works [13–15]. For instance, an LS

regression approach is studied in [13] to fine-tune the Hata model offset parame-

ters to estimate field-measured propagation loss in a typical urban terrain. The

work in [11] presents an adaptation of propagation model parameters toward

achieving efficient cellular network planning using a robust LAD algorithm. A

comparative investigation of least square methods for tuning the Erceg pathloss

model was presented [14]. In [15–19], the authors explored the LS method to

study and modify the offset parameters of COST-231 [20], Erceg [21], Hata [22],

and Walficsh-Bertoni models [23] to enhance their predictive capabilities on-field

loss data in different radio signal propagation terrains. The results indicate a

need for a more generalized propagation loss model to predict pathloss in

terrain-based environments accurately.

The study [24] also adopted a recursive algorithm corresponding with LS re-

gression to calibrate the Okumura-Hata model estimation capacity for CDMA

networks. Further information concerning pathloss measurements and modeling

in CDMA networks have been reported [25–27]. In [28], an adapted LS algo-

rithm, which the authors termed “Minimax LS algorithm,” was employed for

automatic-based tuning of the Ericsson model to fit field measurements. How-

ever, the problem with the LS regression is that it approaches its abysmal per-

formance in modeling and handling high stochastic and non-linear propagation

loss datasets [28]. The limited performances of the existing models present a

considerable gap in the literature, and the need to fill this gap is not out of

place.

This work aims to examine and adapt the parameters of the terrain-based Egli

model for suitable signal loss estimation using the non-linear square regression

method. The study presents comprehensive propagation measurements over LTE

mobile broadband networks at 2630 MHz for four different cities in Port Har-

court and Uyo in Nigeria. Measured pathloss was obtained using TEMS investiga-

tion tools, and the adaption of the Egli model to the empirical propagation loss

data is proposed. The resultant model would be of great relevance to wireless
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cellular operators or network companies for enhanced network planning and effi-

cient management of telecommunication networks in the two cities under consid-

eration and any other related wireless propagation environment.

The rest of this paper is organized as follows. The methodology is presented in the

“Methods” section. This section comprises the field measurement environments, tools,

and procedures. Additionally, the classical Egli propagation loss model, adaptation of

the classical Egli propagation loss model, and statistical performance metrics are dis-

cussed in this section. The results and helpful discussions are presented in the “Results

and discussions” section. The results reported include measured propagation loss esti-

mation and error distribution statistics using the classical Egli model and adapted Egli

model for the cells under consideration. The measured propagation loss estimation and

error distribution statistics using the classical Egli and adapted Egli models for the cells

tested are broached. The estimated coefficients and statistics for the cells being tested

are highlighted briefly. Additionally, the computed first-order estimates statistics for

the cells considered are outlined. The calculated first-order estimates statistics for the

cells investigated are presented. The LM-adapted Egli model was validated. Finally, the

“Conclusions” section gives a concise conclusion to the paper.

Methods
The block diagram shown in Fig. 1 provides the methodology upon which this work is

guided. It starts by acquiring the eNodeB transmission parameters via a detailed site

survey. After conducting the site survey, actual field measurements involving signal

data were initiated. This was followed by the definition of the propagation loss model

in focus, and the steps followed to adapt the model based on the field loss data using

the non-linear square regression method.

eNodeB transmission parameters
A site survey of the eNodeB transmission parameters of the commercial LTE net-

work used in this work was conducted to obtain robust results. The parameters

Fig. 1 Block diagram showing the methodology of pathloss measurements and modeling
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considered include the eNodeB total reference signal transmit power (Ptot), carrier

transmission frequency (Fcf), antenna gain of the transmitter (Gt), the antenna

gain of the receiver (Gr), transmit antenna height (hB), cable loss (Cl), and feeder

loss (Fl).

Field measurement environments, tools, and procedure
This section presents the measurements environment, tools and procedure, and RF net-

work data measured.

