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Abstract 

Trajectory mapping techniques have widespread applications in diverse fields, includ-
ing robotics, localization, smart environments, gaming, and tracking systems. However, 
existing free devices encounter challenges in representing trajectories, thereby limiting 
the effectiveness of applications such as robotics, localization, and tracking systems. 
The imprecise mappings generated by these methods lead to suboptimal performance 
and unreliable results. The proposed approach leverages WiFi sensing through chan-
nel state information (CSI), triangulation techniques, and a fine-tuning mechanism 
to enhance trajectory precision within indoor environment trajectory mapping. 
The proposed solution employs a domain adapter fine-tuning technique to enable 
location-independent tracking via CSI, minimizing errors. The use of CSI MIMO signals 
for trajectory mapping offers enhanced spatial resolution, robust multipath handling, 
and improved accuracy in tracking movement by leveraging multiple antenna chan-
nels and exploiting the rich information embedded in signal reflections and scattering, 
while triangulation aids in accurately determining the location of objects or targets. 
Furthermore, incorporating a fine-tuning mechanism refines the generated trajec-
tories. The findings demonstrate substantial enhancements in mapping precision, 
with an accuracy of 95.5% in tracking 13 paths within the new domain. These results 
underscore the effectiveness of the proposed approach in overcoming the limitations 
of existing methods and achieving highly accurate trajectory mapping.

Keywords: WiFi sensing, Fine tuning, Channel state information, Trajectory tracking

Introduction
Device-free trajectory tracking and localization approaches enable various applications 
and services, facilitating seamless navigation, asset tracking, context-aware computing, 
and enhanced user experiences within indoor environments [1, 2]. With the burgeon-
ing increase of smart devices, location-based service integration has become ubiquitous 
across diverse domains. Concurrently, there has been a concerted effort to enhance the 
precision of location recognition [3–6]. The requirement of location awareness is dichot-
omized into outdoor and indoor domains, and there has been a commensurate surge 
in demand for indoor location awareness, categorizing much research in this domain 
[7, 8]. Consequently, alternative methodologies utilizing indoor WiFi, Bluetooth, RFID, 
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UWB, FMCW, and analogous technologies have been explored for indoor location rec-
ognition [9]. While conventional outdoor location recognition relies on the Global Posi-
tioning System (GPS), its efficacy diminishes indoors due to substantial position errors 
and signal obstructions by building structures [10]. The current localization systems face 
several challenges that hinder their effectiveness and reliability in indoor environments, 
including limited accuracy, high infrastructure requirements, signal interference sensi-
tivity, complexity in multipath propagation handling, and difficulty scaling for large and 
complex indoor spaces[11, 12].

Trajectory mapping is the process of determining the path of movement of a target 
person by taking measurements from certain fixed landmarks. The pursuit of accurate 
trajectory tracking has been identified as an objective for the emerging applications of 
WiFi-based sensing [13]. The reason behind this is its potential to serve as a facilitator for 
ongoing and forthcoming industrial revolutions. The standard technique for achieving 
localization in an outdoor setting has been the use of a sensor that utilizes GPS, which 
uses satellites to determine the position of the receiver’s node [14, 15]. Unfortunately, 
the signals used by GPS cannot penetrate the walls and roofs of buildings, and as such, 
they are not suitable for indoor localization. Furthermore, compared to the outdoor sce-
nario, an indoor environment is very challenging owing to exacerbated multipath issues 
caused by the many reflections and obstructions that block the direct line-of-sight (LoS) 
link between the transmitter and the receiver. A closely related concept to localization 
uses measurements from the target device to generate a map to analyze the effects of 
the signal on the environment. One advantage of this approach is that it eliminates the 
need to program the details of the map into the application [16, 17]. Furthermore, the 
necessity for unrestricted device-free localization sensing arises from mapping trajec-
tories without relying on handheld devices, enabling seamless tracking and positioning 
in various environments [18]. For applications in real-world settings, it is required to 
consider scalability, setup, and running costs before choosing a localization mechanism 
for installation.

Utilizing WiFi CSI for localization presents several challenges, such as the sensitivity 
of CSI to environmental changes, human movement, and structural variations, which 
lead to fluctuations in signal strength and multipath effects, affecting localization accu-
racy [4]. Additionally, non-line-of-sight (NLOS) conditions can introduce errors in esti-
mating distances, impacting the precision of localization algorithms [5]. Moreover, the 
need for extensive calibration and fingerprinting processes to map CSI data to physical 
locations is labor-intensive and time-consuming, especially in dynamic environments 
[19]. Furthermore, processing and interpreting CSI data for localization requires mod-
ern algorithms and computational resources, posing a challenge for real-time implemen-
tation on resource-constrained devices.

This work proposes a design that incorporates the triangulation method based on 
channel state information (CSI) to achieve trajectory localization by capturing signal 
strength variations at different locations. Triangulation, which utilizes measured angles 
and known distances, offers notable advantages in enhancing WiFi-based unwearable 
trajectory localization. It provides heightened accuracy in indoor positioning by gen-
erating more precise location estimates compared to alternative methods. Addition-
ally, triangulation mitigates the effects of signal fluctuations and multipath phenomena 
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commonly encountered in WiFi-based localization systems, thereby reducing sensitivity 
to signal variations and environmental factors [20]. Furthermore, triangulation enhances 
the scalability and adaptability of unwearable trajectory localization, enabling position 
calculations using fixed points across diverse indoor environments. The proposed sys-
tem design leverages WiFi and integrates domain adaptation techniques to address the 
challenges associated with WiFi-based unwearable trajectory localization and enhance 
the performance and applicability of indoor positioning systems. This integration ena-
bles fine-tuning learning, allowing for the seamless utilization of pre-trained models in 
new domains. This approach facilitates the easy adaptation of the localization system to 
different indoor environments, as depicted in Fig. 1.

The triangulation method enhances the effectiveness of location-independent posi-
tioning in indoor environments by capitalizing on the triangulation technique. It lev-
erages measured angles and known distances to calculate precise position estimates, 
surpassing the accuracy of alternative methods. This methodology’s reliance on angle 
and distance measurements contributes to its robustness against signal variations and 
environmental changes. Additionally, it alleviates common challenges encountered in 
WiFi-based localization systems, such as signal fluctuations and multipath effects. The 
principal contribution of this study resides in its comprehensive investigation of indoor 
localization technologies, with a specific emphasis on their practical implementation. 
The successful implementation of fine-tuning and domain adaptation techniques ena-
bles the application of transfer learning in the context of CSI localization. Integrating the 
triangulation method further augments this achievement, enhancing the precision and 
reliability of indoor localization. The combined utilization of fine-tuning, domain adap-
tation, and triangulation methodologies represents a noteworthy advancement in the 
field. It offers valuable insights into transferring CSI-based localization models across 
different domains. The justification for this work contributes to the field of indoor locali-
zation, as summarized here: 

Fig. 1 Analyzing WiFi signal strength and connectivity patterns achieves trajectory mapping
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1. To develop a new domain adaptation model that facilitates efficient transfer learning 
across diverse domains, thereby reducing the effort required for adapting WiFi-based 
trajectory mapping to new environments.

