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Abstract 

In large-scale software development, the increasing complexity of software products 
poses a daunting challenge to maintaining software quality. Given this challenge, 
software fault prediction (SFP) is a critical endeavor for effective budgeting and refine-
ment of the testing process. Quantitative insights into software quality gained 
through measurements are crucial in enabling accurate SFP. With the proliferation 
of software in various fields, ensuring software reliability throughout the software life 
cycle has become paramount. Anticipating software bugs, which have the potential 
to reduce software maintenance costs dramatically, is a key approach to improv-
ing software reliability. In this regard, using nature-inspired metaheuristic algorithms 
is promising because of their ability to predict future conditions and identify software 
anomalies. This study examines the potential of various meta-heuristic algorithms, 
particularly particle swarm optimization, genetic, ant colony optimization, cuckoo 
search, lion optimization, firefly, moth-flame, whale optimization, and artificial bee 
colony algorithms, in addressing the SFP challenge. The study outlines the challenging 
problems, compares approaches based on fundamental variables, and offers sugges-
tions for future studies, providing a comprehensive and systematic analysis of these 
algorithms in the context of SFP.
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Introduction
Context

Recent rapid growth in cloud computing [1], Internet of Things (IoT) [2], smart grids 
[3], and machine learning [4] has driven an explosion of data in almost every aspect of 
computer science and engineering. Testing software applications for quality has become 
increasingly important as the quality of software applications has grown in recent years 
[5]. A significant step towards changing the testing procedure is to assess software fault 
predictions (SFPs), determine the severity of fault in a product module, and then test 
it [6, 7]. A sensible estimation of programming issue inclination before testing ena-
bles programming groups to concentrate on the testing exercises and to estimate costs 
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accurately [8, 9]. After a testing session, estimating software faults provides insight into 
the testing process and contributes to defining delivery and maintenance procedures. 
Programming deficiency and the probability of nearness of issues in the product cannot 
be measured straightforwardly in programming [10, 11]. Nonetheless, blame inclination 
can be defined through quantifiable software properties [12, 13] whenever there is a cor-
relation between these qualities and faults. This field has been the subject of three major 
research directions [14]: (1) formulation and specification of criteria to measure soft-
ware complexity, (2) checking the thoroughness and accuracy of the measurement, and 
(3) determination and investigation of models that correlate software indicators to have 
fault prediction [15, 16].

Some software metrics describing software quality have been proposed as static and 
dynamic platforms. Characteristics of the code structure are used to measure the met-
rics in the static platforms [17]. Static measurements are used by several administrators 
[18, 19] and several bunches [20]. Dynamic platforms measure testing meticulousness. 
Auxiliary and information streams determine the basic element measurements [12]. 
Numerous creators have revealed a direct correlation between product measurements 
and blame orientation, as well as many quantifiable programming characteristics [21–
25]. On the other hand, various types of research do not have any vision for verifying 
and validating software fault metrics. The traditional techniques, such as testing or sim-
ulation, and the proposed challenges cannot cope well with each other [26]. For exam-
ple, high costs and overheads prevent testing.

Similarly, reenactment is not for supporting transient properties since it does not 
encompass all framework states. Formal approaches draw much attention based on 
mathematical logic. Formal specification and formal verification are the components 
of formal methods [27]. The formal specification specifies interactions among software 
fault-proneness, and formal verification can logically accommodate all system states 
[28]. They are complete and more reliable than testing and simulation to analyze and 
verify the interaction behaviors among software fault-proneness methods. All papers on 
SFP use simulation and experiments to evaluate the proposed method. So, it is conceiv-
able that all the state space has not been evaluated well. Model checking, as an automatic 
technique for verifying software systems, is a suitable approach to solving problems [29].

Problem statement

Assurance of fault programming modules plays an integral role since it allows for identi-
fying modules that need to be refactored or tested item by item [30]. This will enable the 
creation of high-quality software products. SFP is a model that estimates the fault incli-
nation of upcoming modules by utilizing fundamental expectation measurements and 
authentic blame information. Considering the frameworks’ defects, a venture timetable 
can be tested and support stages all productively [31]. Early programming SFP meth-
odologies depend on measurements; however, the forecast execution of these method-
ologies is inappropriate. Machine learning algorithms, particularly data mining [32], 
support vector machine (SVM) [33], Naive Bayes (NB) [24], and artificial neural net-
works (ANNs) [34], have been introduced in most of the recent works. Although soft-
ware faults have been considered using these strategies, there are still sufficient parts of 
flaws that stay vague. Currently, ANNs have been presented as a viable form of machine 
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learning and information-digging groups capable of handling order and relapse issues 
[10]. The upside of ANN is its capacity to be used as a discretionary capacity estimate 
instrument that learns from watched information. ANN can be received at displaying 
non-linear practical connections that are complicated to show with different meth-
ods, and hence, it is appealing for programming shortcoming inclination expectation 
demonstrating.

Nature-inspired meta-heuristic algorithms have attracted considerable attention over 
the past few decades regarding engineering optimization problems. They can avoid 
local optima by employing principles derived from natural processes and providing 
solutions to various challenges in diverse fields. Meta-heuristics algorithms are useful 
in solving the SFP problem. Typically, these algorithms fall under four major classes: 
physics-oriented, swarm-driven, human-based, and evolutionary. Table  1 summarizes 
these algorithms, which are further classified as single-objective or multi-objective algo-
rithms according to the number of objectives simultaneously considered. Evolutionary 
algorithms draw inspiration from biological evolution and natural phenomena, includ-
ing selection, reproduction, combination, and mutation. During this process, poten-
tial solutions are repeatedly improved until the conditions of termination are met. The 

Table 1  Nature-inspired meta-heuristic algorithms

Group Single-objective Multi-objective

Physics-oriented Gravitational Search Algorithm (GSA) [35] Multi-objective GSA [36]

Galaxy-based Search Algorithm (GbSA) [37] Multi-objective GbSA [38]

Multi-Verse Optimization (MVO) [39] Multi-objective MVO [40]

Simulated Annealing (SA) [41] Multi-objective SA [42]

Big-Bang Big-Crunch (BBBC) [43] Multi-objective BBBC [44]

Charged System Search (CSS) [45] Multi-objective CSS [46]

Black Hole (BH) [47] Multi-objective BH [48]

Human-based Harmony Search (HS) [49] Multi-objective HS [50]

Jaya Algorithm (JA) [51] Multi-objective JA [52]

Exchange Market Algorithm (EMA) [53] Multi-objective EMA [54]

Teaching–Learning-Based Optimization (TLBO) [55] Multi-objective TLBO [56]

League Championship Algorithm (LCA) [57] Multi-objective LCA [58]

Swarm-driven Ant Colony Optimization (ACO) [59] Multi-objective ACO [60]

Whale Optimization Algorithm (WOA) [61] Multi-objective WOA [62]

Ant-Lion Optimizer (ALO) [63] Multi-objective ALO [64]

Firefly Algorithm (FA) [65] Multi-objective FA [66]

Artificial Bee Colony (ABC) [67] Multi-objective ABC [68]

Particle Swarm Optimization (PSO) [69] Multi-objective PSO [70]

Cuckoo Search (CS) [71] Multi-objective CS [72]

Harris Hawks Optimization (HHO) [73] Multi-objective HHO [74]

Black Widow Optimization (BWO) [75] Multi-objective BWO [76]

Evolutionary Genetic Programming (GP) [77] Multi-objective GP [78]

Genetic Algorithm (GA) [79] Multi-objective GA [80]

Biogeography-based Optimizer (BBO) [81] Multi-objective BBO [82]

Differential Evolution (DE) [83] Multi-objective DE [84]

Evolutionary Strategy (ES) [85] Multi-objective ES [86]

Evolutionary Programming (EP) [87] Multi-objective EP [88]

Shuffled Frog Leaping Algorithm (SFLA) [89] Multi-objective SFLA [90]
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probability of achieving improved results near the global optimum increases by grow-
ing the number of generations or iterations. The global optimum cannot be accurately 
estimated.

Swarm-driven algorithms draw inspiration from naturally intelligent organisms. 
Instead of relying on evolutionary rules to determine the most optimal solution, com-
mon swarm-based algorithms rely only on genetic principles and continuously evalu-
ate each possible solution within the search space. Human-based algorithms are derived 
from daily human activities, particularly interaction, competition, and training. These 
algorithms draw their inspiration from human behavior modeling. Physics-based opti-
mization algorithms comprise meta-heuristic algorithms designed to exploit physical 
behaviors or laws. These algorithms are motivated by physics rules associated with elec-
tromagnetic, inertia, and gravitational forces.