Measurement environment

Field measurements were conducted in two close medium-sized cities, Uyo and

Portharcourt, located in the south-south zone of Nigeria. Uyo is the capital city of

Akwa Ibom State, situated on latitudes 04° 59′ N and longitudes 07° 53′ E. It has a

population density of 1200/km2 (3100/sq mi), with almost yearly warm and overcast

long wet and short dry seasons. Port Harcourt is the capital city of Rivers State, located

on latitude 4° 051′ N and longitude 7° 0′ E. It is the fifth largest congested city in

Nigeria, with a population density of 1900/km2 and a weather condition similar to Uyo.

Both cities are built up with a mixture of commercial/residential building clusters and

sparsely human/vehicular traffics. Also, the topography of both cities ranges from flat

to horizontal plains. For more description of the cities investigated, a schematic map

showing the tested eNodeBs is given in Figs. 2 and 3, respectively.

Measurement tools and procedure

The tools explored for the data collection comprise TEMS investigation drive test soft-

ware installed on Sony Ericson handsets and connected to an HP Laptop similarly to

Fig. 2 A map showing eNodeBs locations in Uyo City Nigeria
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[29]. Other supporting tools include the GPS, inverter and connecting cables, and the

drive test commercial vehicle. The TEMS investigation drive test tool is a real-time

professional telecom service quality monitoring software. TEMS possesses the capacity

to measure, record, and display different desired RF spatial and temporal datasets in

log files along the drive test routes. In this investigation, the test equipment was locked

to the operating frequency of 2630MHz of the tested eNodeBs. This helps to mitigate

the impact of co-channel interference from neighboring cells operating at different fre-

quencies. Additionally, the test vehicle was driven, considering the actual road traffic

conditions at a relatively medium speed of up to 30 km/h with uniformity, thereby re-

ducing possible Doppler effects. The post-processing of measured log data files was an-

alyzed using Map Info, MS Excel, MATLAB analytic tools.

RF network data measurements

The work concentrated on the Reference Signal Received Power (RSRP) measurements

using LTE radio networks [30, 31]. Technically, the measured RSRP is a special LTE

network indicator for assessing signal power and coverage level [32]. With the aid of

the experimental drive test tools, the RSRP data sets in the log were collected around

four randomly selected eNodeB transmission sites, with two from each city considered.

The four eNodeB transmission sites belong to well-known GSM/UMTS/LTE telecom

service providers operating in the two cities investigated. In terms of the propagation

loss, the RSRP is defined by [33] in eq (1), and the total reference signal transmit power

is defined in (2).

RSRP dBmð Þ ¼ Ptot dBð Þ−Path Loss dBð Þ ð1Þ
Ptot dBð Þ ¼ Gt þ Gr−Cl−Fl− 10 logNrbð Þ−10 log 12ð Þ ð2Þ

Fig. 3 A map showing eNodeBs locations in Port Harcourt City Nigeria
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where Ptot defines the eNodeB total reference signal transmit power, Gr is the receiver

antenna, Gt is eNodeB antenna gain, and Nrb indicates the number of resource blocks.

Cl and Fl = express the cable loss and feeder loss, respectively. Thus, in terms of propa-

gation loss, the expression in (1) can be written as (3) and further expressed in (4). The

basic parameters used for simulation are defined in Table 1.

PathLoss dBð Þ ¼ Ptot dBð Þ−RSRP dBmð Þ ð3Þ

Path Loss dBð Þ ¼ Ptot dBmð Þ þ Gt

þ Gr−Cl−Fl− 10 logNrbð Þ−10 log 12ð Þ−RSRP dBmð Þ ð4Þ

The classical Egli propagation loss model
Consider a propagated signal from a transmitter to the receiver. In free space, the re-

ceived signal, Pr as a function of the transmission frequency ft, transmit power Ptr, over

a communication distance, d is given by [34] in eq (5):

Pr

Ptr
¼ GtrGrλ

2

4π2d2
c

ð5Þ

where λ ¼ c
f t

The propagation loss in dB can be obtained from (1) as given in (6) and its simplified

form in (7).