2. Implementing the triangulation method for free device trajectory tracking using CSI 
and enhancing precision.

3. To execute the compilation of a dataset and subsequent practical analyses, thereby 
generating dependable data and assessing the efficacy and real-world feasibility of the 
proposed methodologies.

These contributions collectively contribute to advancing the field of indoor localization 
by introducing novel techniques, addressing key challenges, and providing practical 
insights for implementation and evaluation

This work is organized into five key sections, beginning with the introduction, which 
outlines the scope, provides an overview of the challenges in existing techniques, and 
sets the stage for subsequent analysis. The second section engages with the current body 
of literature, examining state-of-the-art indoor localization techniques while identify-
ing the research gaps the proposed methods aim to address. The third section presents 
a detailed account of the methodology, elaborating on developing a domain adaptation 
model and highlighting the advanced techniques employed to enable efficient transfer 
learning across diverse domains. The fourth section explains the experimental setup 
and evaluates the proposed methods using the triangulation approach and the domain 
adaptation model, applying a range of metrics. It also highlights the strengths, limita-
tions, and practical implications of the proposed methods, identifying future directions 
for research and further refinement of indoor localization technologies. The final section 
synthesizes the experimental outcomes, concluding with their broader impact.

Related works
WiFi adopts wireless technologies for indoor trajectory mapping due to its widespread 
availability in existing infrastructure and cost-effectiveness [21]. WiFi-based localization 
systems leverage the presence of access points (APs) in indoor spaces to estimate the 
position of devices by measuring received signal strength (RSS), time of flight (ToF), or 
a combination of both. These systems offer broad coverage and minimal setup require-
ments, making them ideal for large-scale deployment. However, challenges such as sig-
nal interference, NLOS propagation, and multipath effects often introduce inaccuracies 
in localization estimates. WiFi-based localization leverages the ubiquitous presence of 
WiFi access points in indoor environments to estimate the location of a target device 
[20]. It utilizes RSS measurements, ToF calculations, or a combination of both to deter-
mine the distance between the target device and the WiFi access points. WiFi-based 
approaches offer advantages, including low infrastructure costs, wide coverage areas, 
and compatibility with existing WiFi networks, making them favorable for large-scale 
deployments [22]).

One of the primary challenges of WiFi-based sensing and localization is the NLOS 
propagation of WiFi signals, which results in errors in distance estimation. The pres-
ence of obstacles such as walls, furniture, and human bodies causes signal attenuation 
and multipath effects, leading to inaccuracies in position estimation [23, 24]. WiFi-based 
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indoor positioning systems have garnered substantial attention due to the ubiquitous 
nature of WiFi signals in urban landscapes [25, 26]. Pioneering investigations have elu-
cidated the efficacy of WiFi fingerprinting techniques in attaining elevated accuracy 
through meticulous exploitation of signal strength variations. Furthermore, the integra-
tion of Bluetooth Low Energy (BLE) has emerged as a strategic enhancement, as dem-
onstrated in the research conducted by [27] utilizing BLE beacons for proximity-based 
localization, offering significant benefits in terms of energy efficiency and cost-effective-
ness. Notably, ultra-wideband (UWB) technology, characterized by its ability to provide 
exceptionally fine-grained location information, has emerged as a promising contender 
for achieving high-precision indoor localization [28]. Noteworthy investigations have 
examined the applicability of UWB in contexts demanding unparalleled accuracy, such 
as asset tracking and virtual reality environments [20, 29].

To address the challenges posed by signal fluctuations and environmental factors, 
researchers have explored CSI for indoor localization [24, 30]. CSI provides detailed 
information about the wireless channel, including phase shifts, signal reflections, and 
multipath effects. Advancements in WiFi hardware have also contributed to indoor 
localization techniques. For instance, the emergence of multiple-input, multiple-output 
(MIMO) WiFi systems has enabled the utilization of spatial information for localization. 
MIMO systems employ multiple antennas to transmit and receive signals simultane-
ously, resulting in signal diversity and improved localization performance. By exploiting 
this fine-grained information, CSI-based approaches offer improved accuracy compared 
to RSS-based methods. [31] developed Widar 2.0, which uses a CSI-based indoor locali-
zation system that employs Doppler effects based on time of flight (ToF), achieving an 
average error of 1.5 m.

Recent studies have explored the integration of deep learning techniques with tradi-
tional WiFi-based localization methods. For instance, [7] proposed a novel approach that 
leverages deep learning representations of WiFi CSI fingerprints. By replacing original 
fingerprints with hidden layer representations from deep learning models, this method 
utilizes autoencoders, convolutional neural networks (CNNs), and long short-term 
memory (LSTM) networks to process bi-modal CSI data. Their work is replacing the 
original fingerprints with hidden layer representations from a deep learning model. CSI 
provides detailed channel information that can be extracted from readily available com-
modity WiFi network interface cards (NICs). The authors use deep learning methods like 
deep autoencoder networks, CNNs, and LSTM networks to get bi-modal CSI data that 
includes average amplitudes and estimated angles of arrival (AOAs). They then extract 
and calibrate this data. The performance of the deep learning model can vary depending 
on specific environmental factors and the availability of training samples, limiting the 
generalizability of the proposed method in specific indoor environments. Other studies 
have explored the integration of other sensors and technologies to enhance the reliability 
of indoor localization and tracking by combining different techniques such as RSSI and 
CSI [32] with inertial sensors.

The device-free localization approach, exemplified by WiTraj [2], utilizes commod-
ity WiFi devices to track individuals without requiring personal devices. To address this 
concern, WiTraj proposes a novel DFS-based motion tracking system that extracts DFS 
and reconstructs walking trajectories using CSI. By doing so, the system provides robust 
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indoor motion tracking, surpassing the challenges encountered by existing methods. 
However, the specific dataset and environment that WiTraj is limited to represent the 
performance of the proposed method only partially in different scenarios or under vary-
ing conditions. Experimental results show varying degrees of accuracy depending on the 
specific algorithm and the conditions of the environment. This system employs Dop-
pler frequency shift (DFS) and CSI to reconstruct walking trajectories, providing robust 
indoor motion tracking. However, the method’s performance can be influenced by spe-
cific datasets and environmental conditions, which may limit its applicability across 
diverse scenarios.