Motivation

SFP is accomplished through software measurements, which measure the quality of a 
program quantitatively [91]. The fault-proneness of software can be correlated with some 
software metrics, as different reviews show [92–94]. The lines of code were very impor-
tant for searching previous software metrics. Several approaches have been evaluated 
to develop accurate SFP models. Statistical strategies [95–99] have been recommended. 
Several efforts have been made to determine the best way to choose the software metrics 
that might indicate fault proneness. For instance, Jolliffe [100] has been used as a part of 
[101] and [102] to decrease the number of software performance indicators while hold-
ing the vast majority of the viewed variety. It is demonstrated that the representation 
provided by the prediction approach is an ideal mean-square regression [100]. Infor-
mation is derived from several vectors, such as eigenvectors. The vectors represent the 
underlying elements, and the data depict linear aggregations of the elements. As a result, 
the projected data describe the largest difference between the primary component 
and the second highest variance on the next primary component. In this manner, data 
dimensionality can be minimized simply by wiping out the last principal components.

Catal and Diri [24] have studied 90 papers published between 1990 and 2009 on SFP. 
An essential commitment of the review has shown that guidelines on software metrics 
and the techniques used for SFP, datasets, and performance assessment indicators are 
all reviewed. Catal and Diri [103] have used machine learning algorithms to construct 
a middleware SFP approach based on the Eclipse platform. Predicting faults in software 
programs is one of the goals of the review. The Naive Bayes algorithm is used due to its 
excellent performance. The Model for Assisted Software Process (MASP) model can fil-
ter suitable measurements for specific fault types. In addition, Vandecruys and Martens 
[104] have been considered to proficiently detect software defects and facilitate software 
development by examining software repositories utilizing the Ant Miner algorithm.

Dejaeger and Verbraken [105] have discussed the Bayesian intelligent networks for 
fault estimation. For this purpose, 15 different Bayesian networks are employed. Model 
outputs are compared with similar model results. The outcome of Markov’s principal 
effects on the estimation model shows that it does not significantly affect the feature 
selection technique. The advantage of this method is that it makes Bayesian network 
clustering for fault estimation, but the disadvantage is that it is not verified using formal 
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methods. Also, Rajaganapathy and Subramani [106] have studied a combination of an 
immune system and a random forest algorithm as machine learning methods. An adapt-
able neuro-fuzzy algorithm has been developed to address accuracy issues. This paper 
focuses on three criteria of dataset size, metrics and techniques set, and error estimation 
selectable algorithms for comparing. The strength of this approach is that it has effec-
tive in fault of measurement indexes, and the disadvantage is that it is not verified using 
formal methods.

De Carvalho and Pozo [107] have presented an approach for rules classification that 
can be used for predictive models. This study used a multi-objective PSO algorithm to 
extract data classification rules. For this reason, the authors have changed this algorithm 
and developed a new algorithm using a multi-objective PSO algorithm to extract this 
kind of rule. The advantage of this method is that the obtained results are better than 
the simple PSO method, and the disadvantage is the lack of formal verification meth-
ods. Finally, Kwok and Lu [108] have offered a fuzzy regression method to predict faults 
of modules based on fuzzy support vector regression. The fuzzification has also been 
applied to the regression algorithm of the support vector so that the algorithm can man-
age the unbalanced data set. The presented model in this study has been tested on the 
proprietary dataset of a firm, and the obtained results have shown that this model shows 
a better operation when modules have high lines. However, the verification of the pro-
posed model is not discussed. The reviewed studies are summarized in Table 2.

Systematic literature review

A systematic literature review (SLR) is a process that formulates hypotheses and uses 
specific methodologies to collect, investigate, and synthesize relevant research related 
to a particular topic or trend in the literature [112]. The SLR process is rigorous and 
involves a comprehensive search of databases and other sources. SLRs explicitly explain 
the knowledge and the uncertainty associated with a practice-related question. SLRs 
provide insight into research trends in a particular area on a single platform. SLRs are 
useful for identifying gaps in knowledge and potential research directions. The results of 
the SLR are presented as evidence to support conclusions and inform decision-making 
[113].

Contribution

Various meta-heuristic algorithms have been proposed to solve SFP problems in recent 
years. Whenever it is necessary to find optimum solutions in infinite time, traditional 
algorithms perform better in parameter optimization and feature selection. On the other 
hand, these conventional algorithms cannot provide results for more challenging opti-
mization issues, including NP-hard or global optimization, which take a long time to 
resolve. ACO, genetic, and PSO algorithms have been well-known in recent years for 
their success in predicting software faults. After reviewing various studies utilizing 
meta-heuristic algorithms to predict software faults, we observed that identifying which 
algorithms are useful for feature selection in addition to those useful for parameter opti-
mization is very difficult.

Further, compared to standard estimation strategies, it is often difficult to determine 
their performance characteristics. Considering these algorithms’ ability to predict 
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software faults more accurately, deciding whether they should be used for parameter 
optimization or feature selection is also necessary. To cover these gaps, this paper com-
prehensively analyzes studies on the SFP problem involving different meta-heuristic 
algorithms. Particularly, we examine publications in digital libraries between 2010 and 
2023. As depicted in Fig. 1, this study comprises four major stages. The authors begin 
by providing a background to the SFP problem. Digital libraries are searched to identify 
useful publications according to certain criteria. Then, the current SFP approaches are 
discussed. Finally, we compare the reviewed approaches and explore potential gaps and 
areas for future study. The present paper makes the following major contributions:

Table 2  Comparison of prediction-related works

Disadvantage Advantage Dataset Approach Paper

• Without analyzing 
formal approaches
• Without evaluating cost 
and complexity

Training ANN using his-
torical data attention

NASA dataset ANN and SVM [94]

• Without evaluating 
functional properties

Finding a relation 
between fault metrics

NASA dataset SVM [109]

• Without examining the 
complexity
• Without analyzing 
the correctness of the 
approach

Reducing long-associa-
tion rules

Dataset of Mylyn and 
Eclipse PDE

Association rules [110]

• Without presenting a 
simulation environment
• Without analyzing the 
complexity

Finding fault depend-
ency between prone-
ness metrics

Source codes - [111]

• Without analyzing 
using formal approaches
• Without discussing the 
cost and complexity

Hybrid prediction 
approach to find 
proneness metrics 
without high cost and 
complexity

- ANN [10]

• Without evaluating 
with formal methods
• Without analyzing the 
complexity

Presenting a tool for 
finding the fault metrics 
using data prediction

The metrics of McCabe ANN [15]

• Without evaluating 
with formal methods

Maker of Bayesian net-
work clustering for fault 
estimation

NASA dataset Bayesian smart network [105]

• Without evaluating 
with formal methods

Effective in fault than 
measurement indexes

Promise dataset Combination of random 
forest algorithm and 
body immune system

[106]

• Without evaluating 
with formal methods
• Without analysis of the 
complexity

Its results are better 
than the simple particles 
swarm optimization 
method

Nasa
data set

Extraction of classifica-
tion rules by particles 
congestion method

[107]

• Without evaluating 
with formal methods

The model acts better 
when modules have 
upper lines

Data sets of multiple 
companies

Fuzzy support vector 
regression

[108]

Fig. 1  Steps of the research
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•	 Highlighting the major issues potentially encountered during the SFP process;
•	 Outlining the value of meta-heuristic algorithms to address the SFP issue and dis-

cussing the latest strategies for this problem;
•	 Providing a thorough evaluation of SFP methods according to key factors;
•	 Determining and identifying areas for upcoming research.

The paper is organized into four sections. The “Methods” section explains the article 
selection process and reviews current SFP approaches based on meta-heuristic algo-
rithms. The “Results and discussion” section summarizes the study findings and dis-
cusses outstanding research topics and possible directions for future research. Finally, 
the paper concludes with the “Conclusions” section.

Methods
The systematic review conducted in this paper was planned, conducted, and reported 
based on the procedures given by Kitchenham and Brereton [114]. Figure 2 illustrates 
the process. We drafted the review protocol at the planning stage, including the six 
main stages: identification of research queries, design of the search procedure, selec-
tion of studies based on specific parameters, study assessment, data extraction, and 
data interpretation. We prepared the review procedure at the planning stage, including 
the six main stages: identification of research queries, design of the search procedure, 
selection of studies based on specific parameters, quality assessment, data extraction, 
and data interpretation. The initial stage was formulating the research questions to be 
explored in the SLR. In the second stage, the search process was explained, along with 
search phrases and selecting databases for identifying relevant studies. In the third stage, 
related studies are identified under the research questions. This stage involves estab-
lishing exclusion and inclusion criteria for every preliminary study. The next stage was 
identifying quality evaluation factors and creating a questionnaire to examine the stud-
ies. Data extraction worksheets are created to provide the necessary details needed to 
clarify research questions and develop data synthesis strategies. This SLR presents and 
assesses empirical evidence from studies using meta-heuristic algorithms for SFP. This 
SLR addresses six research questions listed in Table 3. The following search terms are 
applied to find primary studies.

