
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

REVIEWS

Dang and Wang ﻿
Journal of Engineering and Applied Science (2024) 71:189
https://doi.org/10.1186/s44147-024-00529-0

Journal of Engineering
and Applied Science

Leveraging meta‑heuristic algorithms
for effective software fault prediction:
a comprehensive study
Zhizheng Dang1 and Hui Wang1* 

Abstract 

In large-scale software development, the increasing complexity of software products
poses a daunting challenge to maintaining software quality. Given this challenge,
software fault prediction (SFP) is a critical endeavor for effective budgeting and refine-
ment of the testing process. Quantitative insights into software quality gained
through measurements are crucial in enabling accurate SFP. With the proliferation
of software in various fields, ensuring software reliability throughout the software life
cycle has become paramount. Anticipating software bugs, which have the potential
to reduce software maintenance costs dramatically, is a key approach to improv-
ing software reliability. In this regard, using nature-inspired metaheuristic algorithms
is promising because of their ability to predict future conditions and identify software
anomalies. This study examines the potential of various meta-heuristic algorithms,
particularly particle swarm optimization, genetic, ant colony optimization, cuckoo
search, lion optimization, firefly, moth-flame, whale optimization, and artificial bee
colony algorithms, in addressing the SFP challenge. The study outlines the challenging
problems, compares approaches based on fundamental variables, and offers sugges-
tions for future studies, providing a comprehensive and systematic analysis of these
algorithms in the context of SFP.

Keyword:  Software defect; Software reliability; Software quality; Meta-heuristic
algorithms

Introduction
Context

Recent rapid growth in cloud computing [1], Internet of Things (IoT) [2], smart grids
[3], and machine learning [4] has driven an explosion of data in almost every aspect of
computer science and engineering. Testing software applications for quality has become
increasingly important as the quality of software applications has grown in recent years
[5]. A significant step towards changing the testing procedure is to assess software fault
predictions (SFPs), determine the severity of fault in a product module, and then test
it [6, 7]. A sensible estimation of programming issue inclination before testing ena-
bles programming groups to concentrate on the testing exercises and to estimate costs

*Correspondence:
bingyuexiaxing@163.com

1 Hebei Chemical &
Pharmaceutical College,
Shijiazhuang 050026, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-024-00529-0&domain=pdf

Page 2 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

accurately [8, 9]. After a testing session, estimating software faults provides insight into
the testing process and contributes to defining delivery and maintenance procedures.
Programming deficiency and the probability of nearness of issues in the product cannot
be measured straightforwardly in programming [10, 11]. Nonetheless, blame inclination
can be defined through quantifiable software properties [12, 13] whenever there is a cor-
relation between these qualities and faults. This field has been the subject of three major
research directions [14]: (1) formulation and specification of criteria to measure soft-
ware complexity, (2) checking the thoroughness and accuracy of the measurement, and
(3) determination and investigation of models that correlate software indicators to have
fault prediction [15, 16].

Some software metrics describing software quality have been proposed as static and
dynamic platforms. Characteristics of the code structure are used to measure the met-
rics in the static platforms [17]. Static measurements are used by several administrators
[18, 19] and several bunches [20]. Dynamic platforms measure testing meticulousness.
Auxiliary and information streams determine the basic element measurements [12].
Numerous creators have revealed a direct correlation between product measurements
and blame orientation, as well as many quantifiable programming characteristics [21–
25]. On the other hand, various types of research do not have any vision for verifying
and validating software fault metrics. The traditional techniques, such as testing or sim-
ulation, and the proposed challenges cannot cope well with each other [26]. For exam-
ple, high costs and overheads prevent testing.

Similarly, reenactment is not for supporting transient properties since it does not
encompass all framework states. Formal approaches draw much attention based on
mathematical logic. Formal specification and formal verification are the components
of formal methods [27]. The formal specification specifies interactions among software
fault-proneness, and formal verification can logically accommodate all system states
[28]. They are complete and more reliable than testing and simulation to analyze and
verify the interaction behaviors among software fault-proneness methods. All papers on
SFP use simulation and experiments to evaluate the proposed method. So, it is conceiv-
able that all the state space has not been evaluated well. Model checking, as an automatic
technique for verifying software systems, is a suitable approach to solving problems [29].

Problem statement

Assurance of fault programming modules plays an integral role since it allows for identi-
fying modules that need to be refactored or tested item by item [30]. This will enable the
creation of high-quality software products. SFP is a model that estimates the fault incli-
nation of upcoming modules by utilizing fundamental expectation measurements and
authentic blame information. Considering the frameworks’ defects, a venture timetable
can be tested and support stages all productively [31]. Early programming SFP meth-
odologies depend on measurements; however, the forecast execution of these method-
ologies is inappropriate. Machine learning algorithms, particularly data mining [32],
support vector machine (SVM) [33], Naive Bayes (NB) [24], and artificial neural net-
works (ANNs) [34], have been introduced in most of the recent works. Although soft-
ware faults have been considered using these strategies, there are still sufficient parts of
flaws that stay vague. Currently, ANNs have been presented as a viable form of machine

Page 3 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

learning and information-digging groups capable of handling order and relapse issues
[10]. The upside of ANN is its capacity to be used as a discretionary capacity estimate
instrument that learns from watched information. ANN can be received at displaying
non-linear practical connections that are complicated to show with different meth-
ods, and hence, it is appealing for programming shortcoming inclination expectation
demonstrating.

Nature-inspired meta-heuristic algorithms have attracted considerable attention over
the past few decades regarding engineering optimization problems. They can avoid
local optima by employing principles derived from natural processes and providing
solutions to various challenges in diverse fields. Meta-heuristics algorithms are useful
in solving the SFP problem. Typically, these algorithms fall under four major classes:
physics-oriented, swarm-driven, human-based, and evolutionary. Table 1 summarizes
these algorithms, which are further classified as single-objective or multi-objective algo-
rithms according to the number of objectives simultaneously considered. Evolutionary
algorithms draw inspiration from biological evolution and natural phenomena, includ-
ing selection, reproduction, combination, and mutation. During this process, poten-
tial solutions are repeatedly improved until the conditions of termination are met. The

Table 1  Nature-inspired meta-heuristic algorithms

Group Single-objective Multi-objective

Physics-oriented Gravitational Search Algorithm (GSA) [35] Multi-objective GSA [36]

Galaxy-based Search Algorithm (GbSA) [37] Multi-objective GbSA [38]

Multi-Verse Optimization (MVO) [39] Multi-objective MVO [40]

Simulated Annealing (SA) [41] Multi-objective SA [42]

Big-Bang Big-Crunch (BBBC) [43] Multi-objective BBBC [44]

Charged System Search (CSS) [45] Multi-objective CSS [46]

Black Hole (BH) [47] Multi-objective BH [48]

Human-based Harmony Search (HS) [49] Multi-objective HS [50]

Jaya Algorithm (JA) [51] Multi-objective JA [52]

Exchange Market Algorithm (EMA) [53] Multi-objective EMA [54]

Teaching–Learning-Based Optimization (TLBO) [55] Multi-objective TLBO [56]

League Championship Algorithm (LCA) [57] Multi-objective LCA [58]

