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Introduction

Multiphase flow in pipes is the simultaneous flow of more than one phase in pipes [1]
and is commonly encountered in the petroleum production, drilling, processing, and
transportation systems [2, 3]. Multiphase flow modeling is more complex than single-
phase flow modeling due to the difficulty in identifying flow patterns present during
multiphase flow [4].

Flow patterns that have been reported in the literature for vertical-upward flow [5] and
inclined-upward flow [6] include dispersed bubble, slug, churn, and annular flow pat-
terns. Some investigators combined the slug and churn flow into a flow pattern referred
to as an intermittent flow pattern [7]. Flow patterns reported for horizontal flow include
intermittent, stratified-smooth, stratified-wave, dispersed bubble, and annular flow
patterns [8]. Annular, slug, and dispersed bubble flow patterns have been observed for
vertical downward flow [9], while stratified wave flow pattern has been observed as the
dominant flow pattern for inclined downward flow [10].

Slug flow is one of the dominant flow patterns encountered during the multiphase
flow of oil and gas in pipelines and wellbores [11] and occurs over a wide range of flow
conditions. Slug flow is characterized by a series of slug units with each unit consisting
of a Taylor bubble, thin liquid film, and liquid slug [12]. Slug flow develops when gas
rate in the bubble flow regime is increased to a point where the bubbles become closely
packed and start coalescing into larger bullet sharped bubbles called Taylor bubbles [5].
The Taylor bubbles eventually occupy the entire pipe cross section as the coalescence
continues [13]. The formed Taylor bubbles are separated from the pipe wall by a thin
film of liquid flowing downward relative to the Taylor bubbles. The liquid slug, carrying
dispersed bubbles shed from the tail of the leading Taylor bubble [13], bridges the pipe
and separates two consecutive Taylor bubbles [12]. The Taylor bubbles and small bub-
bles in the liquid slug in inclined pipes tend to accumulate near the upper part of the
pipe section due to buoyancy resulting in a nonuniform film thickness profile across the
pipe section [14].

Slug liquid holdup (SLH) is one of the critical slug flow closure correlations required
for accurate prediction of pressure drop during slug flow and by extension optimal
tubing design [15] and production optimization in wellbores. Other slug flow closure
relationships include translational velocity and slug length [11, 16]. Comparative per-
formance analysis of models for predicting pressure drop in vertical wells conducted by
Nwanwe and Duru [17] revealed that empirical correlations outperformed mechanistic
models. Further investigation revealed that pressure drop is severely under-predicted
whenever slug flow pattern is predicted by these mechanistic models. It follows there-
fore that this severe underprediction of pressure drop is due to severe underprediction
of the closure relationships of the slug flow model of these mechanistic models. SLH is
the slug flow closure correlation of focus for the current study.

The models developed over the years for the prediction of SLH can be categorized as
empirical correlations [18—-24], semi-mechanistic models [25, 26], mechanistic models
[27, 28], and most recently machine learning models [29, 30]. All these SLH models with
the exception of the machine learning models were developed with the aid of regression
analysis-based laboratory dataset measured for narrow range flow conditions. These
models are applicable for either low viscosity slug flow conditions [18, 23, 31-33], high
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viscosity horizontal slug flow conditions [20, 21, 24], high viscosity vertical slug flow
conditions [34], high viscosity horizontal to vertical slug flow conditions [19], or low vis-
cosity to high viscosity horizontal to vertical slug flow conditions [30].

In this study, a literature review conducted identified some issues with existing mod-
els for predicting SLH during multiphase flow in pipes. First, existing SLH empirical
correlations, semi-mechanistic models, and mechanistic models have failed to produce
accurate SLH predictions. This is because these correlations and models were devel-
oped using regression analysis which is incapable of adequately capturing the nonlin-
earity between the independent variables and dependent variable. In addition, none of
these correlations and models was developed with data measured for low to high viscos-
ity horizontal to vertical upward flow conditions. Hence, these correlations and models
failed when applied to flow conditions different from those employed in their formula-
tion. Second, to the authors’ knowledge, the Abdul-Majeed et al. model [30] is the only
SLH model developed with artificial neural network (ANN) and with data measured for
low viscosity to high viscosity horizontal to vertical slug flow conditions. However, in
selecting the optimum network structure, the authors [30] only considered a network
structure with a single hidden layer (HL). They used a program that performed checks
on the number of neurons and their weights in the single HL and then selected the net-
work structure with the lowest mean square error as optimum. The structure selected by
these authors as optimum contains 11 neurons in the single HL. This selected network
structure cannot be considered as optimum because the authors only considered one HL
in their selection. ANN and adaptive neuro-fuzzy inference system (ANFIS) has been
used to solve complex problems in the petroleum industry, but only few of these studies
have developed and presented as a visible mathematical model [35-38].

In the present study, a slug liquid holdup artificial neural network visible mathemati-
cal model (SLH-ANN-VMM) applicable for low to high viscosity horizontal to vertical
upward pipe flow conditions is proposed. A dataset consisting of 2699 data points col-
lected from open source [39] was used for the model development. A total of 70% of the
dataset was used for training and 15% for testing and validation respectively. The train-
ing dataset was transformed into four dimensionless numbers [40] and an inclination
angle. This was followed by the application of the dimensionless transformation to the
testing and validation datasets. The entire dataset was used in the construction of 71 dif-
ferent network structures with each structure having either 1, 2, or 3 HLs with varying
numbers of neurons in each HL. Sensitivity analysis was performed for the 71 network
structures, and the optimum network structure selected was based on three statistical
performance indicators, namely correlation coefficient, mean square error, and relative
performance factor. A structure is considered optimum if it achieved best performance
with respective to two or all three statistical performance indicators. The network struc-
ture selected as optimum in this study contains 20 neurons in the first HL, 5 in the sec-
ond HL, and 15 in the third HL. The trained SLH-ANN black-box model (BBM) was
translated into a SLH-ANN-VMM with the aid of the extracted tuned biases and weights
and the activation functions. The SLH-ANN-VMM was also written in a MATLAB code.
Three evaluation tests were performed. First, trend analysis revealed that the proposed
SLH-ANN-VMM produced the expected effect of various independent variables on the
SLH. Second, the test against measured dataset revealed that the SLH predicted by the



Nwanwe et al. Journal of Engineering and Applied Science (2024) 71:194 Page 4 of 35

proposed SLH-ANN-VMM is in close agreement with the measured SLH. Third, the
comparative study revealed that the proposed SLH-ANN-VMM outperformed existing
SLH models.

Methods

Data collection and description

Openly sourced datasets consisting of 2669 data points collected from 23 different stud-
ies and published as an open source Mendeley Data [39] were used in developing the
proposed slug liquid holdup artificial neural network visible mathematical model (SLH-
ANN-VMM). The dataset is made of seven input variables and one output variable. The
input variables include superficial gas velocity (Vsg), superficial liquid velocity (Vsz), lig-
uid viscosity (11r), internal diameter of pipe (d), liquid density (o), inclination angle (0),
and surface tension (or). The slug liquid holdup (H[s) is the output variable. Description
of the entire dataset employed in the present is as shown in Table 1.

Data preprocessing

Abdul-Majeed et al. [30] demonstrated based on measured data that SLH, Hig, is
strongly affected by superficial gas velocity, Vsg, superficial liquid velocity, Vs, liquid
viscosity, wr, pipe internal diameter, d, pipe inclination angle, 6, and surface tension,
or, respectively. The authors went further to develop a single hidden layer ANN-VMM
for Hps prediction as function of Vs, Vsg, i1, d, 0, and or, while liquid density, pr, was
neglected. Other authors used regression analysis to developed Hrs models as function
of Wallis [41] dimensionless Froude number,Nf,, and viscosity number, N, [20, 21, 24]
and Nf,, and inverse of the viscosity number, Ny [34], Nk, Ny, and 6 [19]. Recent studies
[42, 43] revealed that the use of dimensionless numbers leads to poorer accuracy com-
pared to using the entire set of parameters.

The use of 6 and any two of Nf,, N, and Ny, accounts for all input variables used by
Abdul-Majeed et al. [30] with exception of o;. We propose using 0 and the four dimen-
sionless numbers as originally proposed by Ros [40] to account for the effect of all input
variables including o7 and py in training the ANN. The Ros [40] gas velocity number,
liquid velocity number, pipe diameter number, and liquid viscosity number employed in
this study are as given in Egs. (1), (2), (3), and (4) in metric units respectively. The statis-
tical analysis of the preprocessed dataset is as shown in Table 2.