The work by Xue, J., et al. presents a novel approach to device-free localization by uti-
lizing deep-learning representations of WiFi CSI fingerprints [7]. Their work is replacing 
the original fingerprints with hidden layer representations from a deep learning model. 
CSI provides detailed channel information that can be extracted from readily available 
commodity WiFi network interface cards (NICs). The authors use deep learning meth-
ods like deep autoencoder networks, CNNs, and LSTM networks to get bi-modal CSI 
data that includes average amplitudes and estimated angles of arrival (AOAs). They then 
extract and calibrate this data. The performance of the deep learning model can vary 
depending on specific environmental factors and the availability of training samples, lim-
iting the generalizability of the proposed method in specific indoor environments. Other 
studies have explored the integration of other sensors and technologies to enhance the 
reliability of indoor localization and tracking by combining different techniques such as 
RSSI and CSI [32, 33] with inertial sensors.

In the context of scene recognition, Liu et al. introduced the scene-recognition indoor 
localization (SRIL) method, which uses a mutation particle swarm optimization-based 
neural network to distinguish between LOS and NLOS conditions [34]. This approach 
enhances localization accuracy by adapting to varying scene conditions. Despite its 
promising results, the SRIL method’s accuracy are susceptible to environmental factors, 
which can impact its performance. The proposed method utilizes an MPSO-BP neu-
ral network with mutation particle swarm optimization to create the scene recognition 
model. This makes it possible to find LOS and NLOS areas. The work contributes to 
indoor localization and tracking systems by presenting device-free indoor localization 
through scene recognition. However, the available search results state the specific lim-
itations. One significant limitation is the impact of environmental factors of the SRIL 
method. Shown in Table 1 is a phenomenon summary of methods used for localization-
based and trajectory mapping based on the characteristics of CSI.

Triangulation method and adaptive free device approach
Deploying two WiFi sensors in conjunction with a single transmitter creates a triangula-
tion system that allows for location determination and precise trajectory sensing over 
time. To refine the localization process, we harness the multipath phenomenon, in which 
signals take multiple paths between the transmitter and the receivers due to reflections 
and diffractions in the environment. Each WiFi sensor equipped to receive signals from 
the standard transmitter captures the multipath signals and exploits their unique geo-
metrical characteristics. Multipath geometry mapping entails analyzing signal reflec-
tions and their associated delays in order to create a spatial representation.
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Employing two WiFi sensors in pairing enhances the system’s ability to discern the 
target’s trajectory, enriching the triangulation method with additional data points. 
The triangulation algorithm calculates the distances and angles between the trans-
mitter and each sensor, utilizing the multipath geometry information. The multipath 
reflections provide a nuanced understanding of the trajectory the target follows in 
real-time. Figure 2 displays the coordinates of AP1, AP2, and AP3 as (x1, y1), (x2, y2), 
and (x3, y3), respectively. We compute the distances from each AP using the Pythago-
rean theorem. To apply the Pythagorean theorem, we use the distances from AP1, 
AP2, and AP3, represented by d1, d2, and d3, in Eqs. 1, 2, and 3, respectively.

Table 1 Recent studies on localization and fingerprinting using WiFi technology

Method Ref Algorithm Data types Location 
dependent

Performance Limitations

CSI [35] PAIL (AdaBoost) Amplitude, phase ✓ 80% accuracy Susceptible to 
significant environ-
mental variations 
impacting CSI phase 
and amplitude

CSI [36] PCNB (naive 
Bayes)

Amplitude ✓ Up to 86% in spe-
cific locations

Requires extensive 
training; naive Bayes 
struggles with non-
continuous features

CSI [37] BLS (KNN) Amplitude ✓ 75%, error below 
2 m

Dependent on line-
of-sight (LoS) and 
requires multiple 
access points (APs)

CSI [38] LCAF (naive Bayes) Amplitude ✓ 85%, error < 1.5 m Ineffective in 
dynamic envi-
ronments with 
amplitude-based 
mapping

RSSI CSI [32] Fussing RSSI and 
CSI

CSI Amp. and 
power strength

x Up to 80% accu-
racy

Can be enhanced by 
employing machine 
learning models to 
improve accuracy

CSI [31] Doppler shift and 
AoA

Amplitude ✓ Error < 1.3 m Limited accuracy 
due to small band-
width constraints 
with Doppler shift

CSI [7] Multi-layer 
extreme machine 
learning

Amplitude x Avg. 1.4 m error Requires large 
datasets for diverse 
environments

CSI [2] Doppler-MUSIC Amplitude ✓ Avg. 1.6 m track-
ing error

Highly sensitive 
to noise and envi-
ronmental factors, 
limiting bandwidth 
usage for stable 
accuracy

WIFI [39] KNN-based fin-
gerprinting with 
vision fusion

Amplitude, phase ✓ 1.24 m accuracy, 
60% within 0.8 m

Low computational 
cost, but sensitive 
to interference 
and environmental 
changes

CSI [40] SVM-NB for NLOS/
LOS detection

Amplitude, phase ✓ 0.82 m (lab), 0.73 
m (corridor), NLOS 
precision > 97%

Requires extensive 
empirical modeling, 
limited by NLOS 
signal reduction
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The triangulation technique enables the entity’s coordinates to be determined. (x, y), 
as shown in Fig. 2, provides a robust means of indoor location recognition that lever-
ages the inherent characteristics of WiFi technology. Within the free space model, the 
Friis free space equation expresses the received power at a receiver antenna, situated 
at a distance from a transmitting antenna. The equation is characterized by the vari-
ables Pt for transmitted power, Gt for transmitter antenna gain, � for wavelength in 
meters, and d for the distance from the transmitter to the receiver [41].

The algorithm computes the distance of target location using at least three access 
points on a circle centered at each access point, with a radius corresponding to the 
distance from that AP. The intersection point determines the target’s coordinates, 
thereby allowing the system to estimate the position. The triangulation equations pro-
vided in Eqs. 1, 2, and 3 calculate distance using the Pythagorean theorem, in which 
the differences in x and y coordinates between the access points and the target are 
squared and summed to compute each distance.

The triangulation method for WiFi localization determines a person’s position by 
measuring signal frequency changes between multiple WiFi nodes. By intersect-
ing these distance estimates, the method pinpoints the location. Figure  3 illustrates 
this localization process based on frequency shifts between nodes, with subfigure (a) 
depicting the arrangement of the nodes and sub-figure (b) demonstrating how varia-
tions in frequency are utilized to enhance the accuracy of the location estimate.