Swarm-driven Ant Colony Optimization (ACO) [59] Multi-objective ACO [60]

Whale Optimization Algorithm (WOA) [61] Multi-objective WOA [62]

Ant-Lion Optimizer (ALO) [63] Multi-objective ALO [64]

Firefly Algorithm (FA) [65] Multi-objective FA [66]

Artificial Bee Colony (ABC) [67] Multi-objective ABC [68]

Particle Swarm Optimization (PSO) [69] Multi-objective PSO [70]

Cuckoo Search (CS) [71] Multi-objective CS [72]

Harris Hawks Optimization (HHO) [73] Multi-objective HHO [74]

Black Widow Optimization (BWO) [75] Multi-objective BWO [76]

Evolutionary Genetic Programming (GP) [77] Multi-objective GP [78]

Genetic Algorithm (GA) [79] Multi-objective GA [80]

Biogeography-based Optimizer (BBO) [81] Multi-objective BBO [82]

Differential Evolution (DE) [83] Multi-objective DE [84]

Evolutionary Strategy (ES) [85] Multi-objective ES [86]

Evolutionary Programming (EP) [87] Multi-objective EP [88]

Shuffled Frog Leaping Algorithm (SFLA) [89] Multi-objective SFLA [90]

Page 4 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

probability of achieving improved results near the global optimum increases by grow-
ing the number of generations or iterations. The global optimum cannot be accurately
estimated.

Swarm-driven algorithms draw inspiration from naturally intelligent organisms.
Instead of relying on evolutionary rules to determine the most optimal solution, com-
mon swarm-based algorithms rely only on genetic principles and continuously evalu-
ate each possible solution within the search space. Human-based algorithms are derived
from daily human activities, particularly interaction, competition, and training. These
algorithms draw their inspiration from human behavior modeling. Physics-based opti-
mization algorithms comprise meta-heuristic algorithms designed to exploit physical
behaviors or laws. These algorithms are motivated by physics rules associated with elec-
tromagnetic, inertia, and gravitational forces.

Motivation

SFP is accomplished through software measurements, which measure the quality of a
program quantitatively [91]. The fault-proneness of software can be correlated with some
software metrics, as different reviews show [92–94]. The lines of code were very impor-
tant for searching previous software metrics. Several approaches have been evaluated
to develop accurate SFP models. Statistical strategies [95–99] have been recommended.
Several efforts have been made to determine the best way to choose the software metrics
that might indicate fault proneness. For instance, Jolliffe [100] has been used as a part of
[101] and [102] to decrease the number of software performance indicators while hold-
ing the vast majority of the viewed variety. It is demonstrated that the representation
provided by the prediction approach is an ideal mean-square regression [100]. Infor-
mation is derived from several vectors, such as eigenvectors. The vectors represent the
underlying elements, and the data depict linear aggregations of the elements. As a result,
the projected data describe the largest difference between the primary component
and the second highest variance on the next primary component. In this manner, data
dimensionality can be minimized simply by wiping out the last principal components.

Catal and Diri [24] have studied 90 papers published between 1990 and 2009 on SFP.
An essential commitment of the review has shown that guidelines on software metrics
and the techniques used for SFP, datasets, and performance assessment indicators are
all reviewed. Catal and Diri [103] have used machine learning algorithms to construct
a middleware SFP approach based on the Eclipse platform. Predicting faults in software
programs is one of the goals of the review. The Naive Bayes algorithm is used due to its
excellent performance. The Model for Assisted Software Process (MASP) model can fil-
ter suitable measurements for specific fault types. In addition, Vandecruys and Martens
[104] have been considered to proficiently detect software defects and facilitate software
development by examining software repositories utilizing the Ant Miner algorithm.

Dejaeger and Verbraken [105] have discussed the Bayesian intelligent networks for
fault estimation. For this purpose, 15 different Bayesian networks are employed. Model
outputs are compared with similar model results. The outcome of Markov’s principal
effects on the estimation model shows that it does not significantly affect the feature
selection technique. The advantage of this method is that it makes Bayesian network
clustering for fault estimation, but the disadvantage is that it is not verified using formal

Page 5 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

methods. Also, Rajaganapathy and Subramani [106] have studied a combination of an
immune system and a random forest algorithm as machine learning methods. An adapt-
able neuro-fuzzy algorithm has been developed to address accuracy issues. This paper
focuses on three criteria of dataset size, metrics and techniques set, and error estimation
selectable algorithms for comparing. The strength of this approach is that it has effec-
tive in fault of measurement indexes, and the disadvantage is that it is not verified using
formal methods.

De Carvalho and Pozo [107] have presented an approach for rules classification that
can be used for predictive models. This study used a multi-objective PSO algorithm to
extract data classification rules. For this reason, the authors have changed this algorithm
and developed a new algorithm using a multi-objective PSO algorithm to extract this
kind of rule. The advantage of this method is that the obtained results are better than
the simple PSO method, and the disadvantage is the lack of formal verification meth-
ods. Finally, Kwok and Lu [108] have offered a fuzzy regression method to predict faults
of modules based on fuzzy support vector regression. The fuzzification has also been
applied to the regression algorithm of the support vector so that the algorithm can man-
age the unbalanced data set. The presented model in this study has been tested on the
proprietary dataset of a firm, and the obtained results have shown that this model shows
a better operation when modules have high lines. However, the verification of the pro-
posed model is not discussed. The reviewed studies are summarized in Table 2.

Systematic literature review

A systematic literature review (SLR) is a process that formulates hypotheses and uses
specific methodologies to collect, investigate, and synthesize relevant research related
to a particular topic or trend in the literature [112]. The SLR process is rigorous and
involves a comprehensive search of databases and other sources. SLRs explicitly explain
the knowledge and the uncertainty associated with a practice-related question. SLRs
provide insight into research trends in a particular area on a single platform. SLRs are
useful for identifying gaps in knowledge and potential research directions. The results of
the SLR are presented as evidence to support conclusions and inform decision-making
[113].

Contribution

Various meta-heuristic algorithms have been proposed to solve SFP problems in recent
years. Whenever it is necessary to find optimum solutions in infinite time, traditional
algorithms perform better in parameter optimization and feature selection. On the other
hand, these conventional algorithms cannot provide results for more challenging opti-
mization issues, including NP-hard or global optimization, which take a long time to
resolve. ACO, genetic, and PSO algorithms have been well-known in recent years for
their success in predicting software faults. After reviewing various studies utilizing
meta-heuristic algorithms to predict software faults, we observed that identifying which
algorithms are useful for feature selection in addition to those useful for parameter opti-
mization is very difficult.