Table 1 Description of the entire dataset (2699 data points) employed in the present study

S/N Variables Units Min Max Average Std

1 Superficial gas velocity, Vsg m/s 0.030 15.308 1.848 2.181

2 Superficial liquid velocity, Vs, m/s 0.011 3.048 0.500 0489

3 Liquid viscosity, 1 mPas 1.000 5300.000 323931 739.984
4 Pipe internal diameter, d m 0.023 0.100 0.052 0018

5 Liquid density, o kg/m3 795.748 1300.000 883.136 83.521
6 Pipe inclination angle, 6 ° 0.000 90.000 14.660 29.284
7 Surface tension, a; mN/m 27.500 72.000 31.632 7.789

8 Slug liquid holdup, H; s - 0.164 1.000 0.820 0.189
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Table 2 Description of the preprocessed dataset (2699 data points) employed in the present

research

S/N Variables Units Min Max Average Std

1 Gas velocity number, Ngy - 0.2221 1125366 13.5169 159312
2 Liquid velocity number, Ny - 0.0821 224073 3.6624 3.5720

3 Pipe diameter number, Ny - 12.2862 543110 27.5472 9.3368

4 Liquid viscosity number, N; - 0.2240 2086.4874 131.3393 2924623
5 Inclination angle, 6 ° 0.0000 90.0000 14.6602 29.2836
6 Slug liquid holdup, H;s - 0.1640 1.0000 0.8197 0.1887

Table 3 Parameter ranges for the training, validation, and testing datasets employed in the present

study
Training dataset Testing dataset Validation dataset
(1889 data points) (405 data points) (405 data points)
S/N  Parameters Units Min Max Min Max Min Max
1 Gas velocity number, Ngy - 0.2221 1125366 0.7218 95.8498 0.2221 76.8864
2 Liquid velocity number, Njy - 0.0821 224073 0.2205 22.2692 0.1137 17.1699
3 Pipe diameter number, Ny - 122862 543110 13.6814 284472 12.2862 27.6279
4 Liquid viscosity number, N, - 02240 20864874 05333 2350331 06138 1377.8690
5 Inclination angle, 6 ° 0.0000  90.0000 0.0000  90.000 0.0000  90.0000
6 Slug liquid holdup, H; s - 0.1640 1.0000 0.1700 0.9999 0.2070 1.0000
0.25
PL
Ngy = 1.7964Vsg | — (1)
oL
0.25
PL
Niy = 1.7964 Vs <> (2)
oL
0.5
L
N, = 31.664d <p> (3)
oL
0.25
Ni = 0.55646ML< 3) (4)
PLOL

Slug liquid holdup ANN black-box model development

A total of 2699 openly sourced laboratory-measured data points were employed in the
development with the SLH-ANN-BBM. First, the dataset was preprocessed by trans-
forming the input variables in four dimensionless numbers. Second, the preprocessed
dataset was divided into three different sets: 70%, 15%, and 15% for training, testing, and
validation respectively. As shown in Table 3, the division of the preprocessed dataset
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ensured that all the parameter ranges in the testing and validation datasets were covered
in the training dataset.

The optimum network structure was selected by first constructing 71 network structures
as shown in column 2 of Table 4 with each structure having either 1, 2, or 3 hidden layers
(HLs) with varying numbers of neurons in each HL. In addition, each HL consists of vary-
ing numbers of neurons ranging from 5 to 20 in steps of 5. As shown in Table 4, column 2,
the figures after the letter “n” represent the neurons in the HLs. For example, the network
structure n-10-20-5 is a 3 HL network with 10 neurons in the first HL, 20 in the second
HL, and 5 in the third HL.

The preprocessed data points were employed in the training, testing, and validation of
each of the 71 constructed network structures. We used the training dataset (1889 data
points) to train each network structure until 3 basic conditions were satisfied. First, the
training dataset mean square error (MSE) must be less than that of validation and testing.
Second, testing and validation datasets MSE must have identical characteristics. Last, cor-
relation coefficients must increase in the order of testing, validation, entire, and training
datasets [44].

At the end of the satisfactory training of each network structure, the trained network is
used in the prediction of SLH for the entire dataset (2699 data points). The predicted SLHs
are then used to calculate the performance of each of the 71 satisfactorily trained network
structures using 3 different statistical performance tools. The statistical performance tools
include correlation coefficient, R, root-mean-square error, E,,,;, and relative performance
factor, Fyy. Fyp, as defined in Eq. (5), includes the effect of six statistical errors (E1, Ea, E3, Eq,
Es, and Eg) with a minimum of zero and a maximum of six representing the best and worst
performance respectively. E,,;, as defined in Eq. (6), with the lowest and highest values
indicates best and worst performance, respectively. R, as defined in Eq. (7), with the lowest
and highest values represents the worst and best performance respectively.

Table 4 presents the results of the comparative performance analysis of the 71 different
network structures. As shown in Table 4, the statistical error parameters E; through E¢ are
presented in columns 3 through 8. The statistical performance tools E,; is presented in
column 9, R in column 10, and F,, in column 11. The blue cells with metrics written in
white represent best performance for each considered statistical error parameter or statisti-
cal performance tool. In this study, we considered a network structure to be optimum if it
achieved best performance in respect to at least two of the three statistical performance
tools.

As shown in Table 4, the n-20-5-15 network structure was selected as optimum because
it achieved the highest value of R (0.978), lowest value of E,,s (0.048), and second minimum
value of F,, (0.330). Levenberg—Marquardt optimization algorithm was used in training the
network, the hyperbolic tangent activation function for activating the HLs, and linear acti-
vation function for activating the output layer. As shown in Fig. 1, the optimum network
consists of an input layer with 5 input variables; 3 HLs with 20, 5, and 15 neurons in the
first, second, and third HLs respectively; and an output layer with 1 output variable.

E| - |E E—E Es—E Ey| — |E Es—E Eo—Es, .
|E1| = |E,| 2= EBo  E3=Es Bl |Ea,| 5= Esy o= Eoy

= v~ [Ev] © Bonr = Eny B — By Erm] — [Ei] B — By B —Es ()
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Table 4 Comparative performance analysis of the 71 network structures based on the entire

dataset (2699 data points)