(1)d1 = (x − x1)2 + (y− y1)2

(2)d2 =

√

(x − x2)2 + (y− y2)2

(3)d3 =

√

(x − x3)2 + (y− y3)2

Fig. 2 The triangulation technique utilizes CSI for detecting the location of a target within the wireless 
coverage range
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Channel state information

Within the context of MIMO technology, CSI refers to the information collection that char-
acterizes the state of the wireless channel between the transmitter and receiver [41]. This 
information includes the channel’s amplitude, phase, and frequency response, collectively 
describing how the wireless signals propagate through the environment. Researchers widely 
recognize CSI as a prominent metric in Wi-Fi-based sensing technology because it offers 
valuable insights into the characteristics of wireless signal propagation from the transmit-
ting device to the receiving device [29]. Analyzing CSI delivers a deeper understanding of 
the signal’s behavior, enabling them to extract useful information about the surrounding 
environment, such as localization and tracking. Researchers obtain CSI by measuring and 
analyzing the received signals at the receiving end, considering the effects of multipath 
propagation, interference, and other environmental factors.

Considering certain variables simplifies Eq. (5) in a narrowband flat fading channel. The 
variable H(i, j) represents the channel fading factor between the transmitted antenna i and 
the received antenna j. Meanwhile, X(i) denotes the transmitted signal of antenna i, and yi 
represents the received signal of antenna j.

which is expressed in Eq. (6).

The expressions for the MIMO system’s transmit matrix, x(t), receive matrix, y(t), 
channel additive white Gaussian noise matrix, n(t), and channel fading factor matrix, H, 
can be defined in Eq. (7):

(4)yj(t) =

nt
∑

i=1

hi,j(t) ∗ xi(t)+ ηj(t), i = 1, 2, . . . , nt; j = 1, 2, . . . , nr

(5)yj(t) =

nt
∑

i=1

hi,jxi(t)+ ηj(t)

(6)y(t) = Hx(t)+ η(t)

Fig. 3 Localization process using frequency changes between nodes to refine location estimates
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Figure 4 shows a MIMO equivalent model. The received signal of the j antenna can 
be defined as:

By combining distance measurements from multiple sensors and utilizing the geo-
metric principles of triangulation, the system calculates the target’s position in real-
time. The benefit of using multiple WiFi sensors in pairs is that it improves the ability 
to track the target’s movement across a space, reducing errors that might occur due 
to signal interference or environmental factors. In essence, the triangulation method 
transforms WiFi signal data into location sensing system suitable for a variety of 
indoor applications, from human tracking to object detection.

NLOS and LOS scenarios are considered in the propagation process by training 
the CSI database under both NLOS and LOS conditions. Leveraging NLOS detection 
allows for more precise localization in the online stage, narrowing the search area 
and improving match accuracy. The first step introduces a pre-processing method to 
extract subcarriers from CSI measurements and eliminate noise. We categorize the 
training data at each reference point into NLOS and LOS conditions for subsequent 
analysis.

(7)H =









h1,1 h1,2 . . . h1,nt
h2,1 h2,2 . . . h2,nt
...

...
. . .

...
hnr ,1 hnr ,2 . . . hnr ,nt
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Fig. 4 A visual depiction of a MIMO system
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During the subsequent phase, we collect and incorporate data about the indoors, 
linking the transmitter and receiver into a detection model as shown in Fig. 5. During 
the third stage, we gather random statistics at various locations within the room.

The CSI within the room undergoes refraction and diffraction, leading to deviations 
in the received data according to the physical model. Consequently, diverse place-
ments yield varied outcomes due to this phenomenon.

Symbols h1 and h2 signify the vertical distances from the transmitter-receiver link 
to the ceiling and floor, respectively. Pt denotes the transmitted power, Gt represents 
the transmitter antenna gain, � is the wavelength measured in meters, and d refers 
to the distance from the transmitter to the receiver. In this stationary scenario, the 
presence of the target introduces various signal transmission paths impeded by the 

(12)Pfloor(d) =
PtGtGr�

2

(4π)2
(

d2 + 4h22
)

(13)PrLOS1 =
PtG

2
�
2

(4π)2(d2 + 4h21)

(14)PrLOS2 =
PtG

2
�
2

(4π)2(d2 + 4h22)

Fig. 5 Triangulation method with a LoS depicting the direct LoS between nodes and b data collection 
environment
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human body. The effect of the target on the received power complying with the radar 
and equation is computed as given in Eq. (15).

Here, r1 represents the distance between the transmitter and the target, while r2 
denotes the distance between the receiver and the target within the horizontal plane.

Sequence flowchart

The designed system architecture incorporates a domain-adapting model. Figure 6 pre-
sents the flowchart, depicting the sequential steps and processes that the system follows. 
The architecture explicitly emphasizes the fine-tuning adapting model, incorporating 
BiLSTM classifier layers as a foundational component. We carefully describe and config-
ure these BiLSTM classifier layers to optimize the system’s performance within the fine-
tuning adapting model. They enable the model to capture dependencies and patterns 
in the input data effectively. By processing the input data, extracting relevant features, 
and making predictions or classifications based on learned patterns and representations, 
these layers significantly contribute to the system’s overall functionality.

The schematic design of the WiFi localization system is a multifaceted framework con-
sisting of distinct components to achieve precise indoor location estimation, as shown 
in Fig.  7. The system integrates two WiFi receivers into a Raspberry Pi cluster strate-
gically positioned for signal reception within the targeted environment. This receiver 
configuration ensures robust data collection, a fundamental requirement for subsequent 
localization processes. Following signal acquisition, the received WiFi signals undergo 
a meticulous preprocessing and filtering stage. This step involves noise reduction, sig-
nal normalization, and the application of appropriate filters to enhance data quality, lay-
ing the groundwork in subsequent stages of the system. The subsequent stage involves 
extracting CSI amplitude data from the preprocessed signals. This extraction process 
focuses on capturing and isolating features that distinctly characterize WiFi signals, pro-
viding a foundation for precise localization.

Preprocessing and feature extraction

The model employs a median filter as part of its signal preprocessing stage to enhance 
the quality of the input CSI data. The median filter replaces each data point with the 
median value within a specified window. This filtering technique effectively reduces the 
impact of outliers and noise in the CSI signal, resulting in a smoother and more reli-
able dataset. The model utilizes a BiLSTM network to extract features from the pre-pro-
cessed CSI data in conjunction with the median filter. The BiLSTM architecture captures 
sequential dependencies in the input data by design. It processes the CSI data forward 
and backward, allowing it to learn and encode relevant patterns and relationships 
between consecutive CSI samples. The BiLSTM network captures temporal dependen-
cies and extracts meaningful features that contribute to leverage the sequential nature of 
the CSI data. This ability to analyze CSI data in sequence enables the model to capture 
dynamic changes and variations in wireless signal propagation. This ability to analyze 

(15)Psca(r1, r2) =
∑

hi

PtGtGr�
2

(4π)2(r21 + h2i )(r
2
2 + h2i )

hi ∈ (0, h]
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CSI data in sequence enables the model to capture dynamic changes and variations in 
wireless signal propagation and enhances its performance in applications such as object 
detection, localization, and tracking in Wi-Fi-based sensing systems.