Further, compared to standard estimation strategies, it is often difficult to determine
their performance characteristics. Considering these algorithms’ ability to predict

Page 6 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

software faults more accurately, deciding whether they should be used for parameter
optimization or feature selection is also necessary. To cover these gaps, this paper com-
prehensively analyzes studies on the SFP problem involving different meta-heuristic
algorithms. Particularly, we examine publications in digital libraries between 2010 and
2023. As depicted in Fig. 1, this study comprises four major stages. The authors begin
by providing a background to the SFP problem. Digital libraries are searched to identify
useful publications according to certain criteria. Then, the current SFP approaches are
discussed. Finally, we compare the reviewed approaches and explore potential gaps and
areas for future study. The present paper makes the following major contributions:

Table 2  Comparison of prediction-related works

Disadvantage Advantage Dataset Approach Paper

• Without analyzing
formal approaches
• Without evaluating cost
and complexity

Training ANN using his-
torical data attention

NASA dataset ANN and SVM [94]

• Without evaluating
functional properties

Finding a relation
between fault metrics

NASA dataset SVM [109]

• Without examining the
complexity
• Without analyzing
the correctness of the
approach

Reducing long-associa-
tion rules

Dataset of Mylyn and
Eclipse PDE

Association rules [110]

• Without presenting a
simulation environment
• Without analyzing the
complexity

Finding fault depend-
ency between prone-
ness metrics

Source codes - [111]

• Without analyzing
using formal approaches
• Without discussing the
cost and complexity

Hybrid prediction
approach to find
proneness metrics
without high cost and
complexity

- ANN [10]

• Without evaluating
with formal methods
• Without analyzing the
complexity

Presenting a tool for
finding the fault metrics
using data prediction

The metrics of McCabe ANN [15]

• Without evaluating
with formal methods

Maker of Bayesian net-
work clustering for fault
estimation

NASA dataset Bayesian smart network [105]

• Without evaluating
with formal methods

Effective in fault than
measurement indexes

Promise dataset Combination of random
forest algorithm and
body immune system

[106]

• Without evaluating
with formal methods
• Without analysis of the
complexity

Its results are better
than the simple particles
swarm optimization
method

Nasa
data set

Extraction of classifica-
tion rules by particles
congestion method

[107]

• Without evaluating
with formal methods

The model acts better
when modules have
upper lines

Data sets of multiple
companies

Fuzzy support vector
regression

[108]

Fig. 1  Steps of the research

Page 7 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

•	 Highlighting the major issues potentially encountered during the SFP process;
•	 Outlining the value of meta-heuristic algorithms to address the SFP issue and dis-

cussing the latest strategies for this problem;
•	 Providing a thorough evaluation of SFP methods according to key factors;
•	 Determining and identifying areas for upcoming research.

The paper is organized into four sections. The “Methods” section explains the article
selection process and reviews current SFP approaches based on meta-heuristic algo-
rithms. The “Results and discussion” section summarizes the study findings and dis-
cusses outstanding research topics and possible directions for future research. Finally,
the paper concludes with the “Conclusions” section.

Methods
The systematic review conducted in this paper was planned, conducted, and reported
based on the procedures given by Kitchenham and Brereton [114]. Figure 2 illustrates
the process. We drafted the review protocol at the planning stage, including the six
main stages: identification of research queries, design of the search procedure, selec-
tion of studies based on specific parameters, study assessment, data extraction, and
data interpretation. We prepared the review procedure at the planning stage, including
the six main stages: identification of research queries, design of the search procedure,
selection of studies based on specific parameters, quality assessment, data extraction,
and data interpretation. The initial stage was formulating the research questions to be
explored in the SLR. In the second stage, the search process was explained, along with
search phrases and selecting databases for identifying relevant studies. In the third stage,
related studies are identified under the research questions. This stage involves estab-
lishing exclusion and inclusion criteria for every preliminary study. The next stage was
identifying quality evaluation factors and creating a questionnaire to examine the stud-
ies. Data extraction worksheets are created to provide the necessary details needed to
clarify research questions and develop data synthesis strategies. This SLR presents and
assesses empirical evidence from studies using meta-heuristic algorithms for SFP. This
SLR addresses six research questions listed in Table 3. The following search terms are
applied to find primary studies.

(‘‘software fault prediction’’) AND (‘‘nature-inspired’’ OR ‘‘meta-heuristic’’).
After determining keyword phrases, the most pertinent and useful online resources

were chosen. There was no restriction on selection based on digital portal availability at
home universities. Searches were conducted in the following seven electronic databases:

•	 SpringerLink1

•	 Google Scholar2

•	 Wiley Online Library3

1  www.​link.​sprin​ger.​com
2  www.​schol​ar.​google.​com
3  www.​onlin​elibr​ary.​wiley.​com

http://www.link.springer.com
http://www.scholar.google.com
http://www.onlinelibrary.wiley.com

Page 8 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

Fi
g.

 2
 A

rt
ic

le
 s

el
ec

tio
n

pr
oc

es
s

Page 9 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

•	 ACM Digital Library4

•	 ScienceDirect5

•	 IEEE Xplore6

The search was restricted to 2010–2024. A preliminary search was conducted to pin-
point potential original research papers by determining which electronic databases to
search. A list of relevant studies was then identified by reviewing the full-text articles
according to predetermined criteria for including and excluding studies. A total of 25
main studies were chosen for inclusion in the SLR. Nine additional studies were included
based on a review of the relevant research references. Therefore, 34 studies were consid-
ered for further analysis.

We incorporated specific inclusion and exclusion guidelines to ensure a focused and
rigorous literature review. The inclusion criteria consist of research papers that utilize
meta-heuristic algorithms for SFP, combine multiple meta-heuristic algorithms, and
compare these approaches with traditional statistical methods. Conversely, the exclusion
criteria eliminate studies that lack statistical analysis or assessment of meta-heuristic
algorithms applied to SFP, those that use dependent variables other than fault proneness,
and those that apply meta-heuristic algorithms in contexts unrelated to SFP. Through
these criteria, we maintained a high standard of relevance and quality in our compre-
hensive review.

This section reviews the meta-heuristic algorithms employed in SFP and discusses
their challenges, such as runtime, convergence, and performance evaluation. The meta-
heuristic algorithms employed in SFP are based on evolutionary computation and
swarm intelligence. They are used to identify global optima cost-effectively by creating
and manipulating populations of feasible solutions iteratively. The results obtained from
these algorithms are then compared to the optimal solution.

Table 3  Adopted research questions

Index Research questions Aim

RQ1 Which meta-heuristic algorithms have been pro-
posed for SFP?

Identifying the meta-heuristic algorithms widely
employed in SFP

RQ2 What risks and issues are posed by testing based
on meta-heuristic algorithms in the SFP area?

Need to examine different risks and issues

RQ3 What are the software indicators employed in SFP? An overview of key performance indicators com-
monly used for SFP

RQ4 What are the various feature selection strategies
implemented in SFP?

Identifying approaches ideal for the reduction and
selection of software features

RQ5 What different datasets are available in the SFP
field, and how can those datasets be accessed?

Identify the relevant dataset applicable to SFP and
how to obtain that dataset

RQ6 Which meta-heuristic algorithms are better and
outperform existing SFP?

Performance analysis of meta-heuristic algorithms

4  www.​dl.​acm.​org
5  www.​scien​cedir​ect.​com
6  www.​ieeex​plore.​ieee.​org

http://www.dl.acm.org
http://www.sciencedirect.com
http://www.ieeexplore.ieee.org

Page 10 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

ABC‑based approaches

The ABC algorithm is an adaptive optimization method that divides the artificial bee
colony into working bees, spectators, and observers. Colonies are divided into two
halves, with one half engaged in beekeeping and the other half viewing the activity. Food
source locations are potential solutions to the optimization problem. Each food source
has unique nectar content that can determine physical fitness. Food sources equal the
number of working bees. It is natural for a bee to become disappointed after being aban-
doned by its food source. The algorithm begins by distributing bees in different positions
around a food source and then assigns bees, spectators, and observers to varying posi-
tions around the food source [115]. This section discusses the approaches used for SFP
using ABC and their main characteristics.