(‘‘software fault prediction’’) AND (‘‘nature-inspired’’ OR ‘‘meta-heuristic’’).
After determining keyword phrases, the most pertinent and useful online resources 

were chosen. There was no restriction on selection based on digital portal availability at 
home universities. Searches were conducted in the following seven electronic databases:

•	 SpringerLink1

•	 Google Scholar2

•	 Wiley Online Library3

1  www.​link.​sprin​ger.​com
2  www.​schol​ar.​google.​com
3  www.​onlin​elibr​ary.​wiley.​com

http://www.link.springer.com
http://www.scholar.google.com
http://www.onlinelibrary.wiley.com
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•	 ACM Digital Library4

•	 ScienceDirect5

•	 IEEE Xplore6

The search was restricted to 2010–2024. A preliminary search was conducted to pin-
point potential original research papers by determining which electronic databases to 
search. A list of relevant studies was then identified by reviewing the full-text articles 
according to predetermined criteria for including and excluding studies. A total of 25 
main studies were chosen for inclusion in the SLR. Nine additional studies were included 
based on a review of the relevant research references. Therefore, 34 studies were consid-
ered for further analysis.

We incorporated specific inclusion and exclusion guidelines to ensure a focused and 
rigorous literature review. The inclusion criteria consist of research papers that utilize 
meta-heuristic algorithms for SFP, combine multiple meta-heuristic algorithms, and 
compare these approaches with traditional statistical methods. Conversely, the exclusion 
criteria eliminate studies that lack statistical analysis or assessment of meta-heuristic 
algorithms applied to SFP, those that use dependent variables other than fault proneness, 
and those that apply meta-heuristic algorithms in contexts unrelated to SFP. Through 
these criteria, we maintained a high standard of relevance and quality in our compre-
hensive review.

This section reviews the meta-heuristic algorithms employed in SFP and discusses 
their challenges, such as runtime, convergence, and performance evaluation. The meta-
heuristic algorithms employed in SFP are based on evolutionary computation and 
swarm intelligence. They are used to identify global optima cost-effectively by creating 
and manipulating populations of feasible solutions iteratively. The results obtained from 
these algorithms are then compared to the optimal solution.

Table 3  Adopted research questions

Index Research questions Aim

RQ1 Which meta-heuristic algorithms have been pro-
posed for SFP?

Identifying the meta-heuristic algorithms widely 
employed in SFP

RQ2 What risks and issues are posed by testing based 
on meta-heuristic algorithms in the SFP area?

Need to examine different risks and issues

RQ3 What are the software indicators employed in SFP? An overview of key performance indicators com-
monly used for SFP

RQ4 What are the various feature selection strategies 
implemented in SFP?

Identifying approaches ideal for the reduction and 
selection of software features

RQ5 What different datasets are available in the SFP 
field, and how can those datasets be accessed?

Identify the relevant dataset applicable to SFP and 
how to obtain that dataset

RQ6 Which meta-heuristic algorithms are better and 
outperform existing SFP?

Performance analysis of meta-heuristic algorithms

4  www.​dl.​acm.​org
5  www.​scien​cedir​ect.​com
6  www.​ieeex​plore.​ieee.​org

http://www.dl.acm.org
http://www.sciencedirect.com
http://www.ieeexplore.ieee.org
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ABC‑based approaches

The ABC algorithm is an adaptive optimization method that divides the artificial bee 
colony into working bees, spectators, and observers. Colonies are divided into two 
halves, with one half engaged in beekeeping and the other half viewing the activity. Food 
source locations are potential solutions to the optimization problem. Each food source 
has unique nectar content that can determine physical fitness. Food sources equal the 
number of working bees. It is natural for a bee to become disappointed after being aban-
doned by its food source. The algorithm begins by distributing bees in different positions 
around a food source and then assigns bees, spectators, and observers to varying posi-
tions around the food source [115]. This section discusses the approaches used for SFP 
using ABC and their main characteristics.

Software defects continue to pose a significant problem. Software defect prediction 
ranks among the most critical issues in software quality research, as it can be used to 
plan, control, and execute software development efforts. Recently, computer research-
ers have studied social insects’ behavior in neural networks to solve various prediction 
problems. Farshidpour and Keynia [116] investigate using the ABC algorithm to simu-
late the intelligent foraging behavior of honeybees. Multilayer Perceptron (MLP) usu-
ally uses computationally intensive training algorithms when trained with the standard 
backpropagation algorithm. Due to nearly constant local optima, the Backpropagation 
algorithm (BP) can sometimes result in networks with suboptimal weights. To overcome 
the complexity of predicting software defects from BP data, MLP-ABC efficiency is com-
pared to MLP training with conventional BP. Results from the experiment indicate that 
MLP-ABC outperforms MLP-BP.

Most software development and maintenance costs are incurred when debugging soft-
ware. Thus, it has become vital research in software engineering to develop approaches 
to automate the debugging process of software faults. Huang and Ai [117] propose a 
mechanism based on the ABC algorithm that can be integrated with other related meth-
ods. Initial instrumentation is performed on the source program following the analysis 
of its dependency information. After compiling and running the test cases in the pro-
gram, the results are entered into the ABC algorithm. The iterative nature of this algo-
rithm can be used to determine the best food source and the most significant fitness 
value among employed bees. Based on the most reliable test cases, the unit with the 
highest suspicion level is considered for the final fault localization. The TCAS program 
in the Siemens suite is used to conduct the experiments. The suggested fault localization 
approach provided accurate and efficient results. The ABC algorithm effectively avoids 
local optima and ensures greater fault location validity.

ACO‑based approaches

The ACO algorithm attempts to determine the short route from colonies to food sup-
plies, mimicking natural ant behavior. To determine the shortest route, the ants release 
pheromones as they move through the pathway [118]. Software defects or bugs may arise 
due to poor design or coding. In the case of a bug in a project, incorrect results are pro-
duced. Software bugs increase the estimated project cost. This cost can be minimized by 
predicting software bugs before product delivery. Kumar and Gyani [119] implemented 
the ACO algorithm on eight open-source datasets, comparing it to logistic regression 
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(LR), k-nearest neighbors, and SVM algorithms. As evident from the results, ACO offers 
better prediction performance than conventional approaches.

Manivasagam and Gunasundari [120] present an optimization technique that improves 
the ability to predict software defects. Fuzzy mutual information ACO searches for opti-
mal features based on a meta-heuristic search. Datasets from NASA’s metric data repos-
itory are used to determine the efficiency of the suggested feature selection process. 
According to simulation outcomes, it can be concluded that the developed method sig-
nificantly enhances the prediction of routines for three distinct classifiers considered in 
this study. These classifiers were SVM, J48, and Naive Bayes. The results demonstrated 
that the suggested approach had better prediction accuracy than other methods.

Comprehensive models describe software quality by predicting low-quality com-
ponents based on observable patterns. This model guides the programming and test-
ing teams to concentrate on low-quality modules, thus ensuring that scarce resources 
available for software quality inspection are devoted to defects. An ACO-based learner 
could provide rules to describe software modules as defective or not defective. Singh 
and Verma [121] construct a rule-based SFP model with useful metrics by combining 
ACO-based mining and ROC-based rule quality update. The suggested approach was 
tested on public data sets of software faults. The efficiency of ACO-based learning was 
compared against three benchmark classifiers according to their receiver operating char-
acteristic areas. Based on an assessment of performance measures, ACO-based learners 
outperform other benchmark methods.

Azar and Vybihal [122] presented a strategy to maximize the accuracy of software 
quality predictive models while classifying original data. A predictive model is adapted 
(in stages) to new data based on previously constructed models. The adaptation pro-
cess relies on the ACO algorithm. The approach has been verified for class stability in 
object-oriented software systems and applies to other quality characteristics. It has the 
potential to be easily adapted to solve software quality predictive issues comprising mul-
tiple classification labels. The proposed approach outperformed both C4.5 and random 
guessing algorithms. Also, it maintains the clarity of the models, providing both classifi-
cation labels and guidelines for achieving them.

Predicting software reliability at an early stage of development is challenging. Recently, 
numerous strategies have been suggested to quantify software reliability. However, it is 
difficult to create accurate prediction models because the software engineering domain 
undergoes recurrent data changes. Consequently, models developed on one dataset lose 
significant accuracy when applied to new datasets. An ACO-based approach developed 
by Mohanthy and Naik [123] enhances software reliability prediction accuracy when 
combined with raw data. To produce enhanced software reliability results with new data, 
the ACO algorithm and accompanying TSP algorithm have been modified by incorpo-
rating multiple algorithms and adding additional features. Using a colony of cooperat-
ing artificial ants, it has been shown that the framework’s behavior results in promising 
results. NRMSE (Normalized Root Mean Square Error) validates the method on real 
datasets.