(2024) 71:194

Network E, E, E; E, Eq Eq Epms R Eyp

SN Structure (%) (A () O 06 60 0 0 6

1 05 L4 6866 57330 00002  0.046 2366 0117 0880 5.183
2 010 0845 5808 43467 -0.0001 0.040 2068  0.094 0918 3.866
3 nd5 0652 4701 33530 -0.0008 0032 1682 0080 0939 3.329
4 020 0513 4015 26401 -0.0009 0028 1438 0067 0956 2.605
5 55 0710 5470 36545 00002 0037 1929 0094 0917 3437
6 ml05 0375 3827 19329 -0.0001 0026 1363 0063 0961 1548
7 nlss -0234 3214 12101 0022 1143 0055 0970 0.774
8§  n20-5  -0.338 3097 17432 00006 0021 1089 0056 0972 1334
9 nS-10 0223 4307 11568 00010 0030 1531 0071 0950 2350
10 n5-15  -0400 4112 20605 00005 0028 1456 0070 0955 2.140
Il 0520 -0.269 3762 13901 00003 0025 1319 0063 0962 1463
12 n10-10  -0285 3480 14.699 0.024 1234 0059 0966 1088
13 n5-10 0202 3011 10477 00001 0020 1049 0060 0972 0.614
14 02010 0240 3655 12383 00005 0026 1329 0060 0960 1.525
15 n1015 0347 3287 17879 00003 0023 1176 0057 0968 1313
16 01020 0292 3163 15079 00002 0022 1125 0055 0971 0958
17 n1515 0056 3188 3418 00009 0021 1083 0088 0966 1.104
18 n1520 0216 3248 11167 00002 0022 1169  0.054 0969 0938
19 02015 0266 2939 13735 00002 0020 1048 0052 0974 0.794
20 02020 0262 2782 13531 -0.0004 098 0.051 0975 0.787
21 0555 0450 4321 23077 00001 0030 1537 0072 0949 2.056
2 n105-5 0330 3.664  17.025 0025 1299 0062 0964 1291
23 n15-55 0 -0238 3512 12311 00003 0024 1266 0057 0966 1.253
24 02055 -0318 3077 16407 -0.0004 0021 1082 0059 0972 L119
25 n5-10-5 -0420 3813 21648 00001 0026 1330 0069 0958 1562
2 0S-S5 <0035 2988 7025 0.0007 0020 1048 0053 0974 0.964
27 n5205 -0328 3266 16887 -0.0004 0022 L1137 0059 0970 1244
28 05510 -0.063 3733 8605 0.0011 0025 1298 0065 0964 1.908
20 n-55-15 0358 3832 18454 0026 1374 0064 0957 1481
30 05520 -0.384 3921 19811 00001 0026 1376 0069 0960 1.618
31 n10-105 0167 3096 8735 00006 0022 1118 0055 0971 1.081
32 010155 0064 3284 8.565 00004 002  LIS7T 0058 0969 0.988
33 010205 -0378 3408 19523 -0.0002 0023 119 0063 0968 1.299
34 010510 -0240 3443 12396 00002 0024 1235 0057 0967 1122
35 010515 0076 3056 9.037  0.0005 0022 LI35 0054 0971 1.022
36 010520 0236 3265 12190 -0.0001 0022  LIS2 0061 0970 0873
37 n10-10-10 -0245 2987 12639 0.0001 0020  1.039 0054 0973 0.627
38 n-10-10-15 0285 3.099 14712 -0.0003 0021 1102 0055 0970 1.047
39 n10-10-20 0230 2933 11915 00003 0020  1.027 0058 0973 0.754
40 n10-1510  -0270 3145 13989 -0.0001 0021 1101 0058 0972 0872
41 n10-1515 -0301 2986 15526 -0.0002 0020 1054 0055 0973 0.884
42 1041520 0272 2.835  14.086  -0.0002 0992 0.057 0974 0.667
43 0102010 -0212 3088 11010 00002 0021 1100 0055 0972 0815
44 0102015 0326 2959 16867 -0.0004 0020 1032 0059 0973  1.060
45 0102020 0.195 2923 10.098 0020 1043 0051 0974 0.521
46 n155-10 0009 3132 5871 00007 0022 LIS 0055 0971 1.040
47 015515 0207 3203 10714 00003 0022 1145 0055 0970 0952
48 015520 0274 3342 14075 00004 0023 1173 0060 0968 1226
49 0154105 0089 2756 4811  -0.0005 0991 0.050 0975 0612
50 n-15-10-10 0278 3016 14317 -0.0002 0022  LI27 0053 0972 0923
51 ne15-10-15 0275 3074 14179 -0.0001 0022 1136 0057 0970 0917
52 n-15-1020  0.080 4372 -0.0005 0973 0.051 0976 0502
53 n-I5-155 0305 3.092 15787 -0.0002 0021 1106 0059 0971 1015
54 nel5-15-10 -0237 2852 12240 -0.0003 0020 1018 0053 0975 0.780
55 n-l5-15-15 0079 2927 4411  0.0005 1005 0062 0973 0596
56 n-15-15-20  -0261  2.894 13463 -0.0004 0020  1.035 0053 0973 0877
57 020510 -0.170 3199 8855 0.0005 0022 1133 0055 0970 1.000
58 020515 0062 2760  8.443 [JTCTIIEGTH o0.987 0.330
59 020520 -0.078 2804 4333 00008 QMOOCEN 1.001 0049 0976 0.860
60 n-20-10-5 3.019 00012 0020 1058 0054 0973 1206
61 n20-10-10 -0.094 3.002 5109 00004 0021 1093 0055 0971 0741
62 n-20-10-15 -0.320 3.004 16516 -0.0005 0020 1062 0056 0972 LI58
63 020-1020 -0.146 2775 7.634 [OCUOMMNOOCH 0973 0055 0976
64 020155 0156 3039 8165 00006 0022 1133 0055 0971 L1I9
65 n20-1510 0250 2886 12935 00001 0020 1015 0056 0975 0.629
66 n20-1515 0187 2913 9731 -0.0001 0020 1019 0061 0974 0.497
67 1020-1520 0179 2761  9.283  -0.0001 0994 0.049 0975 0438
68 n-2020-5  -0207 3.010 10743 00001 0020  1.065 0054 0973 0615
69 0202010 -0219 3.058 11339 0021 1096 0052 0972 0637
70 0202015 -0.065 2735 3.679  0.0005 0981 0049 0976 0525
71 n20-20-20 0046 2755 2769 0.0009 0057 0975 0822

Page 7 of 35



Nwanwe et al. Journal of Engineering and Applied Science (2024) 71:194 Page 8 of 35

Hidden 1 Hidden 2 Hidden 3 Output

Output

20 5 15 1

Fig. 1 Structure of the trained slug liquid holdup ANN model
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_ 15
Ee Zi:l o) (15)
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— 1 n
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where e,; is the relative error, e; is the actual error, E; is the average percent error, Ej is
the absolute average percent error, E3 is the percent standard deviation, E4 is the average
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error, E5 is the absolute average error, Eg is the standard deviation, €jye4s is the aver-
age change in measured SLH, Hg,,,,, is average measured slug liquid holdup, Hys;,,,, is
measured liquid holdup, Hysi,,, is the predicted liquid holdup, R is the correlation coef-
ficient, E;s is the root-mean-square error, and Fy, is a relative performance factor.

Slug liquid holdup ANN visible mathematical model development

The SLH-ANN-BBM developed in the “Slug liquid holdup ANN black-box model devel-
opment” section was presented without any visible mathematical equation. This will
make it difficult for readers to implement the developed ANN model. There is therefore
the need for a translation of the SLH-ANN-BBM into a SLH-ANN-VMM with the aid of
the extracted weights and biases and the activation functions.

As already mentioned, the trained optimum ANN consist of 3 HLs with 20 neurons
in the first HL, 5 neurons in the second HL, and 15 neurons in the third HL. From
here, we will refer to the input layer as the first layer, first HL as second layer, second
HL as third layer, third HL as fourth layer, and output layer as the fifth layer. The
second, third, fourth, and fifth layers extracted biases and weights are as presented
in Tables 5, 6, 7, and 8, respectively. The SLH-ANN-VMM development is described
next.

First, an input vector Y of seven variables representing the inputs Vsg, Vi, i1, d, o1,
0, and oy is defined. In the preprocessing step, six out of the seven input variables were
transformed to dimensionless numbers: NGy, Ny v, N, and Ny with the aid of Egs. (1),

Table 5 Second layer's bias vector, b, and weight matrix, W2, used in Eq. (19)

w2 B

Nev Niy Ng Ni 0

0.203 0.344 0.321 —5572 — 0490 —5.062
—0.065 0477 —4.897 —0.595 —0.564 —5.633
—0.643 0.178 —0.707 1.448 — 1479 1.946
—0575 3.195 2.099 —1.192 —0.341 3.867

— 1436 2424 —0.094 —0.555 —0.292 1.569
1519 —1.903 0435 1.574 1.178 —0.967
—0.200 —0.510 —4.850 1.944 0.177 —0.317
—0.353 —1.191 —0.733 —2.984 2.561 0453
1324 1.661 0.053 1.409 2.020 —0.143
—1.190 —1.013 —0.925 —1.277 0212 0.101
0.930 1.183 —0.230 —1.363 —1810 —0.275
1.533 1.675 —0.184 —0.027 2.307 0.607
0.145 0.053 —3.344 —1.675 0.133 —0.243
0.268 1.108 1.692 —1.394 1.964 —1.273
—0.978 1.130 0.179 —1.090 —0.895 —1.489
1.151 1.345 1.067 0475 —0.666 1.225
0.174 —0.298 0.075 2.520 —4.354 —2.882
0.238 —0.633 2813 0.402 1.299 1.853
0.218 —2.118 0.963 — 1441 1.563 1462

2615 —0424 —0.161 —0.631 —0.386 2.685
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Table 7 Fourth layer's bias vector, b, and weight matrix, W4, used in Eq. (23)

w4 bL4
—0914 0.563 1.956 1416 2.873 2417
—0611 —1.582 —2.605 —0.661 2217 2.748

— 1464 — 1482 0.005 —1.118 0.167 1.589
1.631 0.884 —0.761 0415 0.999 —1.527
—1.741 0.014 1.376 0.064 —1.330 1.150
1422 —1.787 1.919 0.856 2.005 —1.344
—1.375 0.799 —5227 0.564 1.149 —0.730
0.637 1.800 2.138 —1.029 0.106 —1.878
—0615 1.833 —0.095 —1.141 —1.365 —0.100
0.061 —2.533 0.204 —0.349 —1.886 0.040
2171 0.978 —2516 2.134 0.979 2019
1.958 2.343 2617 —1.440 0.501 0.909
—1.842 2.183 1.928 0474 0485 —2.205
0.668 1977 —0.276 0423 2.322 1.264
1.202 1.550 1.803 —1.538 —0.758 2.649

(2), (3), and (4), respectively. Similarly, in developing the ANN-VMM, the dataset is
transformed to dimensionless numbers with the aid of Egs. (1), (2), (3), and (4).