Software defects continue to pose a significant problem. Software defect prediction
ranks among the most critical issues in software quality research, as it can be used to
plan, control, and execute software development efforts. Recently, computer research-
ers have studied social insects’ behavior in neural networks to solve various prediction
problems. Farshidpour and Keynia [116] investigate using the ABC algorithm to simu-
late the intelligent foraging behavior of honeybees. Multilayer Perceptron (MLP) usu-
ally uses computationally intensive training algorithms when trained with the standard
backpropagation algorithm. Due to nearly constant local optima, the Backpropagation
algorithm (BP) can sometimes result in networks with suboptimal weights. To overcome
the complexity of predicting software defects from BP data, MLP-ABC efficiency is com-
pared to MLP training with conventional BP. Results from the experiment indicate that
MLP-ABC outperforms MLP-BP.

Most software development and maintenance costs are incurred when debugging soft-
ware. Thus, it has become vital research in software engineering to develop approaches
to automate the debugging process of software faults. Huang and Ai [117] propose a
mechanism based on the ABC algorithm that can be integrated with other related meth-
ods. Initial instrumentation is performed on the source program following the analysis
of its dependency information. After compiling and running the test cases in the pro-
gram, the results are entered into the ABC algorithm. The iterative nature of this algo-
rithm can be used to determine the best food source and the most significant fitness
value among employed bees. Based on the most reliable test cases, the unit with the
highest suspicion level is considered for the final fault localization. The TCAS program
in the Siemens suite is used to conduct the experiments. The suggested fault localization
approach provided accurate and efficient results. The ABC algorithm effectively avoids
local optima and ensures greater fault location validity.

ACO‑based approaches

The ACO algorithm attempts to determine the short route from colonies to food sup-
plies, mimicking natural ant behavior. To determine the shortest route, the ants release
pheromones as they move through the pathway [118]. Software defects or bugs may arise
due to poor design or coding. In the case of a bug in a project, incorrect results are pro-
duced. Software bugs increase the estimated project cost. This cost can be minimized by
predicting software bugs before product delivery. Kumar and Gyani [119] implemented
the ACO algorithm on eight open-source datasets, comparing it to logistic regression

Page 11 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

(LR), k-nearest neighbors, and SVM algorithms. As evident from the results, ACO offers
better prediction performance than conventional approaches.

Manivasagam and Gunasundari [120] present an optimization technique that improves
the ability to predict software defects. Fuzzy mutual information ACO searches for opti-
mal features based on a meta-heuristic search. Datasets from NASA’s metric data repos-
itory are used to determine the efficiency of the suggested feature selection process.
According to simulation outcomes, it can be concluded that the developed method sig-
nificantly enhances the prediction of routines for three distinct classifiers considered in
this study. These classifiers were SVM, J48, and Naive Bayes. The results demonstrated
that the suggested approach had better prediction accuracy than other methods.

Comprehensive models describe software quality by predicting low-quality com-
ponents based on observable patterns. This model guides the programming and test-
ing teams to concentrate on low-quality modules, thus ensuring that scarce resources
available for software quality inspection are devoted to defects. An ACO-based learner
could provide rules to describe software modules as defective or not defective. Singh
and Verma [121] construct a rule-based SFP model with useful metrics by combining
ACO-based mining and ROC-based rule quality update. The suggested approach was
tested on public data sets of software faults. The efficiency of ACO-based learning was
compared against three benchmark classifiers according to their receiver operating char-
acteristic areas. Based on an assessment of performance measures, ACO-based learners
outperform other benchmark methods.

Azar and Vybihal [122] presented a strategy to maximize the accuracy of software
quality predictive models while classifying original data. A predictive model is adapted
(in stages) to new data based on previously constructed models. The adaptation pro-
cess relies on the ACO algorithm. The approach has been verified for class stability in
object-oriented software systems and applies to other quality characteristics. It has the
potential to be easily adapted to solve software quality predictive issues comprising mul-
tiple classification labels. The proposed approach outperformed both C4.5 and random
guessing algorithms. Also, it maintains the clarity of the models, providing both classifi-
cation labels and guidelines for achieving them.

Predicting software reliability at an early stage of development is challenging. Recently,
numerous strategies have been suggested to quantify software reliability. However, it is
difficult to create accurate prediction models because the software engineering domain
undergoes recurrent data changes. Consequently, models developed on one dataset lose
significant accuracy when applied to new datasets. An ACO-based approach developed
by Mohanthy and Naik [123] enhances software reliability prediction accuracy when
combined with raw data. To produce enhanced software reliability results with new data,
the ACO algorithm and accompanying TSP algorithm have been modified by incorpo-
rating multiple algorithms and adding additional features. Using a colony of cooperat-
ing artificial ants, it has been shown that the framework’s behavior results in promising
results. NRMSE (Normalized Root Mean Square Error) validates the method on real
datasets.

Mondal and Sahu [124] developed a supervised feature selection methodology lev-
eraging the ACO algorithm for SFP purposes. Their approach involved the application
of K-nearest neighbors (KNN), NB, and decision tree (DT) algorithms. A novel fitness

Page 12 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

function and two-stage pheromone adjustment mechanism were devised to efficiently
mitigate feature redundancy. Inspired by real ants’ foraging patterns, which rely on pher-
omone trails to find optimal paths to food suppliers, the proposed algorithm explores
the feature space. Comparative analysis across 12 diverse datasets was conducted, uti-
lizing fitness plots to visualize and quantify the performance of the ACO algorithm in
conjunction with the multiple classifiers.

CS‑based approaches

The CS algorithm is a meta-heuristic algorithm inspired by cuckoo birds’ behavioral pat-
terns. Cuckoo birds place their eggs in other birds’ nests. The CS algorithm uses this
concept to discover optimal solutions by randomly selecting solutions and “laying eggs”
in the nest of the best-performing solution. This procedure is repeated until an optimal
solution is found. The CS algorithm combines exploitation and exploration to find the
optimum solution. The exploration part randomly selects solutions, while the exploita-
tion part evaluates the best-performing solutions. The fusion of exploitation and explo-
ration enables the algorithm to find the best solution while preventing local optimum
behavior [125].

Software engineering requires predictive defects. This is done using static analysis
tools to identify and fix bugs before the code is released. The goal is to ensure the soft-
ware is reliable, efficient, and secure. Continuous testing is also essential for uncover-
ing software issues. Defect-prone modules should be checked thoroughly. It facilitates
bug discovery more effectively and prioritizes the testing process. Intensive research has
been carried out on this issue in recent years. Nevertheless, limited studies have exam-
ined prediction results concerning time factors. Thus, Song and Lv [126] have proposed
an enhanced Elman neural network design adaptable to changes in characteristics over
time. By embedding a variable step size into the CS algorithm, the underlying param-
eters and thresholds of the Elman neural network were optimized. The approach was
evaluated by analyzing seven projects retrieved from the public PROMISE repository.
The outcomes indicate that the enhanced CS algorithm contributes significantly to the
Elman neural network formulation, and the improved prediction rate of the approach is
superior to those of 5 benchmarks for F-measure and Cliff ’s Delta scores.