Pl dBð Þ ¼ 10 log10
Pr

Ptr
¼ −10 log10

GtrGrλ
2

4π2d2
c

ð6Þ

Pl dBð Þ ¼ 32þ 20 log10 f t MHzð Þ
� �

þ 20 log10 dcð Þ−Gtr−Gr ð7Þ

The expression in (5) is the popular free space path loss model [34]. In order to cater

to the effect of receiver antenna height Hr and transmitter height Htr, and typical ter-

rain obstacles, which the authors in [34] discounted in formulating (7), Egli modified

the free space model based on extensive practical signal measurement conducted at

VHF/UHF transmissions in the USA, yielding eq (8):

Table 1 Propagation loss computation parameters

Parameter Value

Gt {17.5,…, 18} dB

Ptot {40,…, 43} dBm

Cl 2 dB

Fl 3 dB

Nrb 12

hB {28,…, 36}m

hr 1.5 m

FC {2600,…, 2630} MHz
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Pr ¼ GtrGr
HtrHr

d2
c

 !2

β2Ptr ð8Þ

where β ¼ 40
f tðMHzÞ

Similar to eq (6), the propagation loss in dB can be obtained from (8) as given in (9):

Pl dBð Þ ¼ 76:3þ 20 log10 f t MHzð Þ
� �

−20 log10 Htrð Þ−10 log10 Hrð Þ þ 40 log10 dcð Þ ð9Þ

where the parameters, Gtr, Gr, Htr, and Hr have been defined in the preceding

equations.

The expression in (9) is the classical Egli model, and it shows that doubling the com-

munication distance and transmission frequency increases the propagation loss by a

factor of 4 and 2, respectively. Based on (9), Egli only considered 40MHz to 1GHz

transmission frequency range and communication distances from 1 km to 50 km [12].

This limited range of operation of the model poses significant limitations that need to

be resolved. In addition, the model was developed by assuming a terrain profile similar

to plane earth with limited vegetation, irregular topography, and severe building ob-

structions. Therefore, the need for Egli’s model adaptation becomes very important.

Adaptation of the classical Egli propagation loss model
First, to modify the classical Egli model, we introduce some constant free adaption pa-

rameters into (9), resulting in eq (10):

PlEgli dBð Þ ¼ A1 þ A2 log10 f t MHzð Þ
� �

−A3 log10 Htrð Þ−A4 log10 Hrð Þ
þ A5 log10 dcð Þ ð10Þ

Now, let Ymdefine the measured signal propagation loss and Ŷ m be the Egli model

with A1,A2, A3, A4, andA5 being the adaptation parameters to be obtained based on the

field signal propagation measurements in a non-linear square sense. It is given by eq

(11):

H ¼
Xn
m¼1

Ym−Ŷ m
� �2

¼
Xn
m¼1

Ym−A1−A2 log10 f t MHzð Þ
� �

þ A3 log10 Htrð Þ−A4 log10 Hrð Þ þ A5 log10 dcð Þ
� �2

ð11Þ

where n indicates measured signal propagation data number. From (11), the challenge

of determining the values of A1,A2,A3, A4, and A5 based on field measurement can be

transformed into an optimisation problem as given by (12). The evolving partial deriva-

tives are given in eq.(13) to (17). Details of the mathematical procedures are available

[35–37]:

min
A1;A2;::;An

H A1;A2; ::;Anð Þ ¼ min
A1;A2;::;An

Xn
m¼1

Ym−Ŷ m
� �2 ð12Þ

∂H
∂A1

¼ 2
Xn
i¼1

Ym−Ŷ m
� � ∂Ŷ m

∂A1
¼ 0 ð13Þ
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∂H
∂A2

¼ 2
Xn
i¼1

Ym−Ŷ m
� � ∂Ŷ m

∂A2
¼ 0 ð14Þ

∂H
∂A3

¼ 2
Xn
i¼1

Ym−Ŷ m
� � ∂Ŷ m

∂A3
¼ 0 ð15Þ

∂H
∂A4

¼ 2
Xn
i¼1

Ym−Ŷ m
� � ∂Ŷ m

∂A4
¼ 0 ð16Þ

∂H
∂A5

¼ 2
Xn
i¼1

Ym−Ŷ m
� � ∂Ŷ m

∂A5
¼ 0 ð17Þ

By setting ∂H
∂A1

¼ f 1ðA1;A2;A3Þ ∂H
∂A2

¼ f 2ðA1;A2;A3Þ, and ∂H
∂A3

¼ f 3ðA1;A2;A3Þ
The expressions in (13) to (17) are converted as given in (18):

f 1 A1;A2;A3;A4;A5ð Þ ¼ 0
f 2 A1;A2;A3;A4;A5ð Þ ¼ 0
f 3 A1;A2;A3;A4;A5ð Þ ¼ 0
f 3 A1;A2;A3;A4;A5ð Þ ¼ 0
f 3 A1;A2;A3;A4;A5ð Þ ¼ 0

8>>>><
>>>>:

ð18Þ

Equation (18) expresses the non-linear equation; solving for the values of A1, A2, A3,

A4, and A5 by employing analytical techniques is generally a complex task. A commonly

used method of solving the above complex equation is the Gauss-Newton method [38].

Still, its application during the iterative implementation process requires a full rank

matrix, thus becoming a significant limitation of the algorithm.

In this work, we engaged the Levenberg-Marquart method [39–41] to upturn the

limitation of the Gaussian Newton algorithm in resolving the non-linear equation in

(18). Thus, by employing the Levenberg-Marquart algorithm, eq (18) is transmuted as

given in (19):

min
A∈ℜ3

f Að Þ ¼ 1
2

f Að Þk k2 ¼ 1
2

X5
i¼1

f 2i Að Þ;A ¼ A1;A2;A3;A4;A5ð Þ ð19Þ

The Levenberg-Marquart method can be resolved with the following eq (20)–(21):

J xq
� �T

J xq
� �þ μqI:

� �
Δxq ¼ − J xq

� �T
f xq
� �

; μ≥0 ð20Þ

⇒Δxq ¼ J xq
� �T

J xq
� �þ μqI:

� �−1
− J xq
� �T

f xq
� �� �

μ≥0 ð21Þ

J(xq) = fI(A)= Jacobian Matrix

where

I ∈ℜm ×m and μ express the damping term and the identity matrix introduced by

Leverberg-Marquart into the classical Gauss-Newton algorithm [38] to improve its

performance.

Accordingly, utilizing the Levenberg-Marquart method, the parameters A = (A1,A2,

A3, A4,A5) can be obtained iteratively using eq (22):

xqþ1 ¼ xq þ J xq
� �T

J xq
� �þ μqI:

� �−1
− J xq
� �T

f xq
� �� �

; μ≥0 ð22Þ
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Thus, for μ = 0, the expression in eq (20) becomes the classical Gauss-Newton algo-

rithm given by eq (23):

J xq
� �T

J xq
� �� �

Δxq ¼ − J xq
� �T

f xq
� � ð23Þ

Similarly, eq (22) is simplified as given in (24):

xqþ1 ¼ xq þ J xq
� �T

J xq
� �� �−1

− J xq
� �T

f xq
� �� �

ð24Þ

To implement the LM algorithm, the following steps are engaged intuitively:

Fig. 4 Measured propagation loss estimation and their error distribution statistics using classical Egli model
and adapted Egli model for Cell_1

Fig. 5 Measured propagation loss estimation and their error distribution statistics using classical Egli model
and adapted Egli model for Cell_2
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LM algorithm implementation steps

I. Initialise guess parameters,xo for x at iteration q = 0, 1, 2, …

II. Select the Lagrange multiplierλqfor each step q

III. Calculate theΔxqwith its expression in eq. (21)

IV. Calculate xq + 1 = xq +Δxq
V. Evaluate Δxq = xq + 1 − xqat the initial parameter,xo
VI. For smaller Δxqvalues, check the rate of convergence

VII.If convergence rate is acceptable, stop the calculation or else go a step (IV).

Fig. 6 Measured propagation loss estimation and their error distribution statistics using classical Egli model
and adapted Egli model for Cell_3

Fig. 7 Measured propagation loss estimation and their error distribution statistics using classical Egli model
and adapted Egli model for Cell_4
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Performance statistical metrics
To quantitatively examine the performance of the non-linear regression approach, six

standard statistical metrics are engaged. These include the root mean square error

(RMSE), maximum absolute error (MAE), mean absolute percentage error (MAPE),

mean absolute error (MAE), standard deviation error (STD), and mean percentage re-

sidual error (MPRE). Detailed information about these statistical metrics can be found

in [35, 42–45].

Results and discussions
The results of the study and valuable discussions are presented in this section. As

shown in Figs. 4, 5, 6, and 7, the top parts of the graphs reveal how the classical Egli

model in eq (9) predicts the acquired propagation loss values relative to the measured

distances across the study site locations. It is conspicuously clear from the graphs in

Figs. 4, 5, 6, and 7 that the classical Egli model over-predicted the measured propaga-

tion loss with considerably high RMSE, MAE, MAPE, MAE, STD, and MPRE values in

sites 1 to 4. Such significant error differences may be attributed to the physical terrain

and topographical differences between locations where the measurement loss data is

conducted and the terrain characterization where the Egli model was developed. Thus,

the need to adapt (fine-tune) the Egli model to fit the measured propagation loss data

is self-evident.

To adapt the Egli model to the measured propagation loss data acquired over the two

study locations using the non-linear square regression method, we employ the robust

Table 2 Estimated coefficients and statistics for Cell_1 to Cell_4

Cell Cell
sector

Classical Egli model
parameters

LM-adapted Egli model
parameters

GN adapted Egli model
parameters

Cell_
1

A1 76.60 72.24 11.18

A2 20 6.16 − 0.50

A3 20 26.20 26.87

A4 10 10.71 − 26.50

A5 40 39.34 73.93

Cell_
2

A1 76.60 73.25 − 63.27

A2 20 9.60 10.71

A3 20 24.49 57.07

A4 10 10.53 − 17.41

A5 40 30.48 86.23

Cell_
3

A1 76.60 73.98 − 16.22

A2 20 12.07 0.161

A3 20 23.49 25.73

A4 10 10.40 − 14.42

A5 40 28.69 80.77

Cell_
4

A1 76.60 73.35 146.00

A2 20 9.93 − 28.21

A3 20 24.35 − 53.76

A4 10 10.51 44.35

A5 40 29.39 10.39
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Levenberg-Marquart algorithm and the commonly used Gauss-Newton algorithm.

Table 2 displays the obtained adaptive coefficients of the Egli model and their descrip-

tive statistical values after employing the non-linear square regression method for its

adaptation across the propagation loss measurement locations. Furthermore, Table 2

presents the estimation errors using the Egli model before and after the adaptation to

measured field propagation loss data in the study locations. Moreover, Figs. 4, 5, 6, and

7 are plotted graphs showing the estimation performance of the Egli model on the mea-

sured propagation loss before and after its adaptation in the four study locations using

the Levenberg-Marquart algorithm and the commonly used Gauss-Newton algorithm.

Fig. 8 Measured propagation loss estimation and their error distribution statistics using classical Egli model
and adapted Egli model for Cell_1

Fig. 9 Measured propagation loss estimation and their error distribution statistics using classical Egli model
and adapted Egli model for Cell_2
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Based on the obtained adapted propagation model parameters summarized in Table

2 using the LM algorithm, the Egli model loss PlEgli(dB) for cell_1 to cell_4 can be writ-

ten as (25)–(28):

PlEgli dBð Þ ¼ 72:24þ 6:16 log10 f t MHzð Þ
� �

þ 26:20 log10 Htrð Þ−10:71 log10 Hrð Þ
þ 39:34 log10 dcð Þ ð25Þ

Fig. 10 Measured propagation loss estimation and their error distribution statistics using classical Egli
model and adapted Egli model for Cell_3

Fig. 11 Measured propagation loss estimation and their error distribution statistics using classical Egli
model and adapted Egli model for Cell_4
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PlEgli dBð Þ ¼ 73:25þ 9:60 log10 f t MHzð Þ
� �

−24:49 log10 Htrð Þ−10:53 log10 Hrð Þ
þ 30:48 log10 dcð Þ ð26Þ

PlEgli dBð Þ ¼ 73:98þ 12:07 log10 f t MHzð Þ
� �

þ 23:49 log10 Htrð Þ−10:40 log10 Hrð Þ þ 28:69 log10 dcð Þ ð27Þ

PlEgli dBð Þ ¼ 73:35þ 9:93 log10 f t MHzð Þ
� �

−24:35 log10 Htrð Þ−10:51 log10 Hrð Þ
þ 29:39 log10 dcð Þ ð28Þ

Taking the mean of the first two eq (25)–(26) and the last two eq (27)–(28) leads to

the adapted Egli models obtained for Port Harcourt City and Uyo City in (29) and (30),

respectively:

PlEgli dBð Þ ¼ 29:75þ 35:16 log10 f t MHzð Þ
� �

þ A3 log10 Htrð Þ−A4 log10 Hrð Þ
þ 9:42 log10 dcð Þ ð29Þ

PlEgli dBð Þ ¼ 32:16þ 26:90 log10 f t MHzð Þ
� �

þ A3 log10 Htrð Þ−A4 log10 Hrð Þ
þ 11:54 log10 dcð Þ ð30Þ

The above expressions also reveal that the mean rate of propagated loss attenuation

for Port Harcourt City and Uyo City are 3.5 and 2.9, respectively. As expected, the

values also clearly reveal that the signal loss attenuation rate in Port Harcourt is about

30% higher than the one obtained for Uyo. The higher signal loss attenuation rate may

be ascribed to higher cluttered buildings, other obstructions, and congested human/ve-

hicular traffic in Port Harcourt than Uyo city.

Additionally, Figs. 8, 9, 10, and 11 provided the residual error distribution quantita-

tively fits of the LM and GN regression methods along with the measured propagation

Table 3 Computed first order estimates statistics for Cell_1

Error estimation
parameters

Estimation error with
classical Egli

Estimation error with LM-
adapted Egli

Estimation error with GN
adapted Egli

MAE 62.67 5.37 8.56

MAPE 28.63 3.45 5.38

STD 5.86 3.62 5.86

RMSE 63.00 6.48 10.37

PE 36.56 10.50 23.55

MPRE 40.43 3.50 5.56

Table 4 Computed first order estimates statistics for Cell_2

Error estimation
parameters

Estimation error with
classical Egli

Estimation error with LM-
adapted Egli

Estimation error with GN
adapted Egli

MAE 71.37 5.01 17.34

MAPE 31.51 3.23 15.39

STD 16.36 3.89 16.36

RMSE 71.71 6.34 23.84

PE 39.81 13.51 16.84

MPRE 46.27 3.26 11.63
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loss data. In terms of mean percentage residual error indicated with letter W in the

graphs, the LM method attained 3.53, 3.50, 3.26, and 2.04, respectively, whereas the

GN method attained more flawed values of 4.77 5.56, 11.63, and 15.09. Furthermore,

plots showing normal distribution fits are shown in each figure to reveal the residual

error distribution spreads using the LM and GN methods. Again, lower error spreads

with LM over the GN method in each plot show a better Egli model adaptation effi-

ciency. The enhanced estimation performance of the LM-based adapted Egli model

relative to the GN measured propagation loss data can be attributed to its ability to

tune multiple free parameters and achieve optimal solutions regardless of the nature of

the initial guess parameters selected.

Estimation error analysis

The estimation errors are obtained using six standard statistical indicators. These

comprise the root mean square error (RMSE), maximum absolute error (MAE),

mean absolute percentage error (MAPE), mean absolute error (MAE), standard

deviation error (STD), and mean percentage residual error (MPRE), as briefed in

the “Adaptation of the classical Egli propagation loss model” section. For con-

venience, we also used W to refer to the mean percentage residual error (MPRE)

in the results, as shown in Figs. 8, 9, 10, and 11. The computed first-order esti-

mates statistics are presented in Tables 3, 4, 5, and 6. Specifically, the computed

first-order estimates statistics for Cell_1 are presented in Table 3. The calculated

first-order estimates statistics for Cell_2 are given in Table 4. The calculated

Table 5 Computed first order estimates statistics for Cell_3

Error estimation
parameters

Estimation error with
classical Egli

Estimation error with LM-
adapted Egli

Estimation error with GN
adapted Egli

MAE 67.37 3.24 24.59

MAPE 29.49 2.04 13.27

STD 10.62 2.30 10.62

RMSE 67.62 3.97 26.79

PE 34.20 8.90 35.58

MPRE 41.93 2.04 15.09

Table 6 Computed first order estimates statistics for Cell_4

Error estimation
parameters

Estimation error with
classical Egli

Estimation error with LM-
adapted Egli

Estimation error with GN
Adapted egli

MAE 70.37 4.92 6.46

MAPE 32.99 3.52 4.22

STD 5.60 4.59 5.60

RMSE 70.79 6.735 8.55

PE 41.27 12.80 18.03

MPRE 49.58 3.53 4.77
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first-order estimates statistics for Cell_3 are shown in Table 5, and the computed

first-order estimates statistics for Cell_4 are displayed in Table 6.

The summarized fitting performance using LM and GN regression methods

compared with the original Egli model on the measured loss data for each eNo-

deB cell are displayed in Tables 3, 4, 5, and 6. With MAE and RMSE, the LM

method attained 0.18, 0.37, 2.32, 3.41 and 5.33, 2.12, 4.23, 4.56 values compared

to GN-based adapted Egli model that attained 3.80, 3.32, 3.56, 5.44 and 5.12,

7.13, 8.22, 10.21, respectively. Improved fitting performances are recorded for the

adapted Egli model using STD, MAPE, and MPRE statistical metrics. It is worth

noting that lower computed error values with the indicators depict a better esti-

mation accuracy.

Finally, field measurements taken from four selected eNodeB transmission

sites located in Uyo and Port Harcourt in Nigeria were used in this study. The

adapted Egli model was derived based on these measurements. In order to test

the validity of the model, we compared the adapted Egli model with another set

of measurements taken from another cell different from the initial four eNo-

deBs tested. The height of the new eNodeB investigated is 32 m, and other pa-

rameters of the eNodeB were observed. The results of our comparison are

shown in Fig. 12. Other valuable results include A1=7.39, A2=9.18, A3=-2.60,

A4=0.57, A5=41.11. MAE=3.38, MAPE=2.15, STD=2.80, RMSE=4.40, and PE=

7.63.

Conclusions
A detailed investigation to improve real-time propagation path loss estimation using

two closed medium-sized cities in Nigeria was presented in this paper. By employing a

non-linear square regression method based on the Levenberg-Marquart algorithm,

Egli’s model was adapted to get an improved fitting for propagation loss in the investi-

gated cities. Additionally, the performances of the adapted Egli model and the classical

Egli model based on the measured propagation loss data have been demonstrated using

Fig. 12 Comparison of measured pathloss from the new eNodeB and the LM-based adapted Egli model
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six different statistical indicators for comparative analysis. The adapted Egli model dis-

played lower estimation errors than the classical model across the two cities studied.

The results reveal that the adjusted Egli model parameters better fit the two cities in-

vestigated and can be deployed to efficiently plan macrocellular communication net-

works in similar propagation environments. Finally, the work in this paper could

provide valuable guidelines and references in dimensioning or optimizing cellular net-

work deployment. Future work would focus on optimizing the parameters of the

adapted Egli model for improved performance and providing correction factors to ease

its applicability in other related propagation environments for emerging wireless com-

munication systems.
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