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Abstract 

Feature enhancement is important in mechanical equipment fault diagnosis. A limited 
set of characteristic parameters is insufficient for diagnosing bearing signals with multi-
ple fault types. The presence of noise increases the difficulty of extracting fault features 
from images. To address the challenge of diagnosing rolling bearing faults in complex 
environments, this study presents an enhanced weighted image fusion framework 
aimed at enhancing fault features within the images, which enables accurate diag-
nosis of bearing faults using a limited number of features. The proposed method 
encompasses four distinct stages. In the first stage, a symmetrized dot pattern method 
is employed to transform one-dimensional time-series data into two-dimensional 
images, visualizing the signal in a 2D format. In the second stage, image binarization 
and an improved weighted fusion method are utilized to simplify subsequent process-
ing and enhance the image features. The third stage involves extracting the image’s 
contrast and maximum singular value to improve the Canberra distance calculation. 
Finally, the enhanced Canberra distance is used for classifying bearing faults. Perfor-
mance testing of the image feature enhancement is conducted on various datasets 
containing rolling bearings. Comparative experiments with alternative enhancement 
methods demonstrate the superiority of the proposed improved weighted image 
fusion framework. Comparative experiments with the original Canberra distance vali-
date the effectiveness of the enhanced Canberra distance. Additionally, experiments 
conducted in noisy environments confirm the robustness of the proposed approach. 
Furthermore, the image feature enhancement method is applied to other bearing 
datasets, and the experimental results demonstrate its effectiveness in enhancing fault 
feature representation and achieving accurate diagnosis of rolling bearings.

Keywords: Rolling bearing, Symmetrized dot pattern, Variational mode 
decomposition, Canberra distance, Improved weighted average, Fault diagnosis

Introduction
The smooth operation of mechanical equipment is essential for ensuring efficient indus-
trial production. The health status of mechanical equipment can be determined through 
diagnostic techniques. Analyzing the diagnostic results can help reduce the occurrence 
of faults. Analyzing the health of equipment enables planned maintenance and prevents 
failures from occurring in advance [1].
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Fault diagnosis of mechanical equipment primarily involves analyzing the collected 
signals [2]. Early signal processing methods focus on time domain analysis, frequency 
domain analysis, and time–frequency domain analysis [3]. Time domain analysis enables 
direct processing of the collected time series [4]. Frequency domain analysis involves 
separating different frequencies of signals and analyzing the frequency components of 
interest in detail. It is particularly suitable for processing nonstationary signals [5]. For 
instance, the empirical wavelet transform (EWT) based on the Fourier transform can be 
employed to construct adaptive wavelets. This decomposition method is suitable for ana-
lyzing nonstationary signals and allows for the adaptive decomposition of signals [6]. In 
[7], empirical mode decomposition (EMD) and its improved versions are discussed. The 
use of signal decomposition methods enables better processing and analysis of signals. 
In fault diagnosis, it is possible to directly extract features from signals. Differentiation 
of various data sets is achieved through the differences in these features [8]. Addition-
ally, image-formatted data is better suited for novel intelligent methods [9]. For instance, 
machine learning and deep learning have found broad application in signal analysis [10]. 
In [11], 96 features were extracted from color fundus images. Accurate diagnosis of dia-
betic retinopathy is achieved through the established artificial intelligence classification 
model. This reference provides an artificial intelligence model with low computational 
complexity and high classification accuracy. The model effectively addresses nonlinear 
dynamical problems.

Various techniques can be employed to enhance images, such as histogram equaliza-
tion, contrast enhancement, texture enhancement, and image filtering. It is important 
to adopt appropriate processing methods for different types of images. Image enhance-
ment in mechanical fault diagnosis aims to emphasize fault features while suppressing 
irrelevant ones. Bai et al. [12] utilized the channel selection method to enhance perfor-
mance for extracting the features of interest in the image. On one hand, this method 
can decrease computation requirements and mitigate the impact of noise [13]. Kim 
et al. [14] used a multi-scale convolution filter to enhance fault features. This process-
ing method facilitates the diagnosis of gearbox faults. Wu et  al. [15] applied an adap-
tive logarithmic normalization method to enhance the quality. This method enhances 
image details and yields favorable results in rolling bearing tests. Jablonski et  al. [16] 
aimed to obtain a clearer spectrum image, thus employing STFT for automatic analy-
sis of image conversion parameters. This method can make the spectrum image more 
clear. Enhancing image definition can result in more prominent feature components of 
the signal. Wodecki et al. [17] employed a nonnegative matrix decomposition method to 
differentiate between the image’s features and noise. This image enhancement method 
can mitigate the impact of noise. It enables the filtration of specific noise components 
for fault diagnosis in rotating machinery. Reinhold et al. [18] applied the redistribution 
method to process the energy distribution of the image’s time–frequency spectrum. This 
image enhancement method enhances the spectrum’s robustness against noise. There-
fore, image enhancement methods play a significant role in using images to diagnose 
mechanical equipment.

There are several widely used methods for signal transformation of image in the fault 
diagnosis of mechanical equipment, including recursive images, scalogram, fast kurtogram, 
Gramian angular field, and Markov transition field. Consequently, image enhancement 
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methods play a significant role. Enhanced images can better highlight signal characteris-
tics, thus providing an improved basis for fault classification. Peng et al. [19] developed an 
adaptive image segmentation algorithm that effectively mitigates distortion in two-dimen-
sional images obtained from scanning imaging. Long et al. [20] employed the scale invar-
iant feature transform to extract features from the symmetrized dot pattern. Wang et al. 
[21] converted signals into images using short-time Fourier transform (STFT). They then 
used a convolutional neural network for fault classification. Tang et al. [22] employed the 
Gramian angular summary field to convert rotational signals into diagnostic images. This 
method exhibits excellent performance in processing noisy signals. Li et al. [23] utilized a 
weighted horizontal visibility map to convert signals into images, specifically focusing on 
image edge processing. The advantage of this image enhancement method lies in its abil-
ity to attenuate the influence of noise. Fang et al. [24] employed a data conversion image 
method for fault diagnosis. Additionally, they proposed a spatial attention mechanism for 
adjusting image outputs. This image enhancement method exhibits robust anti-interference 
capabilities. Wang et al. [25] introduced a temporal-spatial graph method for converting 
signals to images. They utilized the graph-mapped spectrum for diagnosing bearing faults. 
This method enhances the frequency features of the signal and is applicable for diagnosing 
bearing faults. In conclusion, image processing methods are extensively employed for fault 
diagnosis of mechanical equipment [26]. Therefore, image processing and enhancement 
methods are also a very important research direction.