SVMs require both imbalanced datasets and appropriate parameters to predict soft-
ware defects effectively. To solve this problem, Cai and Niu [127] have proposed a
multi-objective CS algorithm for under-sampled software defect prediction. In the first
step, a multi-objective CS algorithm and adaptive local search are employed to select
non-defective sampling concurrently and improve SVM variables. Next, three under-
sampling strategies are proposed to determine which modules are non-defective within
the decision region range. Three indicators measure the efficiency of the proposed algo-
rithm: G-mean, detection probability, and false positive rate. Also, eight datasets are
selected from the Promise database to verify the proposed approach to predicting soft-
ware defects. The suggested method performs better at identifying software defects than
eight other prediction models based on comparing the results.

Accurate prediction of defect-prone software modules is a critical component of mod-
ern software development, as it enables efficient allocation of limited testing resources.
While existing defect prediction methods are promising, enhanced performance is

Page 13 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

needed. To address this challenge, Badvath and Miriyala [128] developed an ensemble-
based approach to SFP, incorporating a hybrid technique that leverages the CS algorithm
and principal component analysis (PCA) for feature extraction. By applying this method-
ology to five PROMISE datasets and evaluating performance using appropriate metrics,
they aimed to identify the most effective classifier for defect prediction. The proposed
model demonstrated better defect prediction compared to existing methods, contribut-
ing to improved software quality.

Rath and Mahato [129] conducted a systematic analysis of feature selection algorithms
for enhancing the prediction of software defects. The study focused on evaluating the
efficiency of the CS algorithm in identifying crucial software metrics for accurate pre-
diction. A dataset comprising various software metrics was subjected to feature selec-
tion using CS, genetic algorithm feature selection (GAFS), differential evolution feature
selection (DEFS), ant colony optimization feature selection (ACOFS), and particle
swarm optimization feature selection (PSOFS). The empirical results demonstrated that
CS significantly improved prediction accuracy while reducing model complexity com-
pared to other optimization algorithms. These findings underscore the potential of CS
for developing more precise and efficient software failure prediction models.

FA‑based approaches

The FA emulates fireflies’ behavior by flashing their lights to attract prey or mates. The
intensity of light increases as it gets brighter. There is a tendency for the swarm of fire-
flies to congregate around the brighter fireflies. Fireflies move randomly if their intensi-
ties are equal. Flashing lights are indicative of objectives that need to be optimized. FA
can be used to find the global optima for a specific problem. The algorithm is effective in
non-linear, non-convex, and multimodal optimization problems. Moreover, FA requires
no derivative information and is an efficient global optimization method [130].

The occurrence of software defects is a universal phenomenon. Preventing such
defects at the earliest possible stage requires more attention as it requires less effort and
costs. Predicting software defects is an essential component of determining software
quality and reliability. Prediction of defects is a relatively new field in software quality
engineering. Software quality can be identified by identifying the key predictors, the
type of data to be collected, and the role of defect prediction models. Feature selection is
an important preprocessing technique for applications that utilize large amounts of data.
The process involves selecting the likely minimal attribute expected to appear in the
set of actual attributes. Anbu and Anandha Mala [131] proposed an FA-based feature
selection strategy and classifiers like SVM, NB, and KNN for classifying the selected fea-
tures. The feature space can be searched quickly for a subset of features that minimizes
a certain fitness function. The fitness function considers classification accuracy and size
reduction. The experiment results revealed that selecting features using the FA provides
better classification accuracy than the other methods.

Yenduri and Gadekallu [132] introduced a novel Maintainability Index (MI) con-
structed from a combination of software metrics to minimize prediction error. To opti-
mize this index, they employed FA and subsequently compared the resulting base model
against traditional counterparts: DE, ABC, PSO, and GA. Performance evaluation was
conducted using differential ratio, correlation coefficient, and RMSE metrics.

Page 14 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

Pemmada and Nayak [133] proposed a hybrid model combining a deep neural net-
work (DNN) with a memetic firefly algorithm (MFA) for SFP. The DNN is employed
for classification tasks, while the MFA optimizes its hyperparameters. A novel pertur-
bation operator was incorporated into the MFA to boost its exploration potential and
avoid local optima. The proposed method was evaluated against several hybrid alter-
natives, including DNN with Firefly Hill-Climbing, DNN with Firefly, DNN with PSO,
and a standalone DNN. Experimental results demonstrated that the DNN-MFA model
achieved a superior accuracy of 98.8%, outperforming the compared approaches. This
research highlights the potential of the proposed model for effective software risk pre-
diction in project environments.

GA‑based approaches

GA is a probabilistic search algorithm that incorporates genetics and natural selection.
GA begins with a pool of solutions known as a population. Chromosomes represent
solutions. Chromosomes are evaluated at every generation and selected for the next
generation based on their fitness scores. The fittest chromosomes are then recombined
in a process known as crossover. Finally, a mutation process is initiated to the next gen-
eration of chromosomes, resulting in a new, improved population. This cycle is repeated
until an optimal solution or a predetermined number of generations is reached. The
result is a set of chromosomes optimized for the problem [134].

Software module defects can be predicted with the help of fuzzy classification. Jin
and Dong [135] employed the fuzzy measure to enhance prediction accuracy and per-
formance by obtaining the interaction among metrics by applying the Choquet Integral
(CI) for classification in the n-dimensional area and determining the lowest misclassi-
fied object by distance automatically. The model uses GA on the training data to esti-
mate unknown parameters. Four NASA software projects were examined to verify the
proposed model. The proposed model performs better in predicting results than other
prediction models.

Engineering machinery must be maintained and repaired when a defect or problem
is identified and the error is detected and fixed. Reduced costs can be achieved through
rapid troubleshooting, defect analysis, and repair. Consequently, the role of repair and
troubleshooting in a repair and maintenance system is crucial. Nowadays, software plays
an important role in performing system tasks, so it is essential to ensure the reliability of
systems. Due to this, error-tolerant systems are necessary to increase reliability. Consid-
ering the increasing development and implementation of software across a wide range
of domains, software reliability has an imperative role to play throughout the lifecycle
of a piece of software. Software error prediction is one of the most crucial solutions for
improving software reliability and decreasing maintenance costs. Software errors can be
predicted in several ways. Genetic algorithms, due to their intelligence, have a high abil-
ity to predict, so Fazel [136] used them to predict software future conditions or predict
software errors. This method aims to predict software errors accurately and rapidly. The
results indicate that the approach effectively predicts the error and output rates for the
given time. According to the results, the suggested method achieves a recognition rate of
more than 95% in the best-case scenario.