Second, the dimensionless numbers (Ngy, Ny, Ny, and Nz) and the angle of inclination,
0, were used as inputs in the training of the ANN. Hence, an input vector X of five vari-
ables: X1, X, X3, X4, and X5 representing the inputs Ngv, Ny, Ny, N, and 6 is defined.
Before training of the ANN, the default feed forward network processing function as given
in Eq. (18) was used to normalize the inputs to lie between — 1 and 4 1.

(18)

X = X,
= X 1) = z{mm} 1
n

XWILZX - XWI

where X(_1.1) is the input vector normalized in the range {—1,+1}, X, is the mini-
mum training dataset input vector as shown in column 4 of Table 3, X}, is the maxi-
mum training dataset input vector as shown in column 5 of Table 3, and a’! is the first
layer’s activation vector.

Third, the second layer’s (first HLs) net input vector, Z%2, is determined as the sum of

bLZ

second layer’s bias vector, 52, and the product of the second layer’s weight matrix, W12,

and first layer’s activation vector, all, as defined in Eq. (19). Second layer’s bias vector,
b2 and weight matrix, WZL2 are listed in Table 5.

ZL2 — bLZ + WL2 'tlLl (19)

Fourth, the second layer’s activation vector is determined to lie in the range
between — 1 and + 1 by using Eq. (20), the hyperbolic tangent activation function.

L2 _ 2 1 — L2
= <1 +exp(—2ZL2)) 1= tanh(z ) (20)
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Fifth, the third layer’s (second HL’s) net input vector, Z'3, is determined as the sum of

b3, and the product of the third layer’s weight matrix, W3,

L2

the third layer’s bias vector,

and the second layer’s activation vector, a
bLS

, as expressed in Eq. (21). Third layer’s bias

vector, b3, and weight matrix, W3, are listed in Table 6.

ZL3 — bLS + WLS -LZLZ (21)

Sixth, the third layer’s activation vector is computed to lie in the range {— 1,4 1} with
the aid of Eq. (22), the hyperbolic tangent activation function.

I3 _ 2 1 13
= <1 + exp(—22L3)> 1= tanh(Z ) (22)

Seventh, the fourth layer’s (third HL’s) net input vector, 7% is determined as the sum

bL4

of the fourth layer’s bias vector, b**, and the product of the fourth layer’s weight matrix,

W4 and the third layer’s activation vector, '3, as defined in Eq. (23). Fourth layer’s bias

bL4

vector, b4, and weight matrix, W4, are listed in Table 7.

ZL4 — bL4 + WL4 . aLS (23)

Eighth, the fourth layer’s activation vector is computed to lie in the range {—1,+ 1}
with the aid of Eq. (24), the hyperbolic tangent activation function.

L4 _ 2 I L4
= <1+exp(—ZZL4)) l_tanh(z ) (24)

Ninth, the fifth layer’s (output layer’s) net input, Z%, is determined as the sum of the fifth
layer’s bias, b'°, and the product of the fifth layer’s weight vector, W4, and the fourth
layer’s activation vector, a4, as defined in Eq. (25). Fifth layer’s bias, b°, and weight vec-
tor, W%, are listed in Table 8.

ZLS — bLS + WLS 'ﬂL4 (25)

Tenth, the fifth layer’s (output layer’s) net input vector, Z-%, is denormalized with the
aid of Eq. (26) to produce the output (slug liquid holdup).

(25 +1)

H =
LS 9

(Hrsmax — Hismin) + HLSmin (26)
where Hy is the predicted slug liquid holdup, Z%® is the fifth layer’s (output layer’s) net
input, Hrsmax is the maximum value of training dataset slug liquid holdup equal to 1.0
as shown in column 5, row 8 of Table 3, and Hy sy, is the minimum value of the training
dataset slug liquid holdup equal to 0.164 as shown in column 4, row 8 of Table 3.

The flow chart for predicting of SLH with the proposed SLH-ANN-VMM is as shown
in Fig. 2. In addition, a MATLAB code of the proposed SLH-ANN-VMM is presented in
Appendix Table 13.
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Inputs
Vse, Vsp, i, d, pp, 0, 01,

v

Preprocessed inputs

0.25
Ngy = 17964V, (;’—z)

0.25
Ny = 1.7964V, (Z—z)

0.5
N, = 31.664d (ﬂ)

gy

1 0.25
N, = 0.556464; (pmg)

v

Normalize preprocessed inputs to lie between -1 and +1.
X = [Ngy Ngp Ng N 617
Kii—toeny = 8 = Kiaa W K = Koz}

v

Activation vector of layer 1 (Input Layer)
a*® = 2X,01) — 1

v

Net input and activation vectors of layers 2,3 and 4
7L(2) = pL(2) 4 Wl(@). 4L(D)

a?) = pnh 2142
ZL(3) — pL3) 4 L) . GL@

at®) = tanh zL®
ZL(®) = pL(4) 4 L@ . 4L(3)

at® = tanh zL®

v

Net input of layer 5 (output layer)
7L(5) = pL(B) 4 yL(3) . 4L(4)

v

Net Output of Layer 5 (Output Layer)

1
HLS = E(ZL(S) + 1) * (HLS jpgy — HLS i ) + HLS

Fig. 2 Flow chart for the predicting of slug liquid holdup with the proposed SLH-ANN-VMM
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Results and discussion

Three important tests were performed to evaluate the proposed SLH-ANN-VMM. These
tests include trend analysis, test against measured dataset, and comparison against best
available models.

Trend analysis of the SLH-ANN-VMM based on synthetic slug flow dataset
We conducted a trend analysis to confirm whether the proposed SLH-ANN-VMM
reproduced the expected effect of each input variable on the SLH. First, seven different
synthetic datasets were generated. Each synthetic dataset was generated by varying one
input and keeping the other inputs constant. The constant inputs used in the synthetic
datasets generation are as defined in Table 1, column 6. Second, the proposed SLH-
ANN-VMM and the best available SLH-ANN-VMM [30] were used to predict the SLH
for each of the seven synthetic datasets. Third, plot of each of the varied input parameter
against the SLH is made.

Figure 3 shows the effect of superficial gas velocity (SGV) on slug liquid holdup (SLH).
Generally, an increase in SGV results in a decrease in SLH. This is because increasing the

—@—This study —&— Abdul-Majeed et al. [30]
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W
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0.40
0 5 10 15

Superficial Gas Velocity, m/s

Fig. 3 Effect of superficial gas velocity on slug liquid holdup
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SGV will sweep out most of the liquid phase from the pipe resulting in more of the pipe
cross section occupied by the gas phase [45]. This of course will result in an increase
in the gas void fraction and a corresponding decrease in the SLH. Hence, as shown in
Fig. 3, the proposed SLH-ANN-VMM and Abdul-Majeed et al. SLH-ANN-VMM ([30]
simulate the expected decrease in SLH with an increase in superficial gas velocity.

Figure 4 shows the effect of superficial liquid velocity (SLV) on SLH. Generally, an
increase in SLV results in a slight increase in SLH because of an increase in the pipe’s
input liquid content [19]. Hence, as evident in Fig. 4, the proposed SLH-ANN-VMM and
Abdul-Majeed et al. SLH-ANN-VMM [30] simulate the expected slight increase in SLH
with an increase in SLV.

Figure 5 shows the effect of liquid viscosity (LV) on SLH for medium to high LV. It has
been reported in several experimental studies [20, 24, 34, 45] that for medium to high
LV, SLH increases with an increase in LV. This is because an increase in LV will increase
both the shear around the pipe wall and resistance of liquid flow which will result in an
increase in SLH. It is therefore evident from Fig. 5 that for medium to high LV, the pro-
posed SLH-ANN-VMM simulates the expected increase in SLH with an increase in LV.

—@—This Study —&— Abdul-Majeed et al. [30]
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Fig. 4 Effect of superficial liquid velocity on slug liquid holdup
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Fig. 5 Effect of liquid viscosity on slug liquid holdup for medium to high liquid viscosity

However, the Abdul-Majeed et al. SLH-ANN-VMM [30] did not simulate the expected
effect of LV on SLH.