Bilstm network

BiLSTM networks classify the sequence of the input CSI dataset within the domain of 
adapting the fine-tuning model. The BiLSTM layers play an important role in capturing 
the temporal dependencies and patterns within the CSI data. The network architecture 
of the BiLSTM layers includes several key components, including BiLSTM layers, drop-
out, fully connected layers, and a SoftMax function. The BiLSTM layers are responsible 
for processing the sequential input CSI data in both forward and backward directions. 
This bidirectional processing enables the network to capture past and future dependen-
cies, allowing it to effectively model the temporal dynamics in the data. The network 
architecture that processes the input CSI dataset, as shown in Fig. 8, includes BiLSTM 
layers, dropout layers, fully connected layers, and a SoftMax function.

Dropout layers mitigate overfitting and improve generalization. Dropout randomly 
sets a fraction of the input units to zero during training, reducing the reliance on specific 
features and preventing the network from becoming overly specialized to the training 
data. After the BiLSTM layers and dropout, the network employs fully connected lay-
ers to extract and transform the learned features. These layers connect each neuron to 
every neuron in the previous layer. This dense connectivity facilitates the extraction of 
higher-level representations from the input data. Finally, the output layer applies a soft-
max function to obtain probability distributions over the different class labels. The soft-
max function normalizes the output scores, ensuring that they sum up to one and can be 
interpreted as probabilities.

Domain adapting classifier

The domain-adapting model employs a fine-tuning approach that incorporates both 
online learning and domain learning. During the online learning phase, the model trains 
using the provided online training data to adapt the pre-trained encoder and decoder 
layers specifically to the online domain. This process aims to update the model using 
new data from the online domain and fine-tune it for improved performance in that spe-
cific domain. In the domain learning phase, the model trains using the provided domain 
training data to adapt the pre-trained encoder and decoder layers to the target domain. 
The goal of domain learning is to leverage the knowledge gained from the source domain 
to adjust the model, which was initially pre-trained on a different domain, to the target 
domain.

By training separate models for online learning and domain learning, it becomes pos-
sible to adapt the encoder and decoder layers for each scenario independently. This 
approach provides flexibility and allows for a focused adaptation of different aspects 
based on specific requirements. Leveraging the pre-trained model enables the train-
ing of the latter decoder layers’ weights while utilizing the trained features and weights 
from the previous location, which reduces the training effort in the target domain. The 
domain-adapting model Fig. 9 illustrates the integration of a pre-trained model from the 
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source domain with a new target domain, showcasing the process of adapting the model 
to the target domain using domain-specific training data.

Algorithm 1 outlines an adaptation algorithm for the Fine-tuning Adaptation Method. 
This method aims to adapt a pre-trained classifier model using CSI data from a source 
domain to perform classification on new target data. Fine-tuning the model’s encoder 
and decoder layers allows for better generalization and improved classification per-
formance in the target domain. Transferring knowledge from one domain (source) to 
another (target) with limited direct training data is known as domain adaptation using 
CSI for trajectory mapping. By leveraging CSI, which captures detailed signal charac-
teristics between nodes, the model adapts to the target domain’s unique conditions and 
variations in signal behavior. This approach enhances the accuracy of trajectory mapping 
by fine-tuning the model to better align with the target environment’s specific signal pat-
terns and dynamics.

Algorithm 1 Fine-tuning adaptation method

The advantage of having a fine-tuning domain adapting model lies in its ability to lev-
erage a pre-trained model from the source domain to expedite the adaptation process in 
the target domain. By utilizing the pre-trained model, the encoder and decoder layers in 
the target domain benefit from the knowledge and features extracted during the offline 
phase, reducing the effort required for training. The encoder and decoder layers in the 
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target domain take advantage of the pre-trained model’s learned representations, allow-
ing them to encode the input data more effectively. Training the encoder layers from 
scratch in the target domain is time-consuming and requires significant computational 
resources. Similarly, the decoder layers leverage these weights to decode the encoded 
representations and generate outputs. The process reduces the training effort needed for 
the decoder layers, as they can build upon the pre-trained model’s knowledge to refine 
their performance in the target domain.

The localization process combines the domain adapting module with the triangula-
tion method to estimate the target’s location. The triangulation method utilizes the 
extracted CSI amplitude data from two WiFi receivers. By calculating the distances 
between each receiver and the target location, the triangulation algorithm leverages 
the geometric relationships among these distances to estimate the target coordinates 
with high precision. The algorithm discerns and classifies the target within the local-
ized space by computing features that enhance user interaction and interpretability. 
By visually representing the movement of the tracked entity over time, this feature 
provides dynamic insights into the path traversed within the environment. The tra-
jectory mapping augments the system’s capabilities by offering a comprehensive and 
intuitive visualization of the target’s trajectory, aiding in understanding their move-
ment patterns and behavior within the space.

Results and discussion
Experiment setup

The experimental setup in this work used clustered Raspberry Pi 4B units interconnected 
via a D-Link switch (model No. DES-1008A). Two Raspberry Pi units are receivers, 
while a TP-Link AC1350 router is the transmitter. The Raspberry Pi devices operated on 
Linux version 5.10.92 firmware and were equipped with Nexmon, a firmware modifica-
tion framework, for extracting CSI. The receiver and transmitter components adhered to 
the IEEE 802.11n/ac standard, enabling multi-user functionality. Furthermore, they were 
compatible with the dual-band spectrum’s frequency bands of 20 MHz, 40 MHz, and 80 
MHz. The process used the 20 MHz bandwidth for the 2.4 GHz frequency and the 80 
MHz bandwidth for the 5 GHz frequency range. Each transmitted packet encapsulated 
information for 64 or 256 subcarriers, depending on the configuration. The selected 
hardware and settings ensured compatibility with the desired frequency bands, MIMO 
capabilities, and subcarrier information encapsulation.

Utilizing a clustered system of interconnected Raspberry Pi devices to improve com-
putational scalability and availability underscores the commitment to robust and effi-
cient data processing. The Nexmon firmware configures the Raspberry Pi devices 
into monitor mode to facilitate packet capture and acquisition of packets using TCP-
DUMP on a Raspberry Pi. The router is injected using a Laptop Nitro an515-58 featur-
ing an Intel® Core™ i5-12500H processor and an NVIDIA® GeForce® RTX3050 CPU @ 
3.30GHz processor. Subsequently, the data captured is imported into MATLAB for real-
time analysis using a Secure Shell (SSH) link between the Raspberry Pi and MATLAB. 
We have made the dataset collected in this work publicly available through the provided
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linked1 and Github2 repository, facilitating future enhancements and advancements in 
the field.