Mondal and Sahu [124] developed a supervised feature selection methodology lev-
eraging the ACO algorithm for SFP purposes. Their approach involved the application 
of K-nearest neighbors (KNN), NB, and decision tree (DT) algorithms. A novel fitness 
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function and two-stage pheromone adjustment mechanism were devised to efficiently 
mitigate feature redundancy. Inspired by real ants’ foraging patterns, which rely on pher-
omone trails to find optimal paths to food suppliers, the proposed algorithm explores 
the feature space. Comparative analysis across 12 diverse datasets was conducted, uti-
lizing fitness plots to visualize and quantify the performance of the ACO algorithm in 
conjunction with the multiple classifiers.

CS‑based approaches

The CS algorithm is a meta-heuristic algorithm inspired by cuckoo birds’ behavioral pat-
terns. Cuckoo birds place their eggs in other birds’ nests. The CS algorithm uses this 
concept to discover optimal solutions by randomly selecting solutions and “laying eggs” 
in the nest of the best-performing solution. This procedure is repeated until an optimal 
solution is found. The CS algorithm combines exploitation and exploration to find the 
optimum solution. The exploration part randomly selects solutions, while the exploita-
tion part evaluates the best-performing solutions. The fusion of exploitation and explo-
ration enables the algorithm to find the best solution while preventing local optimum 
behavior [125].

Software engineering requires predictive defects. This is done using static analysis 
tools to identify and fix bugs before the code is released. The goal is to ensure the soft-
ware is reliable, efficient, and secure. Continuous testing is also essential for uncover-
ing software issues. Defect-prone modules should be checked thoroughly. It facilitates 
bug discovery more effectively and prioritizes the testing process. Intensive research has 
been carried out on this issue in recent years. Nevertheless, limited studies have exam-
ined prediction results concerning time factors. Thus, Song and Lv [126] have proposed 
an enhanced Elman neural network design adaptable to changes in characteristics over 
time. By embedding a variable step size into the CS algorithm, the underlying param-
eters and thresholds of the Elman neural network were optimized. The approach was 
evaluated by analyzing seven projects retrieved from the public PROMISE repository. 
The outcomes indicate that the enhanced CS algorithm contributes significantly to the 
Elman neural network formulation, and the improved prediction rate of the approach is 
superior to those of 5 benchmarks for F-measure and Cliff ’s Delta scores.

SVMs require both imbalanced datasets and appropriate parameters to predict soft-
ware defects effectively. To solve this problem, Cai and Niu [127] have proposed a 
multi-objective CS algorithm for under-sampled software defect prediction. In the first 
step, a multi-objective CS algorithm and adaptive local search are employed to select 
non-defective sampling concurrently and improve SVM variables. Next, three under-
sampling strategies are proposed to determine which modules are non-defective within 
the decision region range. Three indicators measure the efficiency of the proposed algo-
rithm: G-mean, detection probability, and false positive rate. Also, eight datasets are 
selected from the Promise database to verify the proposed approach to predicting soft-
ware defects. The suggested method performs better at identifying software defects than 
eight other prediction models based on comparing the results.

Accurate prediction of defect-prone software modules is a critical component of mod-
ern software development, as it enables efficient allocation of limited testing resources. 
While existing defect prediction methods are promising, enhanced performance is 
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needed. To address this challenge, Badvath and Miriyala [128] developed an ensemble-
based approach to SFP, incorporating a hybrid technique that leverages the CS algorithm 
and principal component analysis (PCA) for feature extraction. By applying this method-
ology to five PROMISE datasets and evaluating performance using appropriate metrics, 
they aimed to identify the most effective classifier for defect prediction. The proposed 
model demonstrated better defect prediction compared to existing methods, contribut-
ing to improved software quality.

Rath and Mahato [129] conducted a systematic analysis of feature selection algorithms 
for enhancing the prediction of software defects. The study focused on evaluating the 
efficiency of the CS algorithm in identifying crucial software metrics for accurate pre-
diction. A dataset comprising various software metrics was subjected to feature selec-
tion using CS, genetic algorithm feature selection (GAFS), differential evolution feature 
selection (DEFS), ant colony optimization feature selection (ACOFS), and particle 
swarm optimization feature selection (PSOFS). The empirical results demonstrated that 
CS significantly improved prediction accuracy while reducing model complexity com-
pared to other optimization algorithms. These findings underscore the potential of CS 
for developing more precise and efficient software failure prediction models.

FA‑based approaches

The FA emulates fireflies’ behavior by flashing their lights to attract prey or mates. The 
intensity of light increases as it gets brighter. There is a tendency for the swarm of fire-
flies to congregate around the brighter fireflies. Fireflies move randomly if their intensi-
ties are equal. Flashing lights are indicative of objectives that need to be optimized. FA 
can be used to find the global optima for a specific problem. The algorithm is effective in 
non-linear, non-convex, and multimodal optimization problems. Moreover, FA requires 
no derivative information and is an efficient global optimization method [130].

The occurrence of software defects is a universal phenomenon. Preventing such 
defects at the earliest possible stage requires more attention as it requires less effort and 
costs. Predicting software defects is an essential component of determining software 
quality and reliability. Prediction of defects is a relatively new field in software quality 
engineering. Software quality can be identified by identifying the key predictors, the 
type of data to be collected, and the role of defect prediction models. Feature selection is 
an important preprocessing technique for applications that utilize large amounts of data. 
The process involves selecting the likely minimal attribute expected to appear in the 
set of actual attributes. Anbu and Anandha Mala [131] proposed an FA-based feature 
selection strategy and classifiers like SVM, NB, and KNN for classifying the selected fea-
tures. The feature space can be searched quickly for a subset of features that minimizes 
a certain fitness function. The fitness function considers classification accuracy and size 
reduction. The experiment results revealed that selecting features using the FA provides 
better classification accuracy than the other methods.

Yenduri and Gadekallu [132] introduced a novel Maintainability Index (MI) con-
structed from a combination of software metrics to minimize prediction error. To opti-
mize this index, they employed FA and subsequently compared the resulting base model 
against traditional counterparts: DE, ABC, PSO, and GA. Performance evaluation was 
conducted using differential ratio, correlation coefficient, and RMSE metrics.
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Pemmada and Nayak [133] proposed a hybrid model combining a deep neural net-
work (DNN) with a memetic firefly algorithm (MFA) for SFP. The DNN is employed 
for classification tasks, while the MFA optimizes its hyperparameters. A novel pertur-
bation operator was incorporated into the MFA to boost its exploration potential and 
avoid local optima. The proposed method was evaluated against several hybrid alter-
natives, including DNN with Firefly Hill-Climbing, DNN with Firefly, DNN with PSO, 
and a standalone DNN. Experimental results demonstrated that the DNN-MFA model 
achieved a superior accuracy of 98.8%, outperforming the compared approaches. This 
research highlights the potential of the proposed model for effective software risk pre-
diction in project environments.

GA‑based approaches

GA is a probabilistic search algorithm that incorporates genetics and natural selection. 
GA begins with a pool of solutions known as a population. Chromosomes represent 
solutions. Chromosomes are evaluated at every generation and selected for the next 
generation based on their fitness scores. The fittest chromosomes are then recombined 
in a process known as crossover. Finally, a mutation process is initiated to the next gen-
eration of chromosomes, resulting in a new, improved population. This cycle is repeated 
until an optimal solution or a predetermined number of generations is reached. The 
result is a set of chromosomes optimized for the problem [134].

Software module defects can be predicted with the help of fuzzy classification. Jin 
and Dong [135] employed the fuzzy measure to enhance prediction accuracy and per-
formance by obtaining the interaction among metrics by applying the Choquet Integral 
(CI) for classification in the n-dimensional area and determining the lowest misclassi-
fied object by distance automatically. The model uses GA on the training data to esti-
mate unknown parameters. Four NASA software projects were examined to verify the 
proposed model. The proposed model performs better in predicting results than other 
prediction models.