Figure 6 shows the effect of LV on SLH for low LV. The dual effect of LV on SLH
has been reported in several studies [46—48]. These researchers observed that SLH
decreased with an increase in LV for LV, u; < 3mPas, and increased with increase in
LV for LV, u; > 3 mPas. For i) < 3 mPas, the low drag forces contribute to a more uni-
form bubble distribution which of course results in decrease SLH. For u; > 3 mPas, the
large drag forces contribute to bubble coalescence which results in an increase in SLH.
It is evident from Fig. 6 that the proposed SLH-ANN-VMM and Abdul-Majeed et al.
SLH-ANN-VMM [30] do not simulate the dual effect of LV on SLH. Instead, SLH was
observed to increase slightly with an increase LV for both models which is in agreement
with the observations of several authors [46—48] for LV, ;t; > 3 mPas.

Figure 7 shows the effect of pipe internal diameter (PID) on SLH. It has been reported
in several studies [11, 28, 49, 50] that SLH increases slightly with an increase in PID. This
increase in SLH with an increase in PID is because of the increase in bubble rise velocity
with an increase in PID [51]. It is evident from Fig. 7 that the proposed SLH-ANN-VMM
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Fig. 6 Effect of liquid viscosity on slug liquid holdup for low liquid viscosity

simulates the expected increase in SLH with an increase in PID. It is also evident from
Fig. 7 that the Abdul-Majeed et al. SLH-ANN-VMM [30] did not simulate the expected
increase of SLH with PID.

Figure 8 shows the effect of pipe inclination angle (PIA) on SLH. It has been observed
based on experimental data that SLH decreases with an increase in PIA with a maximum
value for horizontal flow and minimum for vertical upward flow [33]. This observed
decrease in SLH with an increase PIA has been confirmed in some studies [11, 52]. As
shown in Fig. 8, the proposed SLH-ANN-VMM and Abdul-Majeed et al. SLH-ANN-
VMM [30] simulate the expected decrease in SLH with an increase of PIA up to 30° and
15° respectively.

Figure 9 shows the effect of surface tension (ST) on SLH. It is expected that SLH
increases with increase in ST. This is because increase in ST promotes increase in bub-
ble rise velocity which results in an increase in SLH [19]. As evident in Fig. 9, the pro-
posed SLH-ANN-VMM and the Abdul-Majeed et al. SLH-ANN-VMM [30] simulate the

expected increase in SLH with increase in ST.
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Test of the SLH-ANN-VMM against measured slug flow dataset

In this section, we tested the prediction accuracy of the trained optimum network
structure against laboratory-measured slug flow dataset. This was done by using the
trained optimum network to predict the SLH based on the training, testing, valida-
tion, and entire datasets respectively. Next, measured and predicted SLH cross-plots
with unit slope and trend lines are used to evaluate the accuracy of the developed
model. In addition,the coefficient of determination (R-squared) is included in the
cross-plot.

We considered the developed model accurate and in agreement with measured dataset
if the two conditions are satisfied. First, majority of the cross-plots must be clustered
close to the unit slope line. Second, the coefficient of determination must increase in the
order of testing, validation, entire, and training datasets.

As shown in Figs. 10, 11, 12, and 13, majority of the cross-plots are clustered close
to the unit slope line with a coefficient of determinations of 0.9791, 0.9727, 0.9756, and
0.9776 for training, testing, validation, and entire datasets respectively. Notice that the
coefficient of determination increases in the order of testing, validation, entire, and
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training datasets. This clearly shows that the two conditions are satisfied, and hence, the
proposed SLH-ANN-VMM predictions are in close agreement with measured SLH.

Comparison of SLH-ANN-VMM against existing correlations and models

The 2699 laboratory-measured slug flow data points were used for comparing the per-
formance of the present model against that of 8 available SLH correlations [18-21, 23,
24, 31, 34] and 1 machine learning model [30]. Statistical and graphical error analyses
were employed for the comparative study.

Statistical error analysis

Statistical error analysis was employed in this study in comparing the proposed SLH-
ANN-VMM against eight existing SLH correlations and the only existing SLH-ANN-
VMM. To demonstrate the robustness of the proposed SLH-ANN-VMM, four different
comparative studies were performed. First, the proposed SLH-ANN-VMM was com-
pared against horizontal, vertical, and inclined SLH models based on slug flow dataset

measured for horizontal, vertical, and inclined slug flow conditions respectively. Second,
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the proposed SLH-ANN-VMM was compared against the existing SLH models based on
the slug flow dataset measured for horizontal to vertical slug flow conditions.

Relative performance factor, Fy, as given in Eq. (5) was chosen as the statistical perfor-
mance indicator for the comparative study because it includes the effect of six statistical
errors (Ei, Eo, E3, Ea, Es, and Eg) given in Eq. (10) through (15). Relative performance
factor, F;, ranges from 0 to 6 for best and worst performance respectively.

Tables 9, 10, and 11 summarized the results of the statistical-based comparative per-
formance analysis for the proposed SLH-ANN-VMM and existing horizontal, vertical,
and inclined SLH models based slug flow dataset measured for horizontal, vertical, and
inclined slug flow conditions respectively. Table 12 summarizes the results of the statis-
tical-based comparative performance analysis for the proposed SLH-ANN-VMM, eight
existing SLH correlations, and the only existing SLH-ANN-VMM.

The different models are defined in column 2, while the statistical error parameters,
E;, through Eg are defined in columns 3 through 8. Relative performance factor, Fyy, is
defined in column 9 for Tables 9, 10, 11, 12. The cells in blue represent the lowest val-
ues of each of the six statistical error parameters and the relative performance factor.
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Fig. 10 Measured and predicted SLH cross-plots for the training dataset (1889 data points)

Furthermore, the models are arranged for convenience in order of increasing the rela-
tive performance factor. As already mentioned, relative performance factor, F,, was
chosen as the satistical performance indicator for the comparative study because it
incorporates the effects of E1, Ey, E3, Ea, E5, and Eg. The best-performing model must
achieve the minimum of value of F,,, while the worst performing must achieve the
maximum value of Fy,.

As presented in Tables 9, 10, and 11, this study’s SLH-ANN-VMM outperformed
existing horizontal, vertical, and inclined SLH models with minimum F;;, of 0.000,
0.000, and 0.006, respectively. Overall as evident in Table 12, this study’s SLH-ANN-
VMM achieved the best performance with minimum F,;, of 0.002, while the Abdul-
Majeed (2000) model achieved the worst performance with maximum F,, of 5.060.

The performance of the SLH models decreases in the order of this study’s SLH-
ANN-VMM, Abdul-Majeed et al. [30], Abdul-Majeed and Al-Mashat [19], Sylvester
[31], Gregory et al. [23], Kora et al. [24], Archibong-Eso et al. [21], Al-Safran et al.
[20], Al-Ruhaimani et al. [34], and Abdul-Majeed [18] models, respectively.
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Fig. 11 Measured and predicted SLH cross-plots for the testing dataset (405 data points)

Graphical error analysis

Cross-plots  Figure 14 shows the cross-plots of the measured SLH and predicted SLH
by the proposed SLH-ANN-VMM, the eight existing SLH correlations, and an existing
SLH-ANN-VMM. First, we constructed the cross-plots of the measured SLH against
the SLH predicted by each of the considered models. Second, unit slope line represent-
ing a line of perfect correlation is included in the plot. Third, deviation lines of+20%
and — 20% are included to represent lines of model overprediction and underprediction
respectively. We will consider a model to be best performing if majority of its cross-plots
are (1) clustered in very close proximity to the unit slope line and (2) within the +20%

and — 20% deviation lines.

As shown in Fig. 14, the proposed SLH-ANN-VMM have the majority of its cross-
plots clustered in very close proximity to the unit slope line and within the +20%
and — 20% deviation lines. This a clear indication that the proposed SLH-ANN-VMM
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Fig. 12 Measured and predicted SLH cross-plots for the validation dataset (405 data points)

achieved the best performance. The Abdul-Majeed et al. SLH-ANN-VMM [30]
achieved the second best performance with the second highest number of cross-plots
clustered in very close proximity in the unit slope line and within the +20% and — 20%
deviation lines. The Abdul-Majeed correlation [18] achieved the worst performance
since only very few of the cross-plots are clustered in close proximity to the unit slope
line and within the 4+20% and — 20% deviation lines.

As shown in Fig. 14, we observed that the Abdul-Majeed and Al-Mashat correla-
tion [19] produced negative values of SLH for some data points measured for low
viscosity horizontal to near-horizontal flow conditions. These negative values of SLH
are because we applied their correlation to flow conditions different from those used
in its formulation. Note that the Abdul-Majeed and Al-Mashat correlation [19] was
developed with data measured for high viscosity horizontal to vertical upward flow
conditions. This a clear prove that these correlations fail when applied to flow condi-

tions different from those used in their formulation.
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Fig. 13 Measured and predicted SLH cross-plots for the entire dataset (2669 data points)

Residual plots Figure 15 shows the residual plots of the proposed SLH-ANN-VMM,
eight existing SLH correlations, and an existing SLH-ANN-VMM. We constructed the
residual plots by plotting the number of data point against the actual error (Eq. (9))

achieved by each of the considered model.

Second, a zero actual error line is included to represent a perfect agreement between
the measured SLH and SLH predicted by the considered models. Third,+ 0.1 and — 0.1
actual error lines are also included to represent lines of model overprediction and under-
prediction, respectively. We considered a model to be best performing if majority of the
residual plots are (1) clustered in close proximity to the zero actual error line and (2)
within the +0.1 and — 0.1 actual error lines.

As shown in Fig. 15, the proposed SLH-ANN-VMM achieved the best performance
with the majority of the residual plot points clustered in very close proximity to the
zero actual error line and within the+0.1 and —0.1 actual error lines. The Abdul-
Majeed et al. SLH-ANN-VMM [30] achieved the second best performance with the
second highest number of residual plots clustered in very close proximity to the zero
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Fig. 14 Measured SLH and predicted SLH cross-plots for the proposed SLH-ANN-VMM, the eight existing SLH
correlations, and an existing SLH-ANN-VMM
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Fig. 15 Residual plots for the proposed SLH-ANN-VMM, the eight existing SLH correlations, and an existing
SLH-ANN-VMM

actual error line and within the+0.1 and — 0.1 actual error lines. The Abdul-Majeed
[18] achieved the worst performance since only very few of the residual plots are
clustered in very close proximity to the unit slope line and within the+0.1 and — 0.1
actual error lines.

This study’s SLH-ANN-VMM outperformed the existing SLH models for several rea-
sons. First, the ANN model was developed with dataset measured for low to high viscos-
ity horizontal to vertical-upward flow conditions. Second, the model was developed with
ANN which is capable of mapping the nonlinearity between the inputs and output better
than regression analysis. Lastly, the optimum ANN network structure was obtained by
selecting the best-performing network structure from a group of structures constructed
with one, two, or three HLs with varying numbers of neurons in each HL.
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Conclusions and recommendations

Conclusions

This study developed slug liquid holdup artificial neural network visible mathemati-
cal model (SLH-ANN-VMM) applicable for low to high viscosity horizontal to vertical
upward flow conditions. Openly sourced datasets consisting of 2669 data points were
used in the construction of 71 different network structures with each structure having
either 1, 2, or 3 HLs with varying number of neurons in each HL. Levenberg—Marquardt
optimization algorithm was used in training the network, hyperbolic tangent activation
function for activating the HLs, and linear activation function for activating the output
layer. Comparative performance analysis revealed that the optimum network structure
has 20 neurons in the first HL, 5 neurons in the second HL, and 15 neurons in the third
HL. The trained SLH-ANN black-box model was translated into a SLH-ANN-VMM
with the aid of the extracted biases and weights and the activation functions. Trend anal-
ysis revealed that the proposed SLH-ANN-VMM reproduced the expected effects of the
various inputs on SLH. Test against measured dataset revealed that the SLHs predicted
by the proposed SLH-ANN-VMM are in close agreement with the measured SLHs with
the coefficient of determination of 0.9791, 0.9727, 0.9756, and 0.9776 for training, test-
ing, validation, and entire datasets, respectively. Comparative study revealed that the
current SLH-ANN-VMM outperformed existing horizontal, vertical, and inclined SLH
models with minimum F,,, of 0.000, 0.000, and 0.006, respectively. Comparative study
revealed that the proposed SLH-ANN-VMM with a minimum relative performance fac-
tor of 0.002 outperformed eight existing SLH empirical correlations and an existing sin-
gle hidden layered SLH-ANN-VMM.

The findings of this study have added to the existing knowledge in several areas. This
study developed an ANN-based model for multiphase SLH prediction for low to high
liquid viscosity in horizontal to vertical-upward multiphase pipe flows. The present
model was developed and published as visible mathematical equations making its imple-
mentation by any user easy and without the need for any ML framework. Unlike existing
ANN models that were developed by considering only ANN structures with one hidden
layer (HL), the present model was developed by considering ANN structures with one,
two, and three HLs. Evaluation results revealed that the developed model predicted SLH
better than the best available SLH models and simulated expected effects of inputs on
SLH. A user-friendly MATLAB code for SLH prediction is also presented in this study.
The code can easily be incorporated into existing mechanistic models for accurate FBHP
prediction.

Recommendations

It is recommended that the proposed SLH-ANN-VMM be used for data points whose
parameter ranges are within the minimum and maximum parameter ranges as defined
in columns 4 and 5 of Table 1. Slug liquid holdup is one of the critical slug parameters
required for accurate prediction of pressure drop during slug flow in pipes. It is therefore
recommended that dataset for the other slug flow closure correlations be collected and
used to develop an ANN visible mathematical model for the prediction of each of the
other slug flow closure correlations.



Nwanwe et al. Journal of Engineering and Applied Science (2024) 71:194 Page 32 of 35

Appendix

Table 13 MATLAB code of the proposed SLH-ANN-VMM

% Input vector

X :X';

%Input parameters

VSG=X(1); VSL=X(2); MuL = X(3); ID=X(4);

Rhol = X(5); Thetha = X(6); SigmaL =X(7);
%Pre-processing of inputs

NGV =1.7964*VSG*(9.8067*RhoL/Sigmal)A0.25;

NLV = 1.7964*VSL*(9.8067*Rhol/Sigmal)A0.25;

ND =31.664*ID*(9.8067*RholL/Sigmal)A0.5;
NL=0.55646*Mul*(1/(9.8067*Rhol*Sigmal.A3))A0.25;
%Minimum values of preprocessed input parameters
NGVmin =0.222097046;NLVmin =0.082145599;
NDmin=12.28622042;NLmin =0.002262319;
Thethamin=0;

%Maximum values of preprocessed input parameters
NGVmin =0.222097046;NLVmin =0.082145599;
NDmin=12.28622042;NLmin =0.002262319;
Thethamin=0;

%Maximum and Maximum Values of preprocessed input parameters
HLSmMin=0.164; HLSmax=1.0;

% Normalization of preprocessed inputs to lie between -1 and + 1
NGVn = 2*((NGV-NGVmin)/(NGVmMax-NGVmin))-1;

NLVN = 2*((NLV-NLVmin)/(NLVmax-NLVmin))-1;

NDn = 2*((ND-NDmin)/(NDmax-NDmin))-1;

NLn = 2*((NL-NLmin)/(NLmax-NLmin))-1;

Thethan = 2*((Thetha-Thethamin)/(Thethamax-Thethamin))-1;
% Activation vector of Layer 1

aL1=[NGVn NLVn NDn NLn Thethan]’;

% Net input and activation vectors of Layer 2
Z12=Dbl2+WL2*al1;

a2 =tanh(ZL2);

% Net input and activation vectors of Layer 3
ZL3=Dbl34+WL3*al2;

al3=tanh(ZL3);

% Net input and activation vectors of Layer 4
ZL4=Dbl4+WL4*al3;

al4=tanh(ZL4);

% Net input vector of Layer 5

ZL5=DblL54+WL5*aL4

% Output of Layer 5

HLS = ((ZL5 + 1)/2)*(HLSmax-HLSmin) 4+ HLSmin;

Abbreviations

His Slug liquid holdup
Hir Film liquid holdup
Vst Superficial liquid velocity
Vsag Superficial gas velocity
Vum Mixture velocity
E; Average percent error, %
1753 Liquid viscosity
g Gas viscosity
0 Pipe inclination angle
Or Is the inclination angle from the horizontal in radians
Nieg, Slug Reynold's number
T Translational velocity
Ey Absolute average percent error, %
Var Bubble rise velocity
d, Bubble diameter
d Pipe internal diameter
oL Surface tension
Eg Percent standard deviation, %
PL Liquid density
PG Gas density
e; Actual error

Ap Change in density
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€y Relative error
R Correlation coefficient
Epms Root-mean-square error
Fpp Relative performance factor
Npr Wallis (1969) dimensionless Froude number
Ny Viscosity number
Ny Inverse of the viscosity number
Nry Liquid velocity number
E, Average error
Ngy Gas velocity number
Ny Pipe diameter number
Np Liquid viscosity number
Es Absolute average error
HIS eas Average measured slug liquid holdup
HISivmens Measured liquid holdup
Hisi, Predicted liquid holdup
Eg Standard deviation
A€jyeas Average change in measured liquid holdup
Input vector of five variables
X(-1:1) Input vector normalized in the range {— 1,4 1}
Xonin Minimum training dataset input vector as shown in column 4 of Table 3
Xmax Maximum training dataset input vector as shown in column 5 of Table 3
712, 713 714 715 Net input vector into the second, third, fourth, and fifth layers, respectively
pL2pL3 pLa pLS Bias vector of the second, third, fourth, and fifth layers, respectively
akl al2, 43 L4 Activation vector of the second, third, and fourth layers, respectively
wl2 wi3, wil4 wL5  Weight matrix of the second, third, fourth, and fifth layers, respectively
ML Machine learning
ANN Artificial neural network
SLH Slug liquid holdup
VMM Visible mathematical model

Acknowledgements
Not applicable.

Authors’ contributions

CCN, software, data curation, conceptualization, methodology, writing—original draft, formal analysis, investigation, and
validation. UID, conceptualization, methodology, formal analysis, writing—review and editing, and supervision. CICA,
writing—review and editing and supervision. AIBE, writing—review and editing and supervision. SIO, writing—review
and editing. ANN, writing—review and editing. BUO, writing—review and editing. All authors have read and approved
the manuscript.

Funding
The authors declare that no funding has been received from any organization/funding source as research assistance for
current research.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable
request.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 9 February 2024 Accepted: 17 September 2024
Published online: 01 October 2024

References

1. Kanin EA, Osiptsov AA, Vainshtein AL, Burnaev EV (2019) A predictive model for steady-state multiphase pipe flow:
machine learning on lab data. J Pet Sci Eng 180:727-746. https://doi.org/10.1016/j.petrol.2019.05.055

2. Kaya AS, Sarica C, Brill JP (1999) Comprehensive Mechanistic Modeling of Two-Phase Flow in Deviated Wells. SPE
Annual Technical Conference and Exhibition, Houston, Texas, 3-6 October 1999. https://doi.org/10.2118/56522-MS

3. Kaya AS, Sarica C, Brill JP (2001) Mechanistic modeling of two-phase flow in deviated wells. SPE Prod Facil 16:156-
165. https://doi.org/10.2118/72998-PA

4. Dukler AE, Hubbard MG (1975) A model for gas-liquid slug flow in horizontal and near horizontal tubes. Ind Eng
Chem Fundam 14:337-347. https://doi.org/10.1021/i160056a011

5. Taitel Y, Bornea D, Dukler AE (1980) Modelling flow pattern transitions for steady upward gas-liquid flow in verti-
cal tubes. AIChE J 26:345-354. https://doi.org/10.1002/aic.690260304


https://doi.org/10.1016/j.petrol.2019.05.055
https://doi.org/10.2118/56522-MS
https://doi.org/10.2118/72998-PA
https://doi.org/10.1021/i160056a011
https://doi.org/10.1002/aic.690260304

Nwanwe et al. Journal of Engineering and Applied Science (2024) 71:194 Page 34 of 35

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.
33

34

35.

36.

37.

38.

39.
40.

Barnea D, Shoham O, Taitel Y, Dukler AE (1985) Gas-liquid flow in inclined tubes: flow pattern transitions for
upward flow. Chem Eng Sci 40:131-136. https://doi.org/10.1016/0009-2509(85)85053-3

Petalas N, Aziz K (2000) Mechanistic model for multiphase flow in pipes. J Can Pet Technol 39:43-55. https.//doi.
org/10.2118/00-06-04

Taitel Y, Dukler AE (1976) A model for predicting flow regime transitions in horizontal and near horizontal gas-
liquid flow. AIChE J 22:47-55. https://doi.org/10.1002/aic.690220105

Barnea D, Shoham O, Taitel Y (1982) Flow pattern transition for vertical downward two phase flow. Chem Eng Sci
37:741-744. https://doi.org/10.1016/0009-2509(82)85034-3

. Barnea D, Shoham O, Taitel Y (1982) Flow pattern transition for downward inclined two phase flow; Horizontal to

vertical. Chem Eng Sci 37:735-740. https://doi.org/10.1016/0009-2509(82)85033-1

. Abdul-Majeed GH, Al-Mashat AM (2000) A mechanistic model for vertical and inclined two-phase slug flow. J

Pet Sci Eng 27:59-67. https://doi.org/10.1016/50920-4105(00)00047-4

. Brill JE, Mukherjee H (1999) Multiphase flow in wells. Society of Petroleum Engineers, Richardson, TX, Richardson, Texas
. Ali SF (2009) Two Phase Flow in Large Diameter Vertical Riser. In PhD Thesis. Cranfield University, Bedford, United Kingdom.
. Kaya AS (1998) Comprehensive mechanistic modeling of two-phase flow in deviated wells. In PhD Thesis. The

University of Tulsa, Tulsa, OK. https://doi.org/.1037//0033-2909.126.1.78

. Nwanwe CC, Duru Ul, Nwanwe Ol et al (2020) Optimum tubing size prediction model for vertical multiphase

flow during flow production period of oil wells. J Pet Explor Prod Technol 10:2989-3005. https://doi.org/10.
1007/513202-020-00964-8

. Ansari AM, Sylvester ND, Akron U et al (1994) A comprehensive mechanistic model for upward two-phase flow

in wellbores. SPE Prod Facil 9:143-152. https://doi.org/10.2118/20630-PA

. Nwanwe CC, Duru Ul (2022) Comparison and performance analysis of models for predicting multiphase flow

behaviours in wellbores. Int J Pet Geosci Eng 2022:1-20

. Abdul-Majeed GH (2000) Liquid slug holdup in horizontal and slightly inclined two-phase slug flow. J Pet Sci

Eng 27:27-32. https://doi.org/10.1016/50920-4105(99)00056-x

. Abdul-Majeed GH, Al-Mashat AM (2019) A unified correlation for predicting slug liquid holdup in viscous

two-phase flow for pipe inclination from horizontal to vertical. SN Appl Sci 1:. https://doi.org/10.1007/
$42452-018-0081-0

Al-Safran E, Kora C, Sarica C (2015) Prediction of slug liquid holdup in high viscosity liquid and gas two-phase flow in
horizontal pipes. J Pet Sci Eng 133:566-575. https://doi.org/10.1016/j.petrol.2015.06.032

Archibong-Eso A, Okeke NE, Baba Y et al (2019) Estimating slug liquid holdup in high viscosity oil-gas two-phase
flow. Flow Meas Instrum 65:22-32. https://doi.org/10.1016/j.flowmeasinst.2018.10.027

Gomez LE, Shoham O, Schmidt Z et al (2000) Unified mechanistic model for steady-state two-phase flow: horizontal
to vertical upward flow. SPE J 5:339-350. https://doi.org/10.2118/65705-PA

Gregory GA, Nicholson MK, Aziz K (1978) Correlation of the liquid volume fraction in the slug for horizontal gas-
liquid slug flow. Int J Multiph Flow 4:33-39. https://doi.org/10.1016/0301-9322(78)90023-X

Kora C, Sarica C, Zhang, HQ, Al-sarkhi, A, Alsafran, EM (2011) Effects of high oil viscosity on slug liquid holdup in
horizontal pipes. Society of Petroleum Engineers - Canadian Unconventional Resources Conference 2011, CURC
2011:338-352.

Al-Safran E (2009) Prediction of slug liquid holdup in horizontal pipes. J Energy Resour Technol Trans ASME
131:0230011-0230018. https://doi.org/10.1115/1.3120305

Fernandes RC, Semiat R, Dukler AE (1983) Hydrodynamic model for gas-liquid slug flow in vertical tubes. AIChE J
29:981-989. https://doi.org/10.1002/aic.690290617

Zhang HQ, Qian W, Sarica C, Brill JP (2003) A unified mechanistic model for slug liquid holdup and transition between
slug and dispersed bubble flows. Int J Multiph Flow 29:97-107. https://doi.org/10.1016/50301-9322(02)00111-8
Barnea D, Brauner N (1985) Holdup of the liquid slug in two phase intermittent flow. Int J Multiph Flow 11:43-49,
https://doi.org/10.1016/0301-9322(85)90004-7

Kim TW, Kim S, Lim JT (2020) Modeling and prediction of slug characteristics utilizing data-driven machine-learning
methodology. J Pet Sci Eng 195:107712. https://doi.org/10.1016/j.petrol.2020.107712

Abdul-Majeed GH, Kadhim FS, Alimahdawi FHM et al (2022) Application of artificial neural network to predict slug
liquid holdup. Int J Multiph Flow 150:104004. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104004

Sylvester ND (1987) A mechanistic model for two-phase vertical slug flow in pipes. J Energy Resour Technol Trans
ASME 109:206-213. https://doi.org/10.1115/1.3231348

Felizola H (1992) Slug Flow in Extended Reach Directional Wells. In MSc Thesis. The University of Tulsa, Tulsa, OK.
Gomez LE, Shoham O, Taitel Y (2000) Prediction of slug liquid holdup: horizontal to upward vertical flow. Int J Mul-
tiph Flow 26:517-521. https://doi.org/10.1016/50301-9322(99)00025-7

Al-Ruhaimani F, Pereyra E, Sarica C et al (2018) Prediction of slug-liquid holdup for high-viscosity oils in upward gas/
liquid vertical-pipe flow. SPE Prod Oper 33:281-299. https://doi.org/10.2118/187957-pa

Nwanwe CC, Duru Ul, Anyadiegwu C, Ekejuba AIB (2023) An artificial neural network visible mathematical model for
real-time prediction of multiphase flowing bottom-hole pressure in wellbores. Pet Res 8:370-385. https://doi.org/10.
1016/j.ptlrs.2022.10.004

Tariq Z, Mahmoud M, Abdulraheem A (2020) Real-time prognosis of flowing bottom-hole pressure in a vertical well
for a multiphase flow using computational intelligence techniques. J Pet Explor Prod Technol 10:1411-1428. https://
doi.org/10.1007/513202-019-0728-4

Gomaa |, Gowida A, Elkatatny S, Abdulraheem A (2021) The prediction of wellhead pressure for multiphase flow of
vertical wells using artificial neural networks. Arab J Geosci 14:1-10. https://doi.org/10.1007/512517-021-07099-y
Nwanwe CC, Duru Ul (2023) An adaptive neuro-fuzzy inference system white-box model for real-time multiphase flow-
ing bottom-hole pressure prediction in wellbores. Petroleum 9:629-646. https://doi.org/10.1016/j.petim.2023.03.003
Abdul-Majeed GH (2022) Slug liquid holdup. Mendeley Data VI: https://doi.org/10.17632/wyfdm5ysh6.1

Ros NCJ (1961) Simultaneous flow of gas and liquid as encountered in well tubing. J Pet Technol 13:1037-1049.
https://doi.org/10.2118/18-PA


https://doi.org/10.1016/0009-2509(85)85053-3
https://doi.org/10.2118/00-06-04
https://doi.org/10.2118/00-06-04
https://doi.org/10.1002/aic.690220105
https://doi.org/10.1016/0009-2509(82)85034-3
https://doi.org/10.1016/0009-2509(82)85033-1
https://doi.org/10.1016/S0920-4105(00)00047-4
https://doi.org/.1037//0033-2909.I26.1.78
https://doi.org/10.1007/s13202-020-00964-8
https://doi.org/10.1007/s13202-020-00964-8
https://doi.org/10.2118/20630-PA
https://doi.org/10.1016/s0920-4105(99)00056-x
https://doi.org/10.1007/s42452-018-0081-0
https://doi.org/10.1007/s42452-018-0081-0
https://doi.org/10.1016/j.petrol.2015.06.032
https://doi.org/10.1016/j.flowmeasinst.2018.10.027
https://doi.org/10.2118/65705-PA
https://doi.org/10.1016/0301-9322(78)90023-X
https://doi.org/10.1115/1.3120305
https://doi.org/10.1002/aic.690290617
https://doi.org/10.1016/S0301-9322(02)00111-8
https://doi.org/10.1016/0301-9322(85)90004-7
https://doi.org/10.1016/j.petrol.2020.107712
https://doi.org/10.1016/j.ijmultiphaseflow.2022.104004
https://doi.org/10.1115/1.3231348
https://doi.org/10.1016/s0301-9322(99)00025-7
https://doi.org/10.2118/187957-pa
https://doi.org/10.1016/j.ptlrs.2022.10.004
https://doi.org/10.1016/j.ptlrs.2022.10.004
https://doi.org/10.1007/s13202-019-0728-4
https://doi.org/10.1007/s13202-019-0728-4
https://doi.org/10.1007/s12517-021-07099-y
https://doi.org/10.1016/j.petlm.2023.03.003
https://doi.org/10.17632/wyfdm5ysh6.1
https://doi.org/10.2118/18-PA

Nwanwe et al. Journal of Engineering and Applied Science (2024) 71:194

41.
42.

43.

44,
45,

46.

47.

48.

49.

50.

51

52.

Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill Book Co., Inc, New York City, New York City

Al-Naser M, Elshafei M, Al-Sarkhi A (2016) Artificial neural network application for multiphase flow patterns detec-
tion: a new approach. J Pet Sci Eng 145:548-564. https://doi.org/10.1016/j.petrol.2016.06.029

AlSaif A, Al-Sarkhi A, Ismaila K, Abdulkadir M (2022) Road map to develop an artificial neural network to predict two-
phase flow regime in inclined pipes. J Pet Sci Eng 217:110877. https://doi.org/10.1016/j.petrol.2022.110877

Beale MH, Hagan MT, Demuth HB (2010) Neural Network Toolbox ™ 7 User's Guide. The MathWorks, Inc., Natick, MA.
Baba YD, Aliyu AM, Archibong AE et al (2017) Study of high viscous multiphase phase flow in a horizontal pipe. Heat
Mass Transf 54:651-669. https://doi.org/10.1007/500231-017-2158-5

Wu B, Firouzi M, Mitchell T et al (2017) A critical review of flow maps for gas-liquid flows in vertical pipes and annuli.
Chem Eng J 326:350-377. https://doi.org/10.1016/j.cej.2017.05.135

Kuncova G, Zahradnik J (1995) Gas holdup and bubble frequency in a bubble column reactor containing viscous
saccharose solutions. Chem Eng Process Process Intensif 34:25-34. https://doi.org/10.1016/0255-2701(94)00563-X
Eissa SH, Schigerl K (1975) Holdup and backmixing investigations in cocurrent and countercurrent bubble col-
umns. Chem Eng Sci 30:1251-1256. https://doi.org/10.1016/0009-2509(75)85048-2

Wen Y, Wu Z, Wang J, et al (2017) Experimental study of liquid holdup of liquid-gas two-phase flow in horizontal and
inclined pipes. Int J Heat Technol 35:713-720. https://doi.org/10.18280/ijht.350404

Andreussi P, Bendiksen K (1989) An investigation of void fraction in liquid slugs for horizontal and inclined gas-liquid
pipe flow. Int J Multiph Flow 15:937-946. https://doi.org/10.1016/0301-9322(89)90022-0

Godbole SP, Honath MF, Shah YT (1982) Holdup structure in highly viscous newtonian and non-Newtonian liquids in
bubble columns. Chem Eng Commun 16:119-134. https://doi.org/10.1080/00986448208911090

Brauner N, Ullmann A (2004) Modelling of gas entrainment from Taylor bubbles. Part A: slug flow. Int J Multiph Flow
30:239-272. https://doi.org/10.1016/j.ijmultiphaseflow.2003.11.007

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Page 35 of 35


https://doi.org/10.1016/j.petrol.2016.06.029
https://doi.org/10.1016/j.petrol.2022.110877
https://doi.org/10.1007/s00231-017-2158-5
https://doi.org/10.1016/j.cej.2017.05.135
https://doi.org/10.1016/0255-2701(94)00563-X
https://doi.org/10.1016/0009-2509(75)85048-2
https://doi.org/10.18280/ijht.350404
https://doi.org/10.1016/0301-9322(89)90022-0
https://doi.org/10.1080/00986448208911090
https://doi.org/10.1016/j.ijmultiphaseflow.2003.11.007

	An artificial neural network visible mathematical model for predicting slug liquid holdup in low to high viscosity multiphase flow for horizontal to vertical pipes
	Abstract 
	Introduction
	Methods
	Data collection and description
	Data preprocessing
	Slug liquid holdup ANN black-box model development
	Slug liquid holdup ANN visible mathematical model development

	Results and discussion
	Trend analysis of the SLH-ANN-VMM based on synthetic slug flow dataset
	Test of the SLH-ANN-VMM against measured slug flow dataset
	Comparison of SLH-ANN-VMM against existing correlations and models
	Statistical error analysis
	Graphical error analysis


	Conclusions and recommendations
	Conclusions
	Recommendations

	Appendix
	Acknowledgements
	References