The need to collect our dataset stems from the scarcity of existing datasets that specifi-
cally address trajectory mapping. We collected the dataset in a specific location, which 
included 12 distinct paths and an empty environment. Two Raspberry Pi (RPi) units cap-
tured the necessary data as receivers, while a router served as the transmitter device. 
Simultaneously, the laptop injected data into the network, contributing to the compre-
hensive dataset collection. This dataset collection process allowed for subsequent analy-
sis and evaluation of various aspects of network performance, signal quality, and other 
relevant parameters within the specified location. The dataset uniquely identified each 
path using the notation D12 , representing “Path 1, Direction 1,” indicating the specific 
route in one direction. Similarly, D12 denoted the same path but in the opposite direc-
tion. The layout of the experimental location in Fig. 10 provides a representation of the 
spatial arrangement of the environment. It includes the positioning of WiFi receivers, 
transmitters, and other relevant elements within the experimental setup. Figure 10 illus-
trates the layout of the experimental location, providing a visual representation of the 
spatial arrangement of the environment. The diagram showcases the precise placement 
of WiFi receivers, transmitters, and other pertinent elements within the experimental 
setup. The dataset was collected from two distinct environments to analyze and improve 
the robustness of the results. The lab and home environments vary in terms of spac-
ing and furniture, as shown in Fig. 11. This provides data that better reflects real-world 

Fig. 10 The experimental layout and trajectory paths capture and analyze CSI amplitude changes

2 https:// github. com/ FahdS aadA/ Domain_ Adapt ing_ CSI_ WiFi_ Mappi ng/ tree/ main
1 https:// data. mende ley. com/ previ ew/ d7442 jp8b7?a= 0f0ee fac- efe9- 4113- b3cf- 88ba0 84001 71

https://github.com/FahdSaadA/Domain_Adapting_CSI_WiFi_Mapping/tree/main
https://data.mendeley.com/preview/d7442jp8b7?a=0f0eefac-efe9-4113-b3cf-88ba08400171
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conditions, enhancing the robustness of the dataset. The dataset captures a wide range 
of scenarios, facilitating a more thorough understanding of patterns and behaviors in 
both stable and unpredictable conditions.

Line‑of‑sight analysis

The LoS analysis involves analyzing the CSI data for localization purposes using the tri-
angulation method in conjunction with the domain adapting module. This analysis will 
enhance localization by leveraging the direct path information between WiFi transmit-
ters and receivers. The triangulation method utilizes the extracted CSI amplitude data 
from multiple WiFi receivers to estimate the real-time coordinates of the target. The 
triangulation algorithm exploits the geometric relationships among these distances to 
determine the precise position. The module fine-tunes the localization model using the 
collected CSI data to improve localization performance, allowing the model to adapt to 
the specific characteristics of the target environment. By incorporating the LoS analysis 
into the triangulation method and domain adapting module, the localization system uti-
lizes direct path information and dynamically adjusts to the target environment’s charac-
teristics. As a result, the system achieves enhanced precision and resilience in estimating 
coordinates. The process of capturing data within the trajectory paths, as depicted in the 
layout in Fig. 12, involves the meticulous utilization of a 20 MHz bandwidth while mov-
ing within the labeled trajectories.

When two CSI sensor nodes are used, the sensing amplitude changes depending on 
the direction of movement. This is shown in Fig.  13 with subplots (a–f), which map 
and estimate the trajectory. Each subplot in the figure corresponds to a specific trajec-
tory signal variance, providing a nuanced analysis of the signals captured during a per-
son’s movement. The discernible variations in these trajectory signals provide valuable 
insights into the diverse movement patterns, allowing for mapping and estimating the 
traversed trajectories. Visualizing signal variances across different bandwidths and fre-
quencies enhances the system’s capacity to discern subtle nuances in trajectory paths. 
The intricate examination of trajectory signals in various scenarios, as presented in 
Fig. 13, underscores the system’s efficacy in capturing and interpreting dynamic move-
ment patterns for robust trajectory mapping and estimation applications.

For instance, Fig. 13a provides a clear illustration of the signals captured by two sensors. 
Figure 13a illustrates the signals captured by two sensors corresponding to the trajectory 
(1) shown in Fig. 12. In the first sensor’s signal, we observe a constant value, indicating 
that the person’s movement remains stationary or unchanged during this portion of the 
trajectory. However, in the second sensor’s signal, we notice increasing changes in ampli-
tude as the person moves forward, signifying a progressive movement in that direction. 
Conversely, when the person starts moving backward in the first trajectory, the second 
sensor’s signal exhibits decreasing amplitude changes. This observation highlights the 
ability of the system to capture and represent the varying signal patterns associated with 
different directions of movement within a given trajectory. Figure 13b shows the impacts 
of the sensors, with the captured signal showing the second trajectory at path 2. The fig-
ure illustrates the changes in signals 1 and 2 as the individual moves along the trajectory 
in both forward and backward directions. Signal 2 undergoes continuous changes when 
the person is not near RPi2, whereas significant fluctuations occur in sensor 1 (RPi1). In 
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RPi1, the signal transitions from low to high and vice versa, depending on the direction 
the person follows. The mapping enables identifying the characteristics associated with 
the trajectory the individual follows. At the same time, when the first sensor moves for-
ward and backward from its position, changes occur. This mapping of signals enables the 
determination of the direction of movement by analyzing the changes in signals between 
the two sensors. Such an advanced trajectory mapping technique allows for detailed rep-
resentation of the movement patterns.

Through wall evaluation

In the experimental evaluation, we positioned one of the sensors behind a wall to 
introduce an investigative dimension to the impact of physical barriers on trajectory 
mapping. As illustrated in Fig.  14, the layout configuration entails placing one sensor 
behind a wall while the other remains in the open space. This method has potential for 

Fig. 13 Trajectory signal variance across the different directions of movement shows the system’s capability 
to map and estimate trajectories based on CSI amplitude changes
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continued tracking and plotting trajectories through walls, opening up possibilities for 
applications in surveillance, security, and location-based services. The experimental lay-
out and results depicted in Fig.  14 exemplify the system’s resilience in scenarios with 
physical barriers, substantiating the viability of trajectory mapping through walls based 
on CSI amplitude changes.

The results of the through-wall trajectory analysis, as demonstrated in Fig. 15, under-
score the system’s notable capability to sense and delineate trajectory paths even when 
confronted with physical barriers. Figure 15 illustrates how the system robustly captures 
and interprets trajectory data in real-world scenarios, even when physical obstructions 
exist. This outcome holds substantial implications for indoor tracking applications, 
showcasing the potential of utilizing CSI amplitude changes for trajectory sensing 
through obstacles such as walls. The sensory signals of CSI amplitude, plotted for trajec-
tory paths from directions 1 to 6, provide valuable insights into the movement patterns. 
Each direction represents a specific trajectory path, indicating forward and backward 
movements. Figure 15 shows D11 , representing the first trajectory path in the forward 
direction, while Fig. 14 shows D12 , signifying the backward movement through a wall. 
Remarkably, the signal plots demonstrate the sensory ability to perceive through-wall 
information, akin to LoS sensing. Through-wall sensing enables predicting an individ-
ual’s trajectory path despite obstacles due to its distinguishable features. These findings 
highlight the potential of through-wall sensing in mapping trajectory paths and offer 
promising opportunities for various applications in areas such as indoor tracking, sur-
veillance, and behavior analysis.