Engineering machinery must be maintained and repaired when a defect or problem 
is identified and the error is detected and fixed. Reduced costs can be achieved through 
rapid troubleshooting, defect analysis, and repair. Consequently, the role of repair and 
troubleshooting in a repair and maintenance system is crucial. Nowadays, software plays 
an important role in performing system tasks, so it is essential to ensure the reliability of 
systems. Due to this, error-tolerant systems are necessary to increase reliability. Consid-
ering the increasing development and implementation of software across a wide range 
of domains, software reliability has an imperative role to play throughout the lifecycle 
of a piece of software. Software error prediction is one of the most crucial solutions for 
improving software reliability and decreasing maintenance costs. Software errors can be 
predicted in several ways. Genetic algorithms, due to their intelligence, have a high abil-
ity to predict, so Fazel [136] used them to predict software future conditions or predict 
software errors. This method aims to predict software errors accurately and rapidly. The 
results indicate that the approach effectively predicts the error and output rates for the 
given time. According to the results, the suggested method achieves a recognition rate of 
more than 95% in the best-case scenario.
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Software defect prediction aims to identify potentially defective source code areas and 
minimize effort, time, and costs associated with software quality assurance. The predic-
tion of software defects is achieved by implementing machine learning algorithms into 
the code and evaluating non-code metrics. Nalini and Krishna [137] explored using code 
profiles to substitute conventional measures for predicting software defects. An analysis 
of the proposed novel evolution algorithm reveals that it has more potential than any 
traditional machine learning approach. The goal is to develop an effective machine-
learning algorithm for predicting the number of bugs a software project produces as it 
reaches the quality assurance stage.

Kaliraj and Reddy [138] addressed the challenges inherent in SFP, focusing on class 
imbalance, metric significance, and feature selection. They employed random over-
sampling to mitigate class imbalance, enhancing the model’s ability to predict faulty and 
non-faulty software instances. A comprehensive analysis of software metric categories, 
including size, cohesion, complexity, coupling, and documentation, was conducted to 
identify influential predictors. A modified GA was applied to optimize feature selection 
and reduce dimensionality. Experimental results using a diverse open-source dataset 
demonstrated a significant improvement in prediction accuracy compared to traditional 
methods. This research introduces a robust framework for SFP, empowering practition-
ers to develop more accurate models by effectively handling class imbalance, selecting 
relevant metrics, and optimizing feature sets, ultimately contributing to enhanced soft-
ware quality and reliability.

Gupta and Rajnish [139] proposed a novel approach to SFP that involves selecting 
optimal machine learning and deep learning techniques from a pool of high-performing 
algorithms. Mutual information was employed for feature selection to enhance model 
performance, while a hybrid SMOTE-Tomek oversampling technique addressed class 
imbalance. Subsequently, GA-based decision trees (GA-DT) and artificial neural net-
work-based decision trees (ANN-DT) models were developed. The proposed approach 
was evaluated using the Eclipse dataset (versions 2.0, 2.1, and 3.0), with precision, recall, 
accuracy, and F1-score metrics employed for performance assessment. Experimental 
results demonstrated the effectiveness of both GA-DT and ANN-DT models in predict-
ing software faults, with ANN-DT consistently achieving superior accuracy across all 
Eclipse dataset versions.

Hybrid approaches

Combining different algorithms is currently regarded as one of the most successful opti-
mization techniques. Combining various algorithms makes achieving better and more 
efficient solutions possible than those obtained using a single algorithm. Furthermore, 
it is possible to exploit the strengths of each algorithm while mitigating the weaknesses. 
This technique is especially useful when dealing with complex optimization problems 
that are difficult to solve with a single algorithm.

Researchers have focused on obtaining a correlation between software metrics and a 
module’s fault-proneness. Jin and Jin [10] discussed the application of hybrid ANN and 
quantum PSO (QPSO) in predicting software fault-proneness. ANN performs a fault-
proneness classification, and QPSO achieves dimensionality reduction. Results from the 
experiments indicate that the proposed prediction approach can establish a correlation 
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between software metrics and modules’ fault-proneness and that its implementation 
does not require expertise or additional costs. Software developers can use the proposed 
prediction approach to identify potential fault-prone software modules, so they only 
have to concentrate on these modules, which may reduce the effort and cost of soft-
ware maintenance. Moussa and Azar [140] presented an algorithm that uses object-ori-
ented metrics to classify software modules as fault-prone. It is a combination of PSO and 
genetic algorithms. It is experimentally verified using eight different data sets. It is evalu-
ated against other widely used classification methods.

Software testing is one of the most critical and time-consuming tasks in the software 
development process. To enhance software quality assurance processes, researchers 
have proposed several approaches for predicting the fault-proneness of software mod-
ules. Ibrahim and Ghnemat [141] proposed a strategy for software defect prediction, 
combining two existing algorithms, the Bat-based search algorithm (BA) for feature 
selection and the random forest algorithm (RF) for prediction. Additionally, several fea-
ture selection classifiers and strategies were evaluated in this study to determine their 
effectiveness.

The low accuracy of SFP results in the late detection of some faulty modules, increas-
ing the effort and cost of repairing abnormal faults. To increase the accuracy of SFP, it is 
necessary to solve the data dimensionality problem. Dimensionality reduction is accom-
plished by using feature selection algorithms. Feature selection algorithms fall into filter-
based feature selection and wrapper-based feature selection. Prediction models based on 
wrapper-based algorithms are more accurate. These algorithms can use different meth-
ods to find the best solutions; meta-heuristic search is the best. Since each meta-heuris-
tic algorithm has certain strengths and weaknesses, the researchers use a combination of 
algorithms to overcome these weaknesses [134] combined genetic, ACO, and WOA as 
the wrapper feature selection. Applying early SFP methods before the actual test is one 
of the most effective passive defense strategies for reducing the costs associated with the 
development of software systems. The proposed method is evaluated using 19 software 
projects. Results show that the proposed method performs better than other methods.

The quality of the software is reflected in software defects, and software failures can be 
predicted using software reliability models. Yang and Li [142] applied a hybrid algorithm 
for estimating model parameters to software defect prediction to address the difficulty 
of estimating the parameters of software reliability models. PSO is a typical swarm intel-
ligence algorithm with fast convergence but low accuracy in its solution. Sparrow search 
algorithm (SSA) is known for its high search accuracy, fast convergence speed, and good 
stability and robustness. To accelerate the convergence before the individual updates of 
the SSA, Yang and Li [142] proposed a hybrid approach that combines the PSO with the 
SSA. Additionally, the authors constructed a new fitness function based on the maxi-
mum likelihood estimation of the parameters and used it to initialize the parameters. 
An analysis of five sets of actual data sets revealed that the hybrid algorithm performed 
better than a single algorithm in terms of convergence speed and accuracy than a single 
algorithm in terms of convergence speed and stability.

Alsghaier and Akour [143] incorporated genetic algorithms into SVM classifiers and 
WOA to predict software faults. This approach was applied to 24 datasets, in which 
NASA MDP is considered a large-scale dataset, and Java open-source projects are 
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considered a small-scale dataset. Results indicate that the proposed approach is effective 
at predicting software faults in large and small datasets and overcomes the limitations of 
previous studies.

Anju and Judith [144] proposed a novel deep-learning model for SFP. The model incor-
porates an adaptive recurrent neural network (ARNN) optimized by a Levy-Flight inte-
grated cuckoo search optimization (LICSO) algorithm. Data was preprocessed using 
Box-Cox transformation to enhance model performance, and feature selection was per-
formed using Quantum theory-particle swarm optimization (QPSO-FS). The model’s 
effectiveness was evaluated using accuracy, precision, recall, F1-score, and processing 
time metrics. Experimental results demonstrated superior performance compared to 
existing approaches, with the proposed model achieving a peak accuracy of 96.4%.

Alsghaier and Akour [145] developed a novel approach to SFP by integrating GA with 
SVM and PSO. This hybrid model aimed to enhance prediction accuracy and address 
the limitations of previous studies. The proposed method was evaluated on a compre-
hensive dataset comprising 12 NASA Metrics Data Program (MDP) and 12 Java open-
source projects representing large-scale and small-scale software systems. Experimental 
results demonstrated that integrating GA, SVM, and PSO significantly improved soft-
ware fault prediction performance across both dataset types.

LOA‑based approaches

Lion optimization algorithm (LOA) is derived from lions’ special lifestyle and coop-
eration characteristics. An initial population is formed by a set of randomly generated 
solutions called lions. Some of the lions in the initial population are selected as nomad 
lions, and the rest of the population is randomly partitioned into subsets called prides. 
S percent of the pride’s members are female, and the rest are male, while this rate in 
nomad lions is vice versa. For each lion, the best-obtained solution in past iterations is 
called the best-visited position and is updated progressively during optimization. SFP is 
extensively performed using machine learning-based classifiers. Classifiers’ performance 
in predicting fault-prone software modules is threatened by the curse of dimensionality. 
It was discussed by Goyal and Bhatia [146] how to select optimal feature subsets from 
high-dimensional defect datasets using meta-heuristics. They proposed an LOA-based 
feature selection model and statistically compared it with state-of-the-art meta-heuristic 
models. Experiments are conducted with the NASA dataset. Based on the experiments, 
it can be concluded that the proposed algorithm performs better than the baseline tech-
niques, with the highest AUC measure (90%) and accuracy measure (94%).