Page 15 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

Software defect prediction aims to identify potentially defective source code areas and
minimize effort, time, and costs associated with software quality assurance. The predic-
tion of software defects is achieved by implementing machine learning algorithms into
the code and evaluating non-code metrics. Nalini and Krishna [137] explored using code
profiles to substitute conventional measures for predicting software defects. An analysis
of the proposed novel evolution algorithm reveals that it has more potential than any
traditional machine learning approach. The goal is to develop an effective machine-
learning algorithm for predicting the number of bugs a software project produces as it
reaches the quality assurance stage.

Kaliraj and Reddy [138] addressed the challenges inherent in SFP, focusing on class
imbalance, metric significance, and feature selection. They employed random over-
sampling to mitigate class imbalance, enhancing the model’s ability to predict faulty and
non-faulty software instances. A comprehensive analysis of software metric categories,
including size, cohesion, complexity, coupling, and documentation, was conducted to
identify influential predictors. A modified GA was applied to optimize feature selection
and reduce dimensionality. Experimental results using a diverse open-source dataset
demonstrated a significant improvement in prediction accuracy compared to traditional
methods. This research introduces a robust framework for SFP, empowering practition-
ers to develop more accurate models by effectively handling class imbalance, selecting
relevant metrics, and optimizing feature sets, ultimately contributing to enhanced soft-
ware quality and reliability.

Gupta and Rajnish [139] proposed a novel approach to SFP that involves selecting
optimal machine learning and deep learning techniques from a pool of high-performing
algorithms. Mutual information was employed for feature selection to enhance model
performance, while a hybrid SMOTE-Tomek oversampling technique addressed class
imbalance. Subsequently, GA-based decision trees (GA-DT) and artificial neural net-
work-based decision trees (ANN-DT) models were developed. The proposed approach
was evaluated using the Eclipse dataset (versions 2.0, 2.1, and 3.0), with precision, recall,
accuracy, and F1-score metrics employed for performance assessment. Experimental
results demonstrated the effectiveness of both GA-DT and ANN-DT models in predict-
ing software faults, with ANN-DT consistently achieving superior accuracy across all
Eclipse dataset versions.

Hybrid approaches

Combining different algorithms is currently regarded as one of the most successful opti-
mization techniques. Combining various algorithms makes achieving better and more
efficient solutions possible than those obtained using a single algorithm. Furthermore,
it is possible to exploit the strengths of each algorithm while mitigating the weaknesses.
This technique is especially useful when dealing with complex optimization problems
that are difficult to solve with a single algorithm.

Researchers have focused on obtaining a correlation between software metrics and a
module’s fault-proneness. Jin and Jin [10] discussed the application of hybrid ANN and
quantum PSO (QPSO) in predicting software fault-proneness. ANN performs a fault-
proneness classification, and QPSO achieves dimensionality reduction. Results from the
experiments indicate that the proposed prediction approach can establish a correlation

Page 16 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

between software metrics and modules’ fault-proneness and that its implementation
does not require expertise or additional costs. Software developers can use the proposed
prediction approach to identify potential fault-prone software modules, so they only
have to concentrate on these modules, which may reduce the effort and cost of soft-
ware maintenance. Moussa and Azar [140] presented an algorithm that uses object-ori-
ented metrics to classify software modules as fault-prone. It is a combination of PSO and
genetic algorithms. It is experimentally verified using eight different data sets. It is evalu-
ated against other widely used classification methods.

Software testing is one of the most critical and time-consuming tasks in the software
development process. To enhance software quality assurance processes, researchers
have proposed several approaches for predicting the fault-proneness of software mod-
ules. Ibrahim and Ghnemat [141] proposed a strategy for software defect prediction,
combining two existing algorithms, the Bat-based search algorithm (BA) for feature
selection and the random forest algorithm (RF) for prediction. Additionally, several fea-
ture selection classifiers and strategies were evaluated in this study to determine their
effectiveness.

The low accuracy of SFP results in the late detection of some faulty modules, increas-
ing the effort and cost of repairing abnormal faults. To increase the accuracy of SFP, it is
necessary to solve the data dimensionality problem. Dimensionality reduction is accom-
plished by using feature selection algorithms. Feature selection algorithms fall into filter-
based feature selection and wrapper-based feature selection. Prediction models based on
wrapper-based algorithms are more accurate. These algorithms can use different meth-
ods to find the best solutions; meta-heuristic search is the best. Since each meta-heuris-
tic algorithm has certain strengths and weaknesses, the researchers use a combination of
algorithms to overcome these weaknesses [134] combined genetic, ACO, and WOA as
the wrapper feature selection. Applying early SFP methods before the actual test is one
of the most effective passive defense strategies for reducing the costs associated with the
development of software systems. The proposed method is evaluated using 19 software
projects. Results show that the proposed method performs better than other methods.

The quality of the software is reflected in software defects, and software failures can be
predicted using software reliability models. Yang and Li [142] applied a hybrid algorithm
for estimating model parameters to software defect prediction to address the difficulty
of estimating the parameters of software reliability models. PSO is a typical swarm intel-
ligence algorithm with fast convergence but low accuracy in its solution. Sparrow search
algorithm (SSA) is known for its high search accuracy, fast convergence speed, and good
stability and robustness. To accelerate the convergence before the individual updates of
the SSA, Yang and Li [142] proposed a hybrid approach that combines the PSO with the
SSA. Additionally, the authors constructed a new fitness function based on the maxi-
mum likelihood estimation of the parameters and used it to initialize the parameters.
An analysis of five sets of actual data sets revealed that the hybrid algorithm performed
better than a single algorithm in terms of convergence speed and accuracy than a single
algorithm in terms of convergence speed and stability.

Alsghaier and Akour [143] incorporated genetic algorithms into SVM classifiers and
WOA to predict software faults. This approach was applied to 24 datasets, in which
NASA MDP is considered a large-scale dataset, and Java open-source projects are

Page 17 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

considered a small-scale dataset. Results indicate that the proposed approach is effective
at predicting software faults in large and small datasets and overcomes the limitations of
previous studies.

Anju and Judith [144] proposed a novel deep-learning model for SFP. The model incor-
porates an adaptive recurrent neural network (ARNN) optimized by a Levy-Flight inte-
grated cuckoo search optimization (LICSO) algorithm. Data was preprocessed using
Box-Cox transformation to enhance model performance, and feature selection was per-
formed using Quantum theory-particle swarm optimization (QPSO-FS). The model’s
effectiveness was evaluated using accuracy, precision, recall, F1-score, and processing
time metrics. Experimental results demonstrated superior performance compared to
existing approaches, with the proposed model achieving a peak accuracy of 96.4%.

Alsghaier and Akour [145] developed a novel approach to SFP by integrating GA with
SVM and PSO. This hybrid model aimed to enhance prediction accuracy and address
the limitations of previous studies. The proposed method was evaluated on a compre-
hensive dataset comprising 12 NASA Metrics Data Program (MDP) and 12 Java open-
source projects representing large-scale and small-scale software systems. Experimental
results demonstrated that integrating GA, SVM, and PSO significantly improved soft-
ware fault prediction performance across both dataset types.