Fig. 14 The through-wall experimental layout depicts location analysis and trajectory, with arrows indicating 
the directional flow
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Distance tracking effects

The distance inspection of the triangulation method for WiFi trajectory heatmapping 
involves a comprehensive examination of the system’s ability to measure distances based 
on CSI amplitude changes. By employing triangulation techniques, the system gauges 
the distances between the WiFi sensors and the target, providing data for trajectory 
mapping. The resulting heatmap reflects variations in signal strength and distance across 
the monitored space, yielding valuable insights into the spatial dynamics of movement. 
The triangulation method enables the generation of precise distance measurements, 
contributing to the creation of detailed trajectory heatmaps.

Figure 16 illustrates a decline in localization accuracy with increasing distance despite 
fluctuations in location errors’ minimum, maximum, median, and mean values. The 
median and mean location errors did not exhibit a monotonic increase, and estimations 
at distances of 15 m or 20 m displayed slightly higher location errors than those at 5 and 
10 m. This phenomenon cannot be solely attributed to measurement deviations; rather, 
it predominantly arises from the overlooked consideration that the target and access 
points (APs) exist in a three-dimensional space rather than on a two-dimensional plane. 
It is essential to recognize that the APs provide Angle of Arrival (AoA) measurements 
in a three-dimensional space, encompassing both azimuth and elevation. In our calcu-
lations, these measurements were treated as fixed angles. From a mathematical stand-
point, as the distance between the target and APs increases, the error diminishes when 
approximating three points of varying heights to lie on the XY plane.

State‑of‑the‑art analysis

The accuracy of various models for a given task can provide insights into their perfor-
mance and effectiveness. In the context of the specific task at hand, the accuracy val-
ues achieved by different models are as follows: SVM attained an accuracy of 67%, NB 

Fig. 16 Distance error based on the separation distance between triangulations nodes
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gained 59%, LSTM achieved 75%, GRU reached 73%, and the adapting domain classifier 
achieved an impressive accuracy of 91%. These accuracy measurements serve as quanti-
tative indicators of the models’ abilities to classify or predict the target variable correctly. 
Therefore, based on these accuracy values, the SVM, LSTM, GRU, and adapting domain 
classifier models demonstrate relatively favorable performance compared to the NB 
model. However, it is essential to consider other evaluation metrics and conduct further 
analysis to gain a comprehensive understanding of the models’ overall effectiveness and 
suitability for the specific task. Figure  17 demonstrates the effectiveness of the LSTM 
classifier and fine-tuning adapting model classifier for the 13 classes in classifying the 
data into multiple categories.

The adapter model enhances classification in a new domain by improving classification 
accuracy compared to traditional approaches. It introduces domain-specific adapters, 
which are small additional layers attached to the pre-trained model. The model adapts 
and learns domain-specific information while preserving the knowledge learned from 
the source domain through the use of these adapters. By fine-tuning the adapter model 
on the target domain data, it captures domain-specific features, leading to improved 
classification accuracy in the new domain. Table 2 outlines recent advancements in tra-
jectory and fingerprinting techniques for indoor localization. It summarizes the meth-
ods employed, highlights the limitations encountered, and identifies potential challenges 

Fig. 17 Performance of LSTM classifier and fine-tuning adapting model classifier for the 13 classes



Page 29 of 36Abuhoureyah et al. Journal of Engineering and Applied Science          (2024) 71:196  

Table 2 Recent developments in fingerprinting-based indoor localization: methods, limitations, and 
potential challenges

Ref. Method Classifier Tool Freq 
GHz

BW 
MHz

Localization Mapping Acc. 
error

Perf. and 
limitations

[42] CSI-ampli-
tude

AdaBoost Intel 
NIC

5 20 ✓ × 1.1 m Limitations 
in highly 
dynamic 
environ-
ments

[43] CSI phase Meta- 
learning

Intel 
NIC

x x ✓ × 1.3 m Requires 
extensive 
offline train-
ing

[44] CSI-phase 
calibration

SSIM-based 
augmenta-
tion

x x x ✓ × 2.4 m Location-
dependent 
limitations 
and requires 
training

[4] CSI amp. 
and phase

AdaptDNN Intel 
5300 
NIC

5 20 ✓ × 0.61 
m

Location-
dependent 
limitations 
and requires 
training

(Xue 
et al., 
2023)

CSI amp. 
and phase

ML-ELM Intel 
5300 
NIC

5 20 ✓ × 1.1 Requires 
large train-
ing data and 
may vary by 
location

[32] CSI -RSSI 
amp.

LoS effects Rasp-
berry pi 
4B

5 80 ✓ ✓  0.9 
m

Sensitive to 
environ-
ment and 
complexity 
of human 
activities.

[1] (mmWave) Hungarian 
algorithm

TI 
IWR684 
3ISK

60 - 64 4 ✓ ✓ 0.2 m Higher cost, 
and power 
consump-
tion, with 
a complex 
algorithm.

[7] CSI amp. ML-ELM Intel 
5300 
NICs

2.4 20 ✓ × 1 m Location-
dependent 
and requires 
intensive 
training.

[2] CSI amp. Doppler-
MUSIC

Intel 
5300 
NICs

2.4 20 ✓ × 0.3 m Limited 
bandwidth 
leads to 
difficulty in 
achieving 
accurate 
sensing 
using Dop-
pler based 
on CSI

This 
work

Triangula-
tion

Fine-tuning 
algorithm

RPi 4B 2.4,5 20/80 ✓ ✓ 5–10% Requires 
having at 
least small 
dataset for 
the domain
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in this field. The analysis of recent works offers valuable insights and serves as a founda-
tion for evaluating the effectiveness and applicability of different approaches in indoor 
localization research.

Existing approaches leveraging WiFi CSI for localization within indoor environ-
ments have demonstrated improvement in indoor positioning, such as those employ-
ing CSI amplitude, phase, and hybrid methods. For example, the use of AdaBoost 
classifiers with CSI amplitude data, as explored by [42], achieves competitive accu-
racy but is highly sensitive to dynamic environments. Similarly, Wei et al. [43] imple-
mented a meta-learning approach using CSI phase information, achieving reliable 
results but requiring substantial offline training, which limits its scalability across 
diverse environments. These methods face limitations in environments with signal 
fluctuations due to NLOS propagation and multipath effects.

The triangulation-based approach integrated with a fine-tuning algorithm, which 
demonstrates computational efficiency and scalability when compared to state-of-the-
art fingerprinting-based indoor localization methods. As highlighted in Table 1, The 
method achieves a localization accuracy improvement of 5-10% compared to tradi-
tional approaches that rely on CSI amplitude or phase-based techniques. Notably, the 
approach offers a low-cost and energy-efficient solution, while supporting dual-fre-
quency (2.4 GHz and 5 GHz) with bandwidths of up to 80 MHz. Unlike other meth-
ods, such as those relying on complex algorithms like Doppler-MUSIC or Hungarian 
algorithms, which are resource-intensive and constrained by limited bandwidth, our 
system benefits from the flexibility of domain adaptation [1, 2]. By incorporating fine-
tuning techniques, the approach reduces the need for extensive offline training, a key 
limitation in several existing systems [7]. Additionally, the method reacquires small 
dataset for domain adaptation.

Impact of numbers of nodes

The number of nodes in trajectory-sensing systems plays a role in determining their 
accuracy and effectiveness. Increasing the number of nodes leads to improved trajec-
tory-sensing capabilities and enhanced spatial coverage of the sensing area, resulting 
in better tracking and capture of individuals’ movement patterns. This increased cov-
erage allows for tracking of individuals within the monitored environment. Moreover, 
a higher number of nodes provides a denser network of sensing points, which enables 
finer-grained trajectory sensing. That means the system captures more detailed and pre-
cise information about an individual’s movement, including subtle changes in direction, 
speed, or acceleration. The system captures more detailed and precise information about 
an individual’s movement, including subtle changes in direction, speed, or acceleration, 
resulting in more accurate and reliable trajectory-sensing outcomes.

However, it is essential to consider the trade-off between the number of nodes and the 
associated costs and complexity. Deploying and maintaining a greater number of nodes 
requires additional resources, including hardware, power supplies, and communication 
infrastructure. Moreover, a higher number of nodes can introduce challenges in terms 
of data processing and management. Therefore, one must strike a balance between the 
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number of nodes and the desired level of trajectory sensing accuracy, taking into account 
the practical constraints and requirements of the specific application or environment.

Impact of different environments and orientation

The evaluation of the trajectory mapping using the proposed module reveals promising 
results in tracking the direction of movement. In such cases, the model effectively local-
izes the real-time position of individuals and predicts their movement direction. How-
ever, the model’s performance diminishes when confronted with untrained trajectories 
or non-linear paths that could improve, as depicted in the trajectory depicted in Fig. 18. 
This is evident when the trajectory deviates from the patterns observed in the training 
data. The model struggles to estimate the real-time position of the person along the non-
linear trajectory.

Despite these limitations, it is noteworthy that the module still achieves a commend-
able 90% accuracy in identifying the path direction and the general direction of move-
ment. While the model may not precisely localize the person’s position along non-linear 
trajectories, it still provides valuable insights into the overall movement patterns. Addi-
tional training is required to improve the trajectory mapping module’s accuracy for non-
linear trajectories. Further iterations of training sessions should encompass a diverse 
range of non-linear paths, capturing various complexities and variations. By incorporat-
ing such training data, the model can learn to understand and predict individuals’ real-
time positions within non-linear trajectories, leading to improved accuracy in localizing 
positions along these paths.

Impact of sampling rates

Data packets are captured or measured within a network at a frequency known as 
the sampling rate. By conducting an experimental evaluation, we observe how the 
sampling rate affects the packet rate measurements’ accuracy, reliability, and respon-
siveness. The evaluation reveals that a higher sampling rate provides more detailed 
information about packet rates, enabling better detection of network congestion, 
identifying potential bottlenecks, and facilitating effective network management. 
Conversely, a lower sampling rate may lead to coarser measurements, potentially 
missing essential variations in packet rates and hindering the ability to monitor and 
analyze network performance. Figure  19 shows the relationship between sampling 
rate in trajectory mapping.

Limitations and future works

The methods provide groundbreaking trajectory mapping approaches by combining CSI 
triangulation with domain adapting learning techniques. Integrating transfer learning 
into the trajectory mapping process proved to be a paradigm shift, enabling the system 
to learn and adapt to complex patterns in signal data. Using CSI data with transfer learn-
ing algorithms enhanced the system’s ability to discern intricate details, resulting in a 
more nuanced trajectory mapping. The synergy between CSI-triangulation and deep 
learning improved the accuracy of trajectory predictions and demonstrated resilience 
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to environmental changes. The adaptability of the deep learning model allowed for 
real-time adjustments, making it a robust solution for trajectory mapping in dynamic 
settings.

The proposed model for indoor localization using clustered RPi has its limi-
tations and challenges. The study proposed an innovative localization method 
to enhance sensing precision without the necessary training samples and 
achieve resilience to environmental conditions. Nonetheless, using transfer 
learning for WiFi-based localization provided the potential for improving the 
accuracy of WiFi-based localization, and this could be a natural progression of 
this study in the future.

The challenge of tracking multiple people with a free device remains consid-
erable. Although advanced techniques such as beamforming can improve the 
accuracy of the sensing system, the challenge of designing a robust wireless 
sensing system that can detect and track multiple people in dynamic environ-
ments remains considerable. Further research in this area could address these 
challenges and contribute to develop reliable indoor localization systems. This 
capability will enhance the practicality and scalability of localization in large-
scale deployment scenarios. To this end, there is potential to develop multi-
person tracking methods that leverage DL architectures and innovative signal 
processing techniques.

Conclusions
In conclusion, using CSI signals in conjunction with a domain-adapting algorithm 
has proven to be effective for trajectory mapping. The localization system suc-
cessfully achieves robust system by leveraging the fine-tuning capabilities of the 
domain-adapting algorithm. The CSI signals provide valuable insights into the 

Fig. 19 Relationship between sampling rate and accuracy in trajectory mapping
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environment’s wireless channel characteristics and signal propagation. By extract-
ing and analyzing these signals, the system gains a comprehensive understand-
ing of the spatial relationships between WiFi transmitters and receivers, thereby 
enabling precise trajectory mapping. The domain-adapting algorithm further 
enhances the system’s performance by customizing the localization model to the 
specific characteristics of the target environment, resulting in improved accuracy 
in trajectory estimation. Integrating CSI signals and the domain-adapting algo-
rithm presents promising opportunities across various domains, including indoor 
tracking, surveillance, and behavior analysis, where accurate trajectory map-
ping plays a vital role in comprehending human movement patterns and spatial 
behavior. Overall, the proposed trajectory mapping approach demonstrates effec-
tive potential as a robust foundation for conducting in-depth analyses of human 
indoor tracking and behavioral patterns, as evidenced by practical investigations 
and the resulting findings.
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