MFO‑based approaches

In Moth-Flame optimization (MFO), moths are simulated to move around light sources 
in a spiral pattern at night. The MFO stands out from other meta-heuristic algorithms 
for its simplicity and low computational complexity. Consequently, the MFO can be 
applied to a variety of real-world problems, including feature selection and constraint 
engineering. MFO uses flames to preserve the best solutions. A global search strategy is 
also employed to explore the search space efficiently.

SFP is one of developers’ most complex problems during software development. In 
real-life software development projects, the collection of data can be challenging; the 
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distribution of data collected may be imbalanced. To predict software faults, Tumar and 
Hassouneh [147] developed an enhanced binary MFO algorithm incorporating adaptive 
synthetic sampling. The MFO algorithm is used as a wrapper feature selection, while 
adaptive synthetic sampling is used to strengthen the input dataset and deal with the 
imbalance. This study investigates the conversion of MFO from a continuous representa-
tion to a binary one by combining two transfer functions (V-shape and S-shape). This 
study uses data from fifteen actual projects retrieved from the PROMISE repository. In 
this study, three distinct types of classifiers are employed: KNN, DT, and linear discrimi-
nant evaluation. The findings suggest that the presented approach improves the perfor-
mance of classifiers and is superior to previous research, demonstrating the significance 
of TF when selecting features for classifiers.

Anjali and Dhas [148] proposed a hybrid model combining faster convolutional neu-
ral networks (FCNN) with MFO for predicting software bugs. The model leverages 
program-level metrics, such as code lines and method characteristics, as input features. 
MFO is employed to optimize FCNN’s weight parameters. The proposed MFO-FCNN 
approach was compared against traditional machine learning methods, including Ada-
Boost, random forest, K-nearest neighbors, K-means clustering, SVM, and bagging clas-
sifier. Experimental results demonstrated the superior performance of the MFO-FCNN 
model in accurately predicting software bug counts.

PSO‑based approaches

The PSO algorithm is an evolutionary computational methodology that focuses on par-
ticle social behavior. PSO is a meta-heuristic method for optimizing a candidate’s solu-
tion based on quality indicators by repeating the process. Simulating social behavior was 
originally used to show the activity of birds and fish.

By accurately predicting defect-prone software modules, software testing efforts can 
be reduced, costs can be reduced, and the software testing process can be improved. 
Using static code attributes as defect predictors in software defect prediction research 
has become common practice due to their usefulness, generalizability, ease of use, 
and wide acceptance. However, class imbalance and noisy attributes are common data 
quality concerns that can impact software defect prediction accuracy. To improve soft-
ware defect prediction accuracy, Wahono and Suryana [149] combined the PSO algo-
rithm with the bagging method. The PSO algorithm handles feature selection, and class 
imbalance is addressed by the bagging method. A statistical evaluation of the proposed 
approach uses data sets provided by NASA’s metric data repository. The proposed 
approach significantly enhances the prediction performance of most classifiers, accord-
ing to experimental results.

Several strategies have been developed to reduce testing costs and efforts based on the 
fault-proneness of classes or methods. Machine learning algorithms have recently been 
employed to predict fault-proneness through design metrics. However, some of these 
algorithms cannot handle unbalanced data, which is common in fault datasets. Further-
more, the results produced by these algorithms are difficult for most programmers and 
testers to understand. The multi-objective PSO algorithm was used by De Carvalho and 
Pozo [107] to develop a novel fault-prediction approach. Pareto dominance concepts are 
used to generate a model containing rules with particular characteristics. The rules apply 
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to an unordered classification, which makes them more intuitive and understandable. 
Two experiments were conducted to determine whether classes and methods are fault-
prone. The findings demonstrate meaningful correlations between fault prediction and 
the studied measures. Furthermore, the performance of the proposed approach is tested 
in comparison with other machine learning algorithms based on several criteria, such as 
the area under the ROC curve, one of the most important criteria for handling unbal-
anced data sets.

The importance of expeditious, efficient, and productive fine-tuning becomes increas-
ingly paramount with time as something breaks in the application portfolio. Therefore, 
recognizing faults early in the software development lifecycle will decrease effort and 
money costs. Furthermore, it is crucial to identify redundant or highly correlated fea-
tures, as this will have a significant impact on the learning process of the model. This 
study combines crossover ANN and binary PSO with Binary Cross-Entropy (BCE) loss 
as the fitness function. Malhotra and Shakya [150] explained the importance and poten-
tial of using BCE in binary PSO for the feature reduction scheme to reduce developer 
workload and maintenance expenses.

WOA‑based approaches

The WOA was inspired by humpback whale hunting. The solutions are categorized as 
whales. The whale uses the best element of the group as a reference point when search-
ing for a new location. Whales use two mechanisms: searching for prey locations and 
attacking them. The first approach involves encircling prey, while the second involves 
creating bubble nets.

SFP can be enhanced by using soft computing and machine learning methods. Since 
fault data is derived from mining software historical repositories, it is usually large in 
size. This data contains a wide range of features (metrics). Data dimensionality can be 
reduced by identifying the most valuable features. The WOA is enhanced by Hassouneh 
and Turabieh [151] by integrating it with a simple crossover approach. By strengthen-
ing the exploration process, the suggested modification allows the WOA to escape 
local optimum conditions. The selection procedure comprises five distinct procedures: 
tournaments, roulette wheels, linear ranks, stochastic universal sampling, and random 
selection. The proposed enhancement is evaluated by adopting 17 SFP datasets from the 
PROMISE repository. The detailed assessment indicates that the suggested method sur-
passes the standard WOA and the existing five existing approaches.

Results and discussion
Individual algorithm analyses

Meta-heuristic algorithms have demonstrated significant promise in SFP, offering 
diverse approaches to optimize the detection and prediction of software defects. Each 
algorithm has its unique strengths and weaknesses that contribute to its effectiveness in 
specific scenarios. As illustrated in Table 4, The ABC algorithm excels in avoiding local 
optima due to its adaptive swarm optimization and the division of bee roles, particularly 
when compared to PSO and genetic algorithms. It is particularly effective when inte-
grated with other methods to enhance fault localization. However, it may require exten-
sive tuning and is sensitive to initial parameters.
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Although PSO converges quickly, it is prone to premature convergence, whereas ABC’s 
scout bees ensure broader exploration, reducing this risk. By avoiding local optima using 
dynamic role adaptation, ABC offers a more effective strategy than GA, which relies on 
mutations and crossovers. When ABC is integrated with other methods, such as PSO 
or GA, its strengths are enhanced, improving convergence speed and robustness. For 
applications such as software fault prediction, these hybrid approaches combine the best 
features of both algorithms to provide superior accuracy and reliability.

The ACO algorithm is noted for its high prediction accuracy and effective feature 
selection capabilities, driven by its pheromone-based learning mechanism. Despite these 
strengths, ACO can be computationally intensive and may suffer from stagnation issues, 
which can limit its scalability in large-scale applications. To address these challenges, 
parallel processing is employed to distribute computational loads, significantly speeding 
up convergence. Hybrid approaches, combining ACO with other algorithms, are used to 
mitigate stagnation by introducing diversity into the solution pool. For improved robust-
ness and to avoid premature convergence, adaptive parameter tuning or further integra-
tion with other optimization techniques, such as PSO, could be explored in the future.

The CS algorithm combines exploration and exploitation based on cuckoo brood para-
sitism. It delivers an excellent balance between exploration and exploitation, making it 
highly accurate for feature selection. However, CS may converge slowly and is sensitive 
to parameter settings, which could affect its performance in some contexts. FA, inspired 
by firefly flashing behavior, is robust against non-convex problems and offers efficient 

Table 4  Comparative analysis of meta-heuristic algorithms for SFP

Algorithm Key features Strengths Limitations

ABC Adaptive swarm optimization, 
division of bee roles

Effective in avoiding local 
optima, integrates with other 
methods

It may require extensive tuning, 
sensitivity to initial parameters

ACO Mimics ant foraging, phero-
mone-based learning

High prediction accuracy, effec-
tive feature selection

Computationally intensive, may 
suffer from stagnation

CS Inspired by cuckoo bird’s brood 
parasitism, the combination of 
exploration and exploitation

Good exploration–exploita-
tion balance, high accuracy in 
feature selection

May converge slowly, sensitive 
to parameter settings

FA Inspired by firefly flashing 
behavior, non-linear optimiza-
tion

Efficient global search, robust 
against non-convex problems

Performance may degrade 
with large datasets that require 
parameter tuning

GA Evolutionary principles of selec-
tion, crossover, and mutation

High predictive accuracy, flex-
ible for hybrid approaches

It can be computationally 
expensive, sensitive to popula-
tion size

Hybrid Combines multiple algorithms 
to leverage strengths

Improved accuracy, reduced 
dimensionality, efficient opti-
mization

Complexity in implementation, 
the potential for overfitting

LOA Mimics lion pride and nomad 
behavior

Effective feature subset selec-
tion, high performance

It may require complex tuning, 
computationally demanding

MFO Simulates moth navigation 
around flames, spiral optimiza-
tion

Low computational complexity, 
efficient feature selection

It may be less effective with 
highly imbalanced data

PSO Social behavior of particles, 
iterative optimization

High convergence speed, good 
for unbalanced data

May suffer from premature 
convergence, sensitive to initial 
conditions

WOA Inspired by humpback whale 
hunting, bubble-net strategy

Robust exploration capabilities 
avoid local optima

Computationally intensive, 
parameter sensitivity
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global search capabilities. Nevertheless, its performance may degrade with large datasets 
that require careful parameter tuning.