LOA‑based approaches

Lion optimization algorithm (LOA) is derived from lions’ special lifestyle and coop-
eration characteristics. An initial population is formed by a set of randomly generated
solutions called lions. Some of the lions in the initial population are selected as nomad
lions, and the rest of the population is randomly partitioned into subsets called prides.
S percent of the pride’s members are female, and the rest are male, while this rate in
nomad lions is vice versa. For each lion, the best-obtained solution in past iterations is
called the best-visited position and is updated progressively during optimization. SFP is
extensively performed using machine learning-based classifiers. Classifiers’ performance
in predicting fault-prone software modules is threatened by the curse of dimensionality.
It was discussed by Goyal and Bhatia [146] how to select optimal feature subsets from
high-dimensional defect datasets using meta-heuristics. They proposed an LOA-based
feature selection model and statistically compared it with state-of-the-art meta-heuristic
models. Experiments are conducted with the NASA dataset. Based on the experiments,
it can be concluded that the proposed algorithm performs better than the baseline tech-
niques, with the highest AUC measure (90%) and accuracy measure (94%).

MFO‑based approaches

In Moth-Flame optimization (MFO), moths are simulated to move around light sources
in a spiral pattern at night. The MFO stands out from other meta-heuristic algorithms
for its simplicity and low computational complexity. Consequently, the MFO can be
applied to a variety of real-world problems, including feature selection and constraint
engineering. MFO uses flames to preserve the best solutions. A global search strategy is
also employed to explore the search space efficiently.

SFP is one of developers’ most complex problems during software development. In
real-life software development projects, the collection of data can be challenging; the

Page 18 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

distribution of data collected may be imbalanced. To predict software faults, Tumar and
Hassouneh [147] developed an enhanced binary MFO algorithm incorporating adaptive
synthetic sampling. The MFO algorithm is used as a wrapper feature selection, while
adaptive synthetic sampling is used to strengthen the input dataset and deal with the
imbalance. This study investigates the conversion of MFO from a continuous representa-
tion to a binary one by combining two transfer functions (V-shape and S-shape). This
study uses data from fifteen actual projects retrieved from the PROMISE repository. In
this study, three distinct types of classifiers are employed: KNN, DT, and linear discrimi-
nant evaluation. The findings suggest that the presented approach improves the perfor-
mance of classifiers and is superior to previous research, demonstrating the significance
of TF when selecting features for classifiers.

Anjali and Dhas [148] proposed a hybrid model combining faster convolutional neu-
ral networks (FCNN) with MFO for predicting software bugs. The model leverages
program-level metrics, such as code lines and method characteristics, as input features.
MFO is employed to optimize FCNN’s weight parameters. The proposed MFO-FCNN
approach was compared against traditional machine learning methods, including Ada-
Boost, random forest, K-nearest neighbors, K-means clustering, SVM, and bagging clas-
sifier. Experimental results demonstrated the superior performance of the MFO-FCNN
model in accurately predicting software bug counts.

PSO‑based approaches

The PSO algorithm is an evolutionary computational methodology that focuses on par-
ticle social behavior. PSO is a meta-heuristic method for optimizing a candidate’s solu-
tion based on quality indicators by repeating the process. Simulating social behavior was
originally used to show the activity of birds and fish.

By accurately predicting defect-prone software modules, software testing efforts can
be reduced, costs can be reduced, and the software testing process can be improved.
Using static code attributes as defect predictors in software defect prediction research
has become common practice due to their usefulness, generalizability, ease of use,
and wide acceptance. However, class imbalance and noisy attributes are common data
quality concerns that can impact software defect prediction accuracy. To improve soft-
ware defect prediction accuracy, Wahono and Suryana [149] combined the PSO algo-
rithm with the bagging method. The PSO algorithm handles feature selection, and class
imbalance is addressed by the bagging method. A statistical evaluation of the proposed
approach uses data sets provided by NASA’s metric data repository. The proposed
approach significantly enhances the prediction performance of most classifiers, accord-
ing to experimental results.

Several strategies have been developed to reduce testing costs and efforts based on the
fault-proneness of classes or methods. Machine learning algorithms have recently been
employed to predict fault-proneness through design metrics. However, some of these
algorithms cannot handle unbalanced data, which is common in fault datasets. Further-
more, the results produced by these algorithms are difficult for most programmers and
testers to understand. The multi-objective PSO algorithm was used by De Carvalho and
Pozo [107] to develop a novel fault-prediction approach. Pareto dominance concepts are
used to generate a model containing rules with particular characteristics. The rules apply

Page 19 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

to an unordered classification, which makes them more intuitive and understandable.
Two experiments were conducted to determine whether classes and methods are fault-
prone. The findings demonstrate meaningful correlations between fault prediction and
the studied measures. Furthermore, the performance of the proposed approach is tested
in comparison with other machine learning algorithms based on several criteria, such as
the area under the ROC curve, one of the most important criteria for handling unbal-
anced data sets.

The importance of expeditious, efficient, and productive fine-tuning becomes increas-
ingly paramount with time as something breaks in the application portfolio. Therefore,
recognizing faults early in the software development lifecycle will decrease effort and
money costs. Furthermore, it is crucial to identify redundant or highly correlated fea-
tures, as this will have a significant impact on the learning process of the model. This
study combines crossover ANN and binary PSO with Binary Cross-Entropy (BCE) loss
as the fitness function. Malhotra and Shakya [150] explained the importance and poten-
tial of using BCE in binary PSO for the feature reduction scheme to reduce developer
workload and maintenance expenses.

WOA‑based approaches

The WOA was inspired by humpback whale hunting. The solutions are categorized as
whales. The whale uses the best element of the group as a reference point when search-
ing for a new location. Whales use two mechanisms: searching for prey locations and
attacking them. The first approach involves encircling prey, while the second involves
creating bubble nets.

SFP can be enhanced by using soft computing and machine learning methods. Since
fault data is derived from mining software historical repositories, it is usually large in
size. This data contains a wide range of features (metrics). Data dimensionality can be
reduced by identifying the most valuable features. The WOA is enhanced by Hassouneh
and Turabieh [151] by integrating it with a simple crossover approach. By strengthen-
ing the exploration process, the suggested modification allows the WOA to escape
local optimum conditions. The selection procedure comprises five distinct procedures:
tournaments, roulette wheels, linear ranks, stochastic universal sampling, and random
selection. The proposed enhancement is evaluated by adopting 17 SFP datasets from the
PROMISE repository. The detailed assessment indicates that the suggested method sur-
passes the standard WOA and the existing five existing approaches.

Results and discussion
Individual algorithm analyses

Meta-heuristic algorithms have demonstrated significant promise in SFP, offering
diverse approaches to optimize the detection and prediction of software defects. Each
algorithm has its unique strengths and weaknesses that contribute to its effectiveness in
specific scenarios. As illustrated in Table 4, The ABC algorithm excels in avoiding local
optima due to its adaptive swarm optimization and the division of bee roles, particularly
when compared to PSO and genetic algorithms. It is particularly effective when inte-
grated with other methods to enhance fault localization. However, it may require exten-
sive tuning and is sensitive to initial parameters.

Page 20 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

Although PSO converges quickly, it is prone to premature convergence, whereas ABC’s
scout bees ensure broader exploration, reducing this risk. By avoiding local optima using
dynamic role adaptation, ABC offers a more effective strategy than GA, which relies on
mutations and crossovers. When ABC is integrated with other methods, such as PSO
or GA, its strengths are enhanced, improving convergence speed and robustness. For
applications such as software fault prediction, these hybrid approaches combine the best
features of both algorithms to provide superior accuracy and reliability.