The vibration signal of rolling bearings is a nonstationary signal. Traditional time-
domain and frequency-domain analysis methods cannot intelligently extract fault features. 
Image-based fault diagnosis methods can achieve intelligent fault diagnosis. However, 
the symmetrized dot pattern method, which converts one-dimensional signals into two-
dimensional images, increases data dimensionality. Images contain a lot of redundant 
information, so enhancing fault features in the image can improve the effectiveness of fault 
diagnosis. In practical industrial production, signals are often influenced by noise. Studying 
the enhancement of fault features through image denoising is meaningful. It improves fault 
classification effectiveness. Therefore, the purpose of this paper is to achieve accurate fault 
classification through feature enhancement of images.

In this paper, a new method of image enhancement is proposed to process the syn-
chronized dot pattern after signal conversion. The method of image enhancement is used 
to diagnose the fault on the bearing test bed. The method of image enhancement is also 
verified under different noise signals. The rest of this paper is arranged as follows. In the 
“Methods/experimental” section, methods for image enhancement are introduced. In the 
“Methods” section, relevant experiments were designed, and the experimental results were 
analyzed. In the “Results and discussion” section, comparative experiments were designed 
to verify the effectiveness of this method. In the “Limitations and implications of research 
findings in the current research context” section, the potential challenges of SDP images are 
discussed. The conclusion is given in the “Conclusion” section.

Methods/experimental
Aim

This study aims to classify various types of bearing faults using the vibration sig-
nals of rolling bearings, employing techniques such as image conversion and image 
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enhancement. Specifically, the research focuses on addressing the classification problem 
of bearing fault types under noisy conditions.

Design and setting

This paper presents the development of the SDP image feature enhancement method 
and the enhancement of Canberra features for fault detection. As illustrated in Fig. 1, the 
method is primarily divided into two parts: image enhancement and feature extraction. 
The improved grayscale-weighted average method and the utilization of maximum sin-
gular value and contrast play vital roles in enhancing the Canberra distance.

The research methodology in this paper is divided into three parts. The specific pro-
cess is described as follows: In the first part, a method for image feature enhancement is 
proposed. In the second part, an improved method for extracting Canberra distance fea-
tures is presented. In the third part, a workflow for fault diagnosis of rolling bearings is 
proposed. The diagnostic effectiveness of this method is validated through experiments.

In the image enhancement phase, data from each working condition is selected sepa-
rately. Random selection of data with a length of 6000 is performed. The selected data is 
divided into 10 groups. Each group has an average of 600 data points. The 10 groups of 
data are first converted into SDP images. These SDP images are then transformed into 
grayscale images. Then, an enhanced image is obtained using the improved grayscale-
weighted averaging method. The purpose of this process is to highlight fault features.

In the feature extraction part, the first step is to calculate the maximum singular value 
and contrast of the enhanced image. Then, the Canberra distance between the 10 gray-
scale images and the enhanced image is calculated. Use the three obtained features to 

Fig. 1 Design of the flowchart for the proposed method
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obtain improved Canberra distance features. Finally, utilize these features to achieve 
fault classification for rolling bearings.

In the experiment, the fault types and data are first randomly selected. Then, the data 
undergoes the same image enhancement and feature extraction processes. By comparing 
the obtained features with the known working condition features, the diagnosis of bear-
ing fault types is achieved.

Participants or materials

The rolling bearing dataset used in this study comes from the bearing data center at Case 
Western Reserve University (CWRU). The experimental device is depicted in Fig. 2. The 
device is capable of inducing bearing faults under varying loads and fault diameters. Its 
primary working conditions involve inner ring, outer ring, and ball faults. The dataset is 
further divided into single-point defects of varying sizes. At different sampling frequen-
cies, the original time-domain vibration signal is formed.

This data set collects time-series data of drive end, fan end, and base. The time series 
of the driving end is used in this experiment. The specifications of the bearing used are 
shown in Table 1. All the data are at 12-kHz sampling frequency. The total length of each 
data is 120,000. Each group of data is divided into two parts. The data length of each part 
is 60,000. One part of the data is used for feature extraction. The other part of the data is 
used for experimental validation.

Processes and methodologies

This study utilizes variational mode decomposition and an enhanced weighted average 
method to enhance the fault features in symmetrized dot pattern (SDP). The diagnos-
tic accuracy is considered as the evaluation metric. This method is employed to achieve 
accurate classification of rolling bearing faults in a noisy environment and to exploit 
the fault data in the images. To achieve effective diagnosis, four processing methods 
are employed: variational mode decomposition (VMD), symmetrized dot pattern, an 

Fig. 2 Experimental platform
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improved weighted average method, and improved Canberra distance feature. Firstly, 
the signal is denoised using variational mode decomposition. Then, the denoised sig-
nal is transformed into an image using the SDP method. The enhanced weighted aver-
age method is utilized to enhance the fault features in the image for fault data mining. 
Finally, the improved Canberra distance feature is used to extract image features for fault 
diagnosis.

Ethics approval and consent

This study does not involve human participants, data, or tissue, nor does it involve ani-
mals. Therefore, ethics approval and consent are not applicable.

Statistical analysis

Statistical analysis was not conducted in this study. Ethics approval and consent are not 
applicable, and statistical analysis is not performed.

Methods
Variational mode decomposition

Variational mode decomposition can adaptively decompose the original signal, which 
can be transformed into the corresponding variational problem construction and solu-
tion [27]. It is mainly divided into the following three steps. In Hilbert transform to find 
the analytical signal, by multiplying with e−jωk t , the formula is as follows:

where.
δ(t) = Dirac function.
γ (t) = The distribution function.
vk(t) = The kth mode component.
The analysis signal of vk(t) is calculated by Hilbert transformation [28]. By multiplying 

with the operator e−jωk t , the central band of vk(t)  is modulated to the corresponding 

(1)(δ(t)+
j
π t ) ∗ vk(t)

Table 1 Types of rolling bearings

Fault type Load (HP) Fault 
diameter 
(mm)

Normal status 1 -

Inner ring fault 1 0 0.1778

Inner ring fault 2 2 0.1778

Inner ring fault 3 3 0.5334

Outer ring fault 1 1 0.3556

Outer ring fault 2 1 0.5334

Outer ring fault 3 1 0.1778

Ball fault 1 1 0.1778

Ball fault 2 2 0.1778

Ball fault 3 2 0.5334
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baseband, as shown in Eq. 2. Estimate the bandwidth of the signal, that is, calculate the 
square norm L2 of the demodulation gradient, as in Eq. 3.

where.
ωk = The center frequency of each component signal.
 ∗  = Convolution operation.
f  = The input signal.
The VMD method adaptively decomposes the signal by searching for the optimal solu-

tion of the aforementioned constrained variational model. During the iterative solving 
process, the central frequency and bandwidth of each component are gradually updated, 
and ultimately, the IMF components are adaptively partitioned based on the signal’s own 
frequency domain characteristics. When solving this model, it is necessary to introduce 
the quadratic penalty factor α and the Lagrange operator �(t) . This transformation trans-
forms the above constrained variational problem into the following unconstrained vari-
ational problem:

where.

k vk(t) = The sum of IMF components.
α = Quadratic penalty factor.
�(t) = Lagrange operator.
By alternately updating vk(t) , ωk , and � , the aim is to find the saddle point in the 

expression. The updating process of each modal component is as follows:

Convert the above equation into a frequency domain expression as follows:

By solving the equation, the optimal solution to the optimization problem can be 
obtained as follows:

where

(2)[(δ(t)+
j
π t ) ∗ vk(t)]e

−jωk t

(3)

{

min
{vk }{wk }

{
∑

k ||∂t [(δ(t)+
j
π t ) ∗ vk(t)]e

−jωk t ||
2
}

s.t.
∑

k vk = s

(4)

L({vk}, {ωk}, �) =

��(t), f (t)−
∑

k vk(t)� + � f (t)−
∑

k vk(t) �
2
2 + α

∑

k � ∂t(σ (t)+
j
π t )vk(t)e

−jωk t) �
2

2

(5)

vn+1
k = argmin

vk∈X

{� f (t)−
∑

i vi(t)(t +
�(t)
2 ) �

2

2
+ α� ∂t [(δ(t)+

j
π t )vk(t)]e

−jωk t �
2

2
}

(6)

v̂n+1
k = argmin

v̂k ,vk∈X

{� f̂ (t)−
∑

i v̂i(ω)+
�̂(ω)
2 �

2

2
+ α� jω[(1+ sgn(ω + ωk))v̂k(ω + ωk)] �

2
2}

(7)v̂n+1
k (ω) =

x̂(ω)−
∑K

i=1,i �=k v̂i(ω)+
�̂(ω)
2

1+2α(ω−ωk )
2
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K  = the number of decomposition layers.

Principle of symmetrized dot pattern

Symmetrized dot pattern (SDP) is a simple image conversion method. It maintains the 
relationship between amplitude and frequency of the signal [29]. For discrete signals, 
this transformation can obtain corresponding points at different positions in polar coor-
dinates. For the sampled discrete signal, this conversion can obtain corresponding points 
at different positions of polar coordinates. The distribution of points can directly display 
the features of signals. The schematic diagram of SDP conversion is shown in the Fig. 3.

For a time series, xi represents the i-th sampling point of the signal, and x(i+l) is 
the sampling point after adjacent time l . According to the SDP conversion princi-
ple, sampling points at different times can be converted to polar coordinate space 
P(r(i), θ(i),φ(i)) . The radius from the center point can be expressed as follows:

where
xi = The i-th signal value
xmin = The minimum value in the signal sequence.
xmax = The maximum value in the signal sequence.
xmean = The mean value of the signal sequence.
The anticlockwise rotation angle θ(i) and the clockwise rotation angle φ(i) along the 

initial line are projected by the adjacent points x(i+l) . The rotation angle can be expressed 
as follows:

where.
ζ = The angular gain factor of the plot.
θ(i) = The angle of counterclockwise rotation along the initial line.
φ(i) = The angle of clockwise rotation along the implementation line

(8)r(i) = xi−xmean
xmax−xmin

(9)θ(i) = ϕ +
xi+l−xmean

xmax−xmin
ζ

(10)φ(i) = ϕ −
xi+l−xmean

xmax−xmin
ζ

Fig. 3 Schematic diagram of symmetrized dot pattern
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 ϕ = The symmetrical rotation angle of the mirror. ϕ = 360×m/n, (m = 1,2, . . . , n)

l = The time interval, usually between 1 and 10.
In this paper, SDP provides a way to convert data into images. This method converts 

one-dimensional time series into two-dimensional space. The features of the time 
series are converted into features such as contrast, texture, and shape in the image. 
This provides a suitable data format for subsequent feature enhancement. Compared 
with time–frequency analysis and raw signal-based methods, the proposed method 
has better adaptability to nonstationary signals. The data features are integrated into 
the features of the image. Image data is more convenient for intelligent extraction and 
analysis.

Image feature enhancement

The grayscale image is composed of different grayscale values. The value of each pixel 
is in the range of 0 to 255 [30]. Image graying is mainly to convert color images into 
grayscale images. The conversion formula is shown in Eq. 7. The grayscale image con-
verts the three-channel color image into a grayscale matrix.

where.
R(i, j) = The red channel pixel value.
G(i, j) = The green channel pixel value.
B(i, j) = The blue channel pixel value.
a , b , and c = The weights of pixel values of different channels.
Gray(i, j) = The grayscale values of the i th row and j th column of the grayscale 

image.
Image fusion is a process that involves processing and synthesizing images. Images 

are collected from multiple channels to create high-quality images. The purpose of 
image fusion is to weaken the uninterested content in the image. It also aims to sup-
press noise and highlight the key information of the image. Image fusion methods are 
mostly used to process remote-sensing images, infrared images, and medical images. 
Pixel level fusion is the process of finding the mean of the corresponding pixels in dif-
ferent images. The calculation formula can be expressed as follows:

where.
In(x, y) = The i th input grayscale image.
N  = The number of images.
G(x, y) = The fused pixel matrix.
The equation combines multiple images I(i, j) into one image FuImage(i, j) . The pixel 

values of FuImage(i, j) are determined by the average pixel values of all images.
This simple grayscale averaging method cannot handle images well. For grayscale 

SDP images, this paper proposes an improved grayscale-weighted average method. 

(11)Gray(i, j) = a× R(i, j)+ b× G(i, j)+ c × B(i, j)

(12)FuImage(i, j) = (

N
∑

i=1

Ii(i, j))/N
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Different from the original method, this method first performs statistics on the gray 
values of the input images. The number of pixels that meet the condition is denoted 
as Npx . The pixel values of the enhanced image are determined based on the compari-
son between Npx and the threshold T  . When Npx is less than the threshold, the pixel 
value of the enhanced image is determined by the input image. When Npx is greater 
than the threshold, the pixel value is set to 255. The specific mathematical formula is 
as follows:

where.
Npx = The number of pixels with a value of 255 corresponding to multiple images
T  = The threshold range between 0 and N
ω = The weight value
EnhanceImage(i, j) = The grayscale values of the i th row and j th column of the 

enhanced image.

Original canberra distance

The distance reflects the similarity between two samples. Manhattan distance calculates 
the sum of longitudinal and transverse distances. The Canberra distance is normalized 
based on the Manhattan distance. This processing eliminates the dimensional influence 
between different distances.

For two n-dimensional vectors, calculate the distance between the corresponding ele-
ments separately. Finally, summing n distance values can obtain the distance between 
two vectors. The Canberra distance between two vectors is expressed as follows:

where.
p and q = Respectively vectors of the same length.
d(p, q) = The Canberra distance between vector p and vector q
For two n× n matrices, first calculate the distance between the corresponding row 

vector. Then average the distance of n row vector to get the distance between the last two 
images. The Canberra distance between two matrices can be expressed as follows:

where.
dCanberra = The average value of Canberra distance.
pi = The i th row vector.
n = The number of rows in the matrix.

Improved canberra distance feature in SDP image

A grayscale image is a matrix. Each element of this matrix has grayscale values between 
0 and 255. Each pixel in the image corresponds to a different grayscale value. Therefore, 

(13)EnhanceImage(i, j) =

{

(
∑N

i=1 ωn×In(i,j))
(N−Npx)

Npx < T

255 Npx ≥ T

(14)d(p, q) =
∑n

m=1 |
pm−qm

|pm|+|qm|
|

(15)dCanberra =
∑n

i=1 d(pi−qi)
n
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the Canberra distance can be used to extract features between two grayscale images. 
However, the Canberra distance cannot fully meet the diagnosis of bearing faults. In 
order to improve the performance of fault diagnosis, an improved Canberra distance is 
proposed based on the original Canberra distance. Two parameters are mainly used for 
improvement. These two parameters are singular value and contrast. The improved Can-
berra distance is shown in Eq. 12.

where:
σmax = The maximum singular value.
Con = The contrast of an image.
D = Enhanced Canberra distance.
k = A positive integer, and its main function, is to adjust the size of features and 

expand differences in features.
Singular value decomposition (SVD) is used in signal processing, data fusion, data 

reduction, and image denoising. Its principle is to transform the original complex matrix 
into three basic matrices. Let the original matrix be S , and the matrix is a real matrix 
with rank greater than 0. Then the singular value of matrix S is decomposed into the 
following:

where.
S = The real matrix of m× n order.
U is a unitary matrix of order m×m

V  = A unitary matrix of order n× n

V ×H = The conjugate transposition ofV  
∑

= (

σ1 · · · 0
: · · · :
0 · · · σmax

) , σmax represents the maximum singular value. σ1 ≥ σ2 ≥ σ3 ≥

· · · σmax > 0.
A grayscale image can also be extracted by singular value decomposition. The singular 

value of the matrix can represent the feature information in the matrix. Here, the maxi-
mum singular value is selected as the parameter to improve the Canberra distance.

The gray-level co-occurrence matrix (GLCM) describes the texture characteristics 
of an image by analyzing its gray space. Figure 4 is a schematic diagram of converting 
an image to a gray-level co-occurrence matrix. The gray-level co-occurrence matrix 
describes the correlation characteristics of gray levels in an image based on the relation-
ship between gray levels of pixels. The principle of the gray-level co-occurrence matrix is 
to count the number of times a certain pixel appears at a specific angle.

Figure  4a is a geometric representation of the gray-level co-occurrence matrix. 
F(i, j) = a indicates that the pixel value in the i th row and j th column of the image 
is a . X represents the horizontal distance from the pixel value a to the pixel value b . Y  
represents the vertical distance from the pixel value a to the pixel value b . Figure 4b is a 
pixel value matrix of the original image. The numerical value in the box represents the 
grayscale value of the pixel. Figure 4c is a gray-level co-occurrence matrix. The grayscale 

(16)D = (σmax/(k × dm))Con

(17)S = U(

∑

0
0 0

)VH
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value of the original image ranges from 0 to 2. Therefore, the horizontal and vertical 
directions of the gray-level co-occurrence matrix are also within the range of 0 to 2. 
When α = 45◦,X = 1,Y = 1 , the gray level co-occurrence matrix conversion process is 
shown in the figure. The number of occurrences from green pixel value 1 to red pixel 
value 1 is 1. Therefore, the value corresponding to the yellow position of the gray-level 
co-occurrence matrix is 1. Different features of an image can be extracted from the gray-
level co-occurrence matrix, such as the energy, correlation, and contrast of an image. 
Because contrast reflects the clarity and depth of the image texture. Here, contrast is 
used to improve the Canberra distance. The formula for calculating contrast is shown in 
Eq. 14.

where.
P(i, j) = The distribution probability of the distance (i, j) between pixel values.

Results and discussion
Based on the fault diagnosis scheme outlined in Fig. 1, this experimental study devel-
oped a program for feature enhancement and extraction. Additionally, precision experi-
ments were designed for verification. During the image enhancement stage, the original 
signal is processed to enhance fault features and reduce noise interference. Variational 
mode decomposition (VMD) is employed to decompose the nonstationary bearing sig-
nals from each working condition. In Fig. 5, the original signals from 10 working con-
ditions are decomposed into two components. The blue line represents the time series 
of the original signal. The red line represents the time series of the first intrinsic mode 
function (IMF1) after VMD, and the yellow line represents the time series of the second 
mode function (IMF2). Through the figure, we can observe that the first intrinsic mode 
function (IMF 1) retains the characteristic information of the original signal. Compared 
to the IMF 2 signal, the IMF 1 signal exhibits more pronounced features. Consequently, 
the first component is selected as the decomposed data.

(18)CON =
∑

i

∑

j(i − j)2P(i, j)

Fig. 4 Schematic diagram of gray-level co-occurrence matrix. Geometric representation (a). Original image 
(b). GLCM (c)
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According to the SDP transformation method, the IMF1 signal is converted into an 
image format. The signals and images of different fault types are shown in Fig. 6. Due 
to the VMD processing, the features of the signal are more apparent. These features 
can be observed more intuitively through the SDP image.

The size of each SDP image is 750× 750 . When the signal is converted into an 
image, the features of the vibration signal become the shape, texture, and thickness 
of the image. The images of different types of signals are different. For instance, the 
normal working condition displays a smoother fan flap shape, while inner ring fault 
3 exhibits a slenderer shape. Outer ring fault 2 appears in a discrete state, while ball 
fault 3 is more concentrated. However, due to nearly identical original signals for ball 
fault 1 and ball fault 2, the resulting converted images also bear strong resemblance. 
Different types of faults can be classified through the analysis of images. However, it is 
still difficult to extract the features of weak faults.

In order to enhance the weak fault features in the signal, this paper proposes an 
image feature enhancement method. Firstly, the time series decomposed by vari-
ational mode decomposition are uniformly divided into 10 groups. The SDP transfor-
mation method is used to plot the 10 groups of data for each operating condition into 
images. Since the color of the images does not highlight the features of the signal, it 
is necessary to process the images into grayscale. The grayscale images for each oper-
ating condition are shown in Fig. 7. Each row in the figure represents one operating 
condition, and each operating condition contains 10 images.

From Fig. 7, we can observe that there are differences in the SDP images under dif-
ferent operating conditions. This indicates that the SDP images can reflect the fault 
features of the signal. However, there are also varying degrees of differences between 
the images under the same operating condition. This indicates that the transformed 
images of the signal are not stable. Additionally, random points generated by noise in 
the images also affect the stability of the images. The instability of the images can lead 
to errors in fault diagnosis. To solve this problem and obtain stable images, we pro-
pose an improved weighted averaging method for image processing.

The schematic diagram of this improved SDP image-weighted averaging method 
is shown in Fig.  8. It is a pixel-level image fusion algorithm. The algorithm can be 
divided into four parts: pixel value acquisition, pixel value judgment, counting pixel 

Fig. 5 Time domain images of components after VMD under different fault conditions
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values, and pixel synthesis. The detailed explanations for these four parts are as 
follows:

In the pixel value acquisition stage, it is necessary to traverse the pixel values of each 
row and column of 10 images. In the pixel value judgment stage, the pixel values of 

Fig. 6 Time domain image and SDP image under different working conditions
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the same row and column of 10 images are compared. It determines whether the pixel 
value is equal to 255. In the counting pixel values stage, the number of times that the 
pixel value is not equal to 255 is counted. The count can range from 0 to 10. In the pixel 

Fig. 7 Gray SDP images under different working conditions after grouping

Fig. 8 Flow chart of improved grayscale-weighted average method
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synthesis stage, the relationship between the count and the threshold value is deter-
mined. When the count is less than the threshold value, the enhanced pixel value of the 
image is obtained through weighted averaging. When the count is greater than or equal 
to the threshold value, the enhanced pixel value of the image is set to 255.

By using the above image feature enhancement method, random points in the image 
can be eliminated. And the fault feature information in the 10 images is preserved. The 
enhanced images have more obvious feature information compared to the original SDP 
images. In Fig. 9, SDP images under different thresholds are listed. In the figure, each 
column represents an enhanced image under a different threshold. By observing, it can 
be noticed that a larger threshold results in clearer image contours. A smaller threshold 
preserves less information in the image. Different operating conditions exhibit different 
behaviors under different thresholds. For example, the image under normal conditions is 
barely visible when the threshold is less than 2. This indicates that a threshold that is too 
small does not effectively reflect the signal features. When the threshold is set to 10, the 
images between different operating conditions have a high degree of similarity. This is 
not conducive to fault classification.

In order to determine the optimal image enhancement effect at different thresh-
old values, we extract and analyze the features under each threshold condition. After 

Fig. 9 Enhanced images with different thresholds under various conditions
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conducting an accuracy test, the results are presented in Fig. 10. The height of the his-
togram represents the average accuracy under different threshold conditions. Each blue 
dot in the figure corresponds to an accuracy test result. The top horizontal line repre-
sents the highest accuracy achieved in the test set. The bottom horizontal line represents 
the lowest accuracy. The figure shows that the accuracy rate reaches its peak at a thresh-
old value of 7. We believe that the reason for this result is that the fault characteristics 
are most prominent at this threshold. When the threshold is low, too much informa-
tion in the image is eliminated. On the other hand, when the threshold is high, excessive 
noise information is retained. According to Eq. 13, the threshold T  is set to 7. When the 
number Npx of pixels with a value of 255 in the original SDP image is between 7 and 
10 (inclusive), the pixel value of the enhanced image is set to 255. When the number is 
less than 7, the average of the grayscale values of pixels that are not 255 is taken from 10 
images. During the averaging process, white pixel values are not included. This image 
fusion method effectively reduces the influence of random points and enhances the vis-
ibility of features, particularly when the threshold is set to 7.

In the feature extraction stage, it is essential to extract the enhanced Canberra distance 
from the image. This feature involves calculating the Canberra distance, maximum sin-
gular value, and contrast of the image. In this paper, for the feature extraction method of 
SDP images, the Canberra distance measures the similarity between the original gray-
scale image and the enhanced image.

Fig. 10 Accuracy of diagnosis with different thresholds
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The Canberra distance is calculated between 10 sets of SDP images and enhanced 
images under the same working conditions. The mean of these 10 Canberra distances 
is taken as the feature. Table 2 presents the 10 repetitions of the Canberra distance cal-
culated for each working condition. The table shows that the Canberra distance var-
ies within a certain range under different working conditions. Specifically, the original 
Canberra distance of outer ring fault 2 is the smallest. Under normal status, the value 
of the original Canberra distance is the maximum. And it does not overlap with other 
working conditions. Based on Fig. 9 and Table 2, this result indicates that as the area of 
the pattern decreases, the Canberra distance of the image also decreases. The results 
also indicate that Canberra distance can achieve classification of fault types to a certain 
extent. However, the maximum value of ball fault 1 falls within the range of ball fault 2. 
This single feature fails to adequately classify the working conditions. Consequently, the 
original Canberra distance is enhanced by incorporating the maximum singular value 
and contrast.

According to Eq. 16, we first need to calculate the ratio between the maximum singu-
lar value and the Canberra distance. We use the singular value decomposition method 
to decompose the enhanced image. This process generates multiple singular values. The 
maximum singular value is an important feature of a data matrix. Therefore, among 
these multiple singular values, we select the maximum singular value as the feature of 
the enhanced image. Then, the ratio of the maximum singular value to the Canberra 
distance is calculated. At the same time, it is necessary to set a threshold k . When the 
threshold is set to 10, the ratio stays at a suitable size. Ten sets of each operating condi-
tion are randomly selected from the dataset, resulting in Table 3. In the table, we cal-
culate the average maximum and minimum values of the 10 sets of features. From the 
table, we can discover that different working conditions have different ranges of features. 
This can provide reference standards for classification in the fault diagnosis stage.

The final stage of feature extraction involves calculating the contrast of the enhanced 
image. Contrast represents the texture and brightness characteristics of an image. For 
each working condition, calculate the contrast of the enhanced image using the prin-
ciple of gray-level co-occurrence matrix and Eq. 13. Ten sets of contrast data were cal-
culated for each operating condition, as shown in Table 4. From the results in the table, 
we can see that the contrast of normal status is the smallest, while the contrast of outer 
ring fault 2 is the highest. This result can be attributed to the smaller pattern of normal 
status, resulting in lower contrast. The pattern of outer ring fault 2 is larger and darker, 
resulting in higher contrast.

The integration of three features according to Eq.  11 yields an enhanced Canberra 
distance. Figure 11 illustrates a scatter diagram representing three features in a three-
dimensional space. The x-axis corresponds to the Canberra distance. The y-axis cor-
responds to the maximum singular value. The z-axis represents the contrast of the 
image. Each working condition is visually represented by distinct colors in the three-
dimensional space. In the xy plane, it is evident that the Canberra distance is inversely 
proportional to the maximum singular value. Hence, dividing the maximum singular 
value by the Canberra distance reduces the feature’s order of magnitude and dimen-
sion. The figure indicates that the working conditions represented by different colors are 
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concentrated in specific areas. Thus, the diagnosis of various working conditions can be 
achieved by demarcating specific areas for each condition.

During the fault diagnosis stage, upper and lower limits are established for the char-
acteristics of each operating condition. The type of malfunction is determined based 
on whether the improved Canberra distance falls within the predefined range. In the 
feature extraction section, 10 sets of improved Canberra distances can be generated 
for each working condition. The maximum and minimum values of the ratio of the 
maximum singular value to the Canberra distance can be obtained from Table 3. Sim-
ilarly, Table 4 provides the maximum and minimum values of contrast. These feature 

Fig. 11 The representation of Canberra distance, maximum singular value, and contrast in three-dimensional 
space

Table 5 Contrast of enhanced images for 10 operating conditions

Normal status Ratio of maximum singular value to 
Canberra distance

Contrast

Lower bound Upper bound Lower bound Upper bound

Normal status 222.94 239.67 0.36 0.416

Inner ring fault 1 381.61 420.09 0.61 0.630

Inner ring fault 2 426.74 476.41 0.60 0.640

Inner ring fault 3 541.07 667.59 0.74 0.779

Outer ring fault 1 266.37 282.81 0.50 0.525

Outer ring fault 2 763.56 884.34 0.69 0.717

Outer ring fault 3 507.87 537.61 0.63 0.638

Ball fault 1 301.53 320.94 0.60 0.640

Ball fault 2 285.19 297.43 0.58 0.601

Ball fault 3 332.94 378.67 0.64 0.684
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ranges are organized in Table 5. The table represents the characteristic range of each 
fault type. Due to different images, the feature range of different fault types also var-
ies. The image differences are converted into numerical differences for quantification. 
Therefore, by judging the characteristic values, the diagnosis of fault types can be 
achieved. These feature ranges will be used during the fault diagnosis phase. Firstly, it 
is necessary to perform image feature enhancement on signals of unknown fault types 
to enhance fault features. Then, the improved Canberra distance is obtained through 
feature extraction. Finally, the fault type is determined by comparing it with the fea-
ture range in Table 5.

To assess the efficacy of this method, we conducted a series of accuracy experi-
ments. In the random experiments, we selected the latter half of the dataset. Addi-
tionally, we randomly selected fault types to validate the classification performance of 
our method in this paper. When a feature falls within the range of Table 6, we check 
whether the diagnosed fault type matches the actual type. The number of accurate 
judgments and the total number of judgments are recorded to calculate the overall 
test accuracy. Table 6 presents the accuracy rates from 10 tests conducted after image 
enhancement, each consisting of 500 judgments. The highest accuracy rate among the 
10 test groups is 99.60%, with an average accuracy rate exceeding 99%. The experi-
mental results show that this method can classify various fault types effectively.

Comparative experiment 1: With original Canberra distance

In order to verify the effectiveness of feature diagnosis, the original Canberra distance 
is compared with the improved accuracy. The original Canberra distance only uses 
one indicator of the original Canberra distance to test the accuracy. Run 10 times to 
obtain the accuracy of each time as shown in Table  7. The average accuracy of the 
original Canberra distance is 92.02%, the maximum accuracy is 92.79%, and the mini-
mum accuracy is 91.18%. The average accuracy is 7.04% lower than that in this paper. 
However, only Canberra distance is used in the enhanced image, which also achieves 
more than 90% accuracy.

Table 6 Accuracy after image enhancement

Group Accuracy

1 99.00%

2 99.20%

3 99.60%

4 98.39%

5 99.60%

6 98.80%

7 98.39%

8 99.20%

9 98.80%

10 99.60%

Average 99.06%

Maximum value 99.60%

Minimum value 98.39%
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The results in Table  7 indicate that the original Canberra distance has a certain 
degree of classification performance. The accuracy can be improved by using the 
maximum singular value and contrast. Compared to the original Canberra distance, 
there is an improvement in accuracy.

Comparative experiment 2: With non‑enhancement condition

In order to verify the effectiveness of image enhancement, the effect without image 
enhancement is tested here. The difference before and after enhancement is whether 
10 images are fused into 1 image. There is no image enhancement method to directly 
convert the signal into an image. The accuracy obtained from the test is shown in 
Table  8. The average accuracy of the enhanced method is 84.50%. Compared with 
the method after image enhancement, the average accuracy difference is 14.56%. The 
effect of enhancement is obvious. This shows that the fault feature of the image is 
indeed enhanced.

Table 7 Accuracy after image enhancement

Group Original Canberra distance Present method

1.00 92.79% 99.00%

2.00 92.38% 99.20%

3.00 92.18% 99.60%

4.00 91.58% 98.39%

5.00 92.38% 99.60%

6.00 91.18% 98.80%

7.00 92.38% 98.39%

8.00 91.18% 99.20%

9.00 91.58% 98.80%

10.00 92.59% 99.60%

Average 92.02% 99.06%

Maximum value 92.79% 99.60%

Minimum value 91.18% 98.39%

Table 8 Comparison with non-enhanced images

Group Non‑enhancement condition Present method

1 83.94% 99.00%

2 81.12% 99.20%

3 86.35% 99.60%

4 87.15% 98.39%

5 82.57% 99.60%

6 86.77% 98.80%

7 82.57% 98.39%

8 86.77% 99.20%

9 85.17% 98.80%

10 82.57% 99.60%

Average 84.50% 99.06%

Maximum value 87.15% 99.60%

Minimum value 81.12% 98.39%
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The results in Table 8 show that this method can highlight the features of the image. 
The proposed method enhances the accuracy of testing. The effect of the diagnosis is 
poor under the condition of no enhancement. This indicates that the fault features are 
not prominently visible in the image. By using the method of image feature enhance-
ment, fault features can be detected more easily.

Comparative experiment 3: Under different noise conditions

In order to verify the effect of this method in noise environment, white noise with 
different signal-to-noise ratios is added to the original signal to test the accuracy. The 
accuracy of this method under different signal-to-noise ratios is shown in Table  9. 
With the increase of signal-to-noise ratio, the accuracy of the experiment also 
improves. From the table, we can see that the accuracy is 31.92% when the signal-to-
noise ratio is 10 dB. When the signal-to-noise ratio is 20 dB, the accuracy is 79.70%. 
The signal-to-noise ratio has a significant impact on accuracy at 10  dB and 20  dB. 
When the signal-to-noise ratio is greater than 30 dB, the accuracy remains above 90%. 
In addition, with the increase of signal-to-noise ratio, the detection accuracy shows 
an upward trend. At a signal-to-noise ratio of 100 dB, the average detection accuracy 
is 94.74%.

Through the table, we can obtain the following results: the accuracy of the method 
is significantly affected by the signal-to-noise ratio at 10  dB. However, the method 
shows higher diagnostic efficiency under noise conditions above 20  dB. The reason 
behind this result is that the white noise below 20-dB masks the characteristics of 
most signals, resulting in the improvement of Canberra distance being unable to 
effectively achieve fault classification. Therefore, there are limitations to this method 
in a noise environment below 20 dB.

Comparative experiment 4: With different image enhancement methods

In order to thoroughly evaluate the influence of pixel value variations on enhanced 
image feature extraction, we utilized the maximum and minimum pixel values as con-
trol groups for extracting fault features. The fusion method for the maximum pixel 

Table 9 Accuracy under different signal-to-noise ratios

Group 10 db 20 db 30 db 40 db 50 db 60 db 70 db 80 db 90 db 100 db

1 32.26% 80.36% 89.78% 94.39% 93.39% 95.18% 95.99% 94.59% 96.79% 94.38%

2 32.87% 81.16% 90.98% 94.19% 91.57% 93.57% 93.98% 93.57% 93.79% 95.18%

3 35.07% 77.35% 89.96% 93.17% 93.98% 94.38% 93.57% 94.38% 93.57% 94.78%

4.00 33.47% 80.76% 89.56% 90.76% 91.57% 93.57% 93.98% 94.38% 93.98% 94.38%

5.00 29.46% 81.16% 93.57% 93.98% 93.98% 94.38% 93.57% 93.17% 93.98% 93.57%

6.00 32.67% 79.56% 90.76% 93.17% 91.57% 93.57% 95.18% 94.38% 93.98% 95.98%

7.00 32.46% 77.96% 90.98% 90.76% 93.98% 94.38% 94.78% 95.18% 93.98% 93.17%

8.00 33.87% 77.56% 89.96% 91.57% 95.58% 94.78% 95.18% 95.58% 93.98% 94.78%

9.00 26.45% 80.56% 89.56% 90.98% 94.78% 94.38% 94.38% 95.58% 94.78% 95.18%

10.00 30.66% 80.56% 93.57% 90.76% 94.78% 95.18% 93.17% 93.17% 97.59% 95.98%

Average 31.92% 79.70% 90.80% 92.37% 93.52% 94.34% 94.38% 94.40% 94.64% 94.74%
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value is represented by Eq. 19. On the other hand, the fusion method for the mini-
mum pixel value is represented by Eq. 20. Compared to the original method, Eq. 19 
selects the maximum pixel value from 10 images for the enhanced image pixel values. 
On the other hand, Eq.  20 selects the minimum pixel value from 10 images for the 
enhanced image’s pixel values.

The control group utilized the maximum and minimum grayscale values from 10 
images as the respective grayscale values for the enhanced images. The improved Can-
berra distance extracted through the maximum fusion method is shown in Fig.  12a. 
The improved Canberra distance obtained through the minimum value fusion method 
is displayed in Fig.  12b. Figure  12c exhibits the improved Canberra distance acquired 
via the enhanced weighted average method. The horizontal axis represents the number 
of calculation groups, with 10 sets calculated for each method. The vertical axis signi-
fies the enhanced Canberra distance. In the blue box of Fig. 12a, the features of outer 
ring fault 1 and ball fault 2 intersect. This indicates that the method cannot accurately 
classify these two types of faults. The same phenomenon is also observed in Fig.  12b. 
When features become entangled, it becomes challenging to accurately distinguish 
the two working conditions. This article effectively addresses this phenomenon in the 
employed improved weighted average method. It effectively disentangles the entangle-
ment between the two working conditions.

Comparative experiment 5: With different datasets

The comparative experiment is conducted using data obtained from Southeast Univer-
sity (https://www.github.com\\/cathysiyu/Mechanical-datasets). The working conditions 
consist of normal status, inner ring fault, outer ring fault, and ball fault. The dataset is 
obtained from the Drivetrain Dynamics Simulator. We selected the motor vibration 

(19)Gmax(x, y) =

{

max
i=1,2,...px

(Ii(x, y)) Npx < T

255 Npx ≥ T

(20)Gmin(x, y) =

{

min
i=1,2,...px

(Ii(x, y)) Npx < T

255 Npx ≥ T

Fig. 12 Improved Canberra distance features for different enhancement methods
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signals from the dataset. The motor vibration signals for the four fault types are plotted 
as SDP images, as shown in Fig. 13.

The differences between the SDP images for each working condition are visually 
apparent. The SDP image for the normal status exhibits a distinct outline. The SDP 
image for the inner ring fault shows a more pronounced contrast. The SDP images 
for the outer ring fault display a block-based distribution. Ball faults also show a 
block distribution. However, compared to the SDP image of the outer ring fault, the 
image contour of the ball fault is more distinct.

To validate the effectiveness of the proposed classification method, various fea-
ture classification methods were incorporated in this experiment. Simultaneously, 
we introduce varying levels of white noise to the signal in order to conduct accu-
racy experiments. This is done to demonstrate the noise resistance ability of the pro-
posed method in this paper. The experimental results are illustrated in Fig. 14.

Fig. 13 SDP images from the bearing dataset of Central South University
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The images demonstrate that the current method in this dataset consistently 
achieves high classification performance. It also maintains high classification accu-
racy in noisy environments. The current method maintains an accuracy of over 96% 
even when the signal-to-noise ratio exceeds 40 dB. Moreover, the proposed method 
surpasses the performance of both the support vector machine (SVM) and K-nearest 
neighbors (KNN) methods in terms of classification.

Limitations and implications of research findings in the current research 
context
The research content of this article has significant implications in the current research 
context. Currently, many fields have applied SDP signal processing methods. The con-
tent of this article can be to enhance image features, which is very meaningful for 
fault diagnosis using signals. The extraction of fault features from SDP images is a 
simple and effective method. An advantage of SDP images is their independence from 
mechanical power or configuration. Furthermore, they are applicable to various sig-
nal types. However, this conversion method does have limitations. Firstly, the image 
features may not fully capture the signal changes. Additionally, features can be lost 
during the process of data-to-image conversion. The conversion of data into images 
serves as a means to increase data dimensionality. The image format complicates the 
calculation process. This presents challenges for image processing and feature extrac-
tion. Achieving signal feature representation with reduced computational time and 
feature count is a potential challenge. Another potential research avenue involves 
employing image features to predict mechanical lifespan.

Fig. 14 Classification accuracy under different methods and signal-to-noise ratios
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Conclusions
In this paper, a method of image enhancement based on image fusion is proposed. 
This method is applied to the fault diagnosis of mechanical vibration signals, and 
the enhancement of the synchronized dot pattern image features of vibration signal 
conversion is realized. In addition, the improved Canberra distance is used to extract 
image fault features. In this paper, vibration signal processing, feature extraction 
and fault classification are realized. At the same time, different experiments are car-
ried out using the data of rolling bearings. In the comparison of original images, the 
effectiveness of the image enhancement method in this paper is verified. In the com-
parison test with the original Canberra distance, the effectiveness of the improved 
Canberra distance using the maximum singular value and contrast is verified. Finally, 
the robustness of the image enhancement method and feature extraction ability 
under the influence of different intensities of noise is analyzed. Therefore, the image 
enhancement method proposed in this paper has high reliability and classification 
accuracy in fault diagnosis using the synchronized dot pattern.
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