GA is based on evolutionary principles of selection, crossover, and mutation, provid-
ing high predictive accuracy and flexibility for hybrid approaches. However, it can be 
computationally expensive and sensitive to the population size used. LOA mimics lion 
pride and nomad behavior, offering effective feature subset selection and high perfor-
mance. Its main limitation is the complex tuning required, which can be computation-
ally demanding.

The MFO algorithm simulates moth navigation around flames, offering low compu-
tational complexity and efficient feature selection. However, MFO may be less effective 
with highly imbalanced data and requires careful parameter tuning to avoid performance 
degradation. The PSO algorithm is popular for its high convergence rate and effective-
ness in handling unbalanced data. However, it may suffer from premature convergence 
and is sensitive to beginning conditions. WOA, derived from humpback whale bubble-
net hunting, provides robust exploration capabilities and effectively avoids local optima. 
Its limitations include being computationally intensive and sensitive to parameters.

Hybrid approaches analyses

Hybrid approaches that combine multiple algorithms often employ the strengths of 
each to attain superior accuracy and efficiency in SFP. These approaches can signifi-
cantly improve prediction accuracy and reduce dimensionality. They are prone to over-
fitting, especially when models become too complex or are tailored to specific data 
sets. For example, the combination of ANN and QPSO has been shown to significantly 
improve prediction accuracy while reducing dimensionality. While this hybrid approach 
improves prediction accuracy and reduces dimensionality, it is prone to overfitting, 
especially when models become too complex or are tailored to specific data sets.

Cross-validation can mitigate these risks by ensuring model generalization across dif-
ferent data subsets. Regularization techniques, including L1/L2, penalize overly com-
plex models in order to prevent overfitting. Furthermore, ensemble techniques like 
boosting and bagging combine multiple models to enhance robustness and reduce 
variance. In software engineering, studies have successfully used boosting to balance 
accuracy with generalization in fault prediction. Using these strategies, hybrid mod-
els are able to achieve high performance without sacrificing reliability or becoming too 
dataset-specific.

Using multi-algorithm wrappers that include combinations of genetic, ACO, and 
WOA algorithms can optimize feature selection and improve fault prediction accuracy. 
These wrappers allow the strengths of different algorithms to be harnessed in a single 
framework, though they may increase implementation complexity and risk of overfitting.

While hybrid methods provide improved performance, they also pose challenges, such 
as increased complexity in implementation and the potential for overfitting. These chal-
lenges necessitate careful design and validation to ensure that the hybrid models gener-
alize well to unseen data.

On the other hand, algorithms like MFO and LOA provide efficient feature selection 
mechanisms with low computational complexity, making them suitable for handling 
large datasets. The theoretical time complexity of MFO is typically O(N × T), where N 
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denotes the population size and T signifies the number of iterations. In contrast, the 
theoretical time complexity of LOA is O(M × T), where M represents the pride size. 
In high-dimensional spaces, MFO and LOA outperform more complex algorithms 
like genetic algorithms in execution time, with resource consumption reductions of 
up to 30%. Nevertheless, they may be less effective with highly imbalanced data and 
require careful parameter tuning to avoid performance degradation.

Feature reduction techniques in SFP

Various techniques have been developed over the years to reduce feature dimen-
sions and generate models that provide more accurate predictions. There are two 
approaches to diminishing features: feature extraction and feature selection. The 
feature selection process entails determining relevant features, while feature extrac-
tion entails merging several useful features into a much smaller set of features. In the 
reviewed studies, Co-relation-based Feature Selection (CFS) was the most frequently 
employed feature selection approach. Using CFS, redundant and noisy features are 
eliminated, and only features closely correlated with the fault proneness character-
istic are kept. Other common feature selection methods include wrapper attribute 
selection, correlation analysis, and the χ2-based filter. Most papers utilized a feature 
selection approach, but only a few studies utilized PCA to extract features. The stud-
ies use software metrics as independent variables to estimate fault proneness. Soft-
ware engineering uses several metrics to quantify the attributes of software products. 
These studies are categorized according to the criteria applied to the selected research 
papers to predict fault proneness.

•	 Procedural metrics: According to [152, 153], these studies use a combination of 
static code metrics and size measures, including Lines of Code (LOC).

•	 Object-oriented metrics: Many metrics are used in these studies to evaluate dif-
ferent aspects of Object-Oriented (OO) software, including inheritance, coupling, 
and cohesion for an OO class.

•	 Hybrid metrics: In some studies, the prediction of fault proneness has been con-
ducted using OO and procedural metrics.

•	 Miscellaneous metrics: Various metrics are included in some studies, including 
miscellaneous, elementary design evolution, file age, fault slip-through, churn, 
network metrics derived from dependency graphs, and requirements that cannot 
be classified as object-oriented or procedural metrics.

Several studies have reported that OO metrics are strongly related to fault proneness. 
OO metrics useful for SFP are presented in Fig. 3. This figure depicts LOC, response to a 
class (RFC), and coupling between objects (CBO) as highly useful metrics for SFP.

SFP has been conducted using a wide range of datasets. As evidenced by our obser-
vations, the NASA dataset is the most commonly used in SFP, following the PROM-
ISE repository and open-source datasets. The datasets have been classified into six 
types. Most of these datasets are freely accessible, while a few are private. These data-
sets are described in the following.
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•	 NASA dataset: It is one of the widely available datasets. Several research papers have 
employed NASA datasets in their research analyses. These datasets are available in 
the NASA metrics DATA program repository.

•	 PROMISE dataset: It is also widely used in the SFP field. PROMISE repository pro-
vides free access to the datasets.

•	 Eclipse dataset: The majority of its versions are free to download. During our investi-
gation, we identified four studies that utilized eclipse datasets.

•	 Student dataset: It mainly pertains to academic studies produced by students. Out of 
154 studies, four were based on student datasets.

•	 Open-source dataset: There are also other open-source software efforts, including 
Kspread, Kpdf, Klac, OpenOffice, Gnome, Apache, Lucene, and Xylan.

•	 Other: This is a private or enterprise dataset, such as a data set from a commercial 
banking dataset or a commercial Java application.

Data validation strategies are critical to verify SFP dataset accuracy and reliabil-
ity. Cross-validation refers to dividing the data set into multiple subsets to iteratively 
test and validate the model, reducing overfitting and improving generalization. A data 
cleansing process comprises removing or correcting errors, duplicates, and inconsisten-
cies. This is critical to eliminating noise that distorts predictions. Data quality is increas-
ingly monitored in real-time as new information is generated, ensuring models remain 
relevant and accurate over time. As a result, SFP models become more robust and reli-
able, providing clean, precise, and timely predictions, thereby improving prediction 
results in real-world applications.

Future trends and recommendations in SFP

In real-world SFP scenarios, large datasets and imbalanced data are common chal-
lenges, especially in industrial applications. The efficiency of MFO and PSO algo-
rithms makes them suitable for handling large datasets. Combining SVM with 

Fig. 3  OO metrics for SFP
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ensemble methods like boosting, which improves accuracy while mitigating bias, is 
the best approach for dealing with imbalanced data. An example is the combination 
of MFO for feature selection and SVM for classification in a large-scale financial soft-
ware application that significantly increased fault detection rates and reduced com-
putational costs. These strategies ensure robust and scalable SFP implementations in 
industrial environments.

As shown in Fig. 4, useful information related to software faults can be predicted 
from a more complex model that distinguishes between defective and non-defective 
code. Besides predicting fault severity in terms of high, medium, and low, an estima-
tion can be indicated by the Fibonacci series regarding story points or low, medium, 
and high values. Classifying faults according to a particular module, package, and his-
torical fault dataset makes it possible to predict possible code changes for the spe-
cific faults. According to historical records, the resource allocation for the fault is also 
affected by a collection of variables, such as the team’s resources, which have worked 
on similar faults in history and have a thorough understanding of the codebase.

Class imbalance, a common problem in SFP models, results from a large gap 
between fault-prone and non-faulty instances, leading to biased predictions. In the 
models discussed in this study, resampling and class weighting are typically used 
to address this problem. Resampling methods such as the synthetic minority over-
sampling technique (SMOTE) or undersampling balance the data set by increasing 
the samples of the minority classes or reducing the samples of the majority classes. 
Class weighting, on the other hand, gives greater importance to minority classes dur-
ing model training to ensure that the model provides equal attention to underrepre-
sented data. These techniques have been effectively implemented in various studies 
to enhance SFP accuracy and reliability, especially in datasets with significant class 
imbalances.

Forecasting or classifying the fault’s functional or nonfunctional category is also 
possible. Does this represent a security vulnerability? Are there any problems result-
ing from a regression? These are the major data points for software development 
teams to consider when planning their projects. This results in an improved alloca-
tion of resources. In the production environment, prediction-based testing can reveal 
more defects than manual analysis, restricted by cost concerns, thus reducing the 
number of unidentified faults. The study does not suggest replacing traditional fault-
fixing techniques with prediction-driven approaches. When combined with hybrid 
implementation, prediction-based methods can offer significant potential, and obtain-
ing reliable prediction insights is crucial in making informed planning decisions. The 
following future trends are recommended to be studied in upcoming works.

•	 The training data distribution significantly impacts the efficiency of SFP models. 
As the name implies, class distribution refers to the number of class instances in a 
training dataset. The class imbalance problem arises when instances belonging to 
one class exceed those belonging to another. The majority classes are those with 
the most instances, while minority classes are those with fewer instances. When-
ever there are fewer instances of the faulty class under consideration, the problem 
becomes more serious.
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•	 Ironically, most of the work in SFP has been focused on its ease of use, while very few 
have considered its economic value. It can be extremely expensive to misclassify a 
component, particularly when faulty components are predicted to be non-faulty.

•	 The other problem with SFP is that researchers and scholars use different techniques 
on different datasets. There is, however, no standard framework or procedure for 
applying SFPs to local or cross-company projects.

•	 The collected dataset should include a wide range of features to predict more infor-
mation about the software faults. A multi-label classification approach requires the 
application of appropriate Artificial Intelligence techniques.

•	 Effective data validation strategies must be implemented to produce credible predic-
tions for each category of SFP. This is necessary to verify that all data used in mak-
ing predictions is accurate, up-to-date, and reliable. Having reliable data is especially 
important for making predictions, as prediction accuracy is determined by the data 
quality used.

•	 As a future research direction, it might be useful to examine more sophisticated 
methods of assessing misclassified errors in SFP models. A cost-sensitive learning 
framework that dynamically adapts to different project contexts or the integration 
of more comprehensive economics-based metrics may provide deeper insight into 
the true cost–benefit ratio. Furthermore, expanding the Return on Investment (ROI) 
analysis to include long-term impacts such as maintenance savings and operational 
efficiency could provide a more holistic view of the economic value of SFP imple-
mentations.

•	 Future research directions could include expanding the study of comprehensive fea-
ture sets and advanced classification techniques, such as multi-label classification, 
which can significantly improve SFP models’ effectiveness. Researchers could explore 
integrating more diverse and domain-specific metrics tailored to different software 
projects. Additionally, further development of multi-label classification techniques 
to better manage overlapping defect categories and interdependencies between soft-
ware components could lead to more precise and actionable predictions.

•	 Investigating how SFP models can better adapt to software changes over time by 
using incremental learning and transfer learning techniques could be of substantial 
benefit. Incremental learning allows models to be updated as relevant data becomes 
available. This ensures that predictions remain accurate even as the software evolves. 
Transfer learning, on the other hand, allows models to leverage knowledge from 
previous projects or related areas, reducing the need for extensive retraining when 
applied to upcoming or evolving software systems. By focusing on these adaptive 
techniques, future research could improve the flexibility and longevity of SFP mod-
els, making them more resilient to software development dynamics and more appli-
cable to a wider range of projects.

•	 Research into integrating SFP models into DevOps workflows could focus on using 
automated triggers for retraining based on software changes. By examining how 
these triggers can initiate real-time model updates in response to evolving software 
conditions, future studies can improve SFP models’ adaptability and relevance. This 
integration would support continuous defect detection and improvement within 
DevOps pipelines, ensuring more reliable and resilient software systems.
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•	 The labels in the collected dataset must be accurate and well-defined to ensure the 
model is well-equipped to predict the classes accurately. If the labels are inaccurate, 
the model may not be able to discern the features associated with each class properly. 
This can lead to misclassification errors, and the model’s predictions may not accu-
rately reflect the true classes of the data.

•	 Due to the extensive setup required to perform the prediction, SFP is relatively 
underutilized in the industry. A dedicated SFP tool can aggregate predictions and 
provide valuable knowledge of software faults. The tool should enable the user to 
perform the necessary steps for fault prediction through an interactive user interface.

•	 Investigate methods for adapting software fault prediction models dynamically as the 
software evolves. Software systems are subject to changes over time, and prediction 
models should be able to adjust their predictions based on these changes. This could 
involve techniques for incremental learning or transfer learning to update models 
with new data.

•	 Develop techniques to estimate uncertainty and confidence levels in the predictions 
provided by SFP models. This is particularly important when making critical deci-
sions based on predictions. Users need to understand the reliability of the model’s 
output to avoid making incorrect decisions.

•	 Consider incorporating temporal aspects into SFP models. Software faults may 
exhibit patterns over time, and analyzing these patterns could lead to more accurate 
predictions. Time series analysis techniques could capture and leverage this temporal 
information.

•	 Explore ensemble methods and model combination techniques to improve the 
robustness and accuracy of SFP models. Assembling predictions from diverse models 
can mitigate the limitations of individual models and provide more reliable predic-
tions.

•	 Focus on developing interpretable and explainable AI techniques for SFP. Model pre-
dictions can enhance trust and understanding among stakeholders, such as develop-
ers and managers, and enable better decision-making.

•	 Investigate the generalization of fault prediction models across different projects and 
domains. Creating models that can be transferred from one context to another with-
out significant loss of accuracy could save time and effort in developing new models 
for every project.

•	 Design prediction frameworks that incorporate human expertise and feedback. Col-
laboration between machine learning models and domain experts can enhance the 
quality of predictions and assist in fine-tuning models based on real-world insights.

•	 Extend the research to include cost-sensitive learning techniques. Misclassifying 
faults can have different costs based on severity or impact. Models considering these 
costs during learning could lead to more effective predictions.

•	 Integrate SFP models into DevOps practices to enable continuous monitoring and 
improvement. This could involve automated triggers for retraining models based on 
changing software and operational conditions.

•	 Establish benchmarks and standardized evaluation metrics for comparing different 
SFP models. This would enable researchers and practitioners to objectively assess the 
performance of different techniques and models.
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•	 Extend fault prediction beyond identification and classification to include proactive 
measures such as predictive maintenance and proactive fault remediation. This could 
help in preventing faults from occurring in the first place.

•	 Develop tools and plugins that facilitate the integration of software fault predic-
tion into the software development process. These tools could streamline the steps 
involved in prediction and provide actionable insights to developers.

•	 Investigate real-time fault prediction and monitoring techniques that can quickly 
identify emerging faults and anomalies in the software system. This is especially rel-
evant for applications that require high availability and reliability.

•	 Involve end-users and stakeholders in the evaluation of fault prediction models. 
Understand how predictions impact their decision-making and gather feedback on 
the usefulness and effectiveness of the predictions.

Conclusions
This paper reviewed previous publications on the SFP problem to assess current research 
and propose suggestions for further research. Our evaluation focused on papers that 
used meta-heuristic algorithms with particular attention to parameters, strategies, and 
datasets. Review results indicate that public datasets have significantly increased, and the 
number of meta-heuristic algorithms used has increased slightly since 2015. Researchers 
working in the SFP field are encouraged to develop better fault predictors using public 
datasets and meta-heuristic algorithms. This trend underscores the growing recognition 
of the importance of SFP in ensuring software quality and reliability. Our findings sug-
gest that while there has been progress in applying meta-heuristic algorithms to SFP, 
there is still ample room for improvement and innovation.

Researchers are encouraged to develop more sophisticated fault predictors by lever-
aging the wealth of available public datasets and refining existing meta-heuristic algo-
rithms. The integration of these algorithms with advanced machine learning techniques 
and hybrid approaches could yield significant improvements in prediction accuracy and 
computational efficiency. Moreover, there is a noticeable gap in the literature concerning 
the practical applications of SFP. Most studies focus on theoretical and experimental val-
idations, with limited emphasis on real-world implementations. Future research should 
aim to bridge this gapby exploring the practical challenges and solutions associated with 
deploying SFP models in industry settings. This includes addressing issues such as scal-
ability, adaptability to evolving software environments, and the integration of SFP tools 
into existing software development workflows.
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