The ACO algorithm is noted for its high prediction accuracy and effective feature
selection capabilities, driven by its pheromone-based learning mechanism. Despite these
strengths, ACO can be computationally intensive and may suffer from stagnation issues,
which can limit its scalability in large-scale applications. To address these challenges,
parallel processing is employed to distribute computational loads, significantly speeding
up convergence. Hybrid approaches, combining ACO with other algorithms, are used to
mitigate stagnation by introducing diversity into the solution pool. For improved robust-
ness and to avoid premature convergence, adaptive parameter tuning or further integra-
tion with other optimization techniques, such as PSO, could be explored in the future.

The CS algorithm combines exploration and exploitation based on cuckoo brood para-
sitism. It delivers an excellent balance between exploration and exploitation, making it
highly accurate for feature selection. However, CS may converge slowly and is sensitive
to parameter settings, which could affect its performance in some contexts. FA, inspired
by firefly flashing behavior, is robust against non-convex problems and offers efficient

Table 4  Comparative analysis of meta-heuristic algorithms for SFP

Algorithm Key features Strengths Limitations

ABC Adaptive swarm optimization,
division of bee roles

Effective in avoiding local
optima, integrates with other
methods

It may require extensive tuning,
sensitivity to initial parameters

ACO Mimics ant foraging, phero-
mone-based learning

High prediction accuracy, effec-
tive feature selection

Computationally intensive, may
suffer from stagnation

CS Inspired by cuckoo bird’s brood
parasitism, the combination of
exploration and exploitation

Good exploration–exploita-
tion balance, high accuracy in
feature selection

May converge slowly, sensitive
to parameter settings

FA Inspired by firefly flashing
behavior, non-linear optimiza-
tion

Efficient global search, robust
against non-convex problems

Performance may degrade
with large datasets that require
parameter tuning

GA Evolutionary principles of selec-
tion, crossover, and mutation

High predictive accuracy, flex-
ible for hybrid approaches

It can be computationally
expensive, sensitive to popula-
tion size

Hybrid Combines multiple algorithms
to leverage strengths

Improved accuracy, reduced
dimensionality, efficient opti-
mization

Complexity in implementation,
the potential for overfitting

LOA Mimics lion pride and nomad
behavior

Effective feature subset selec-
tion, high performance

It may require complex tuning,
computationally demanding

MFO Simulates moth navigation
around flames, spiral optimiza-
tion

Low computational complexity,
efficient feature selection

It may be less effective with
highly imbalanced data

PSO Social behavior of particles,
iterative optimization

High convergence speed, good
for unbalanced data

May suffer from premature
convergence, sensitive to initial
conditions

WOA Inspired by humpback whale
hunting, bubble-net strategy

Robust exploration capabilities
avoid local optima

Computationally intensive,
parameter sensitivity

Page 21 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

global search capabilities. Nevertheless, its performance may degrade with large datasets
that require careful parameter tuning.

GA is based on evolutionary principles of selection, crossover, and mutation, provid-
ing high predictive accuracy and flexibility for hybrid approaches. However, it can be
computationally expensive and sensitive to the population size used. LOA mimics lion
pride and nomad behavior, offering effective feature subset selection and high perfor-
mance. Its main limitation is the complex tuning required, which can be computation-
ally demanding.

The MFO algorithm simulates moth navigation around flames, offering low compu-
tational complexity and efficient feature selection. However, MFO may be less effective
with highly imbalanced data and requires careful parameter tuning to avoid performance
degradation. The PSO algorithm is popular for its high convergence rate and effective-
ness in handling unbalanced data. However, it may suffer from premature convergence
and is sensitive to beginning conditions. WOA, derived from humpback whale bubble-
net hunting, provides robust exploration capabilities and effectively avoids local optima.
Its limitations include being computationally intensive and sensitive to parameters.

Hybrid approaches analyses

Hybrid approaches that combine multiple algorithms often employ the strengths of
each to attain superior accuracy and efficiency in SFP. These approaches can signifi-
cantly improve prediction accuracy and reduce dimensionality. They are prone to over-
fitting, especially when models become too complex or are tailored to specific data
sets. For example, the combination of ANN and QPSO has been shown to significantly
improve prediction accuracy while reducing dimensionality. While this hybrid approach
improves prediction accuracy and reduces dimensionality, it is prone to overfitting,
especially when models become too complex or are tailored to specific data sets.

Cross-validation can mitigate these risks by ensuring model generalization across dif-
ferent data subsets. Regularization techniques, including L1/L2, penalize overly com-
plex models in order to prevent overfitting. Furthermore, ensemble techniques like
boosting and bagging combine multiple models to enhance robustness and reduce
variance. In software engineering, studies have successfully used boosting to balance
accuracy with generalization in fault prediction. Using these strategies, hybrid mod-
els are able to achieve high performance without sacrificing reliability or becoming too
dataset-specific.

Using multi-algorithm wrappers that include combinations of genetic, ACO, and
WOA algorithms can optimize feature selection and improve fault prediction accuracy.
These wrappers allow the strengths of different algorithms to be harnessed in a single
framework, though they may increase implementation complexity and risk of overfitting.

While hybrid methods provide improved performance, they also pose challenges, such
as increased complexity in implementation and the potential for overfitting. These chal-
lenges necessitate careful design and validation to ensure that the hybrid models gener-
alize well to unseen data.

On the other hand, algorithms like MFO and LOA provide efficient feature selection
mechanisms with low computational complexity, making them suitable for handling
large datasets. The theoretical time complexity of MFO is typically O(N × T), where N

Page 22 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

denotes the population size and T signifies the number of iterations. In contrast, the
theoretical time complexity of LOA is O(M × T), where M represents the pride size.
In high-dimensional spaces, MFO and LOA outperform more complex algorithms
like genetic algorithms in execution time, with resource consumption reductions of
up to 30%. Nevertheless, they may be less effective with highly imbalanced data and
require careful parameter tuning to avoid performance degradation.

Feature reduction techniques in SFP

Various techniques have been developed over the years to reduce feature dimen-
sions and generate models that provide more accurate predictions. There are two
approaches to diminishing features: feature extraction and feature selection. The
feature selection process entails determining relevant features, while feature extrac-
tion entails merging several useful features into a much smaller set of features. In the
reviewed studies, Co-relation-based Feature Selection (CFS) was the most frequently
employed feature selection approach. Using CFS, redundant and noisy features are
eliminated, and only features closely correlated with the fault proneness character-
istic are kept. Other common feature selection methods include wrapper attribute
selection, correlation analysis, and the χ2-based filter. Most papers utilized a feature
selection approach, but only a few studies utilized PCA to extract features. The stud-
ies use software metrics as independent variables to estimate fault proneness. Soft-
ware engineering uses several metrics to quantify the attributes of software products.
These studies are categorized according to the criteria applied to the selected research
papers to predict fault proneness.

•	 Procedural metrics: According to [152, 153], these studies use a combination of
static code metrics and size measures, including Lines of Code (LOC).

•	 Object-oriented metrics: Many metrics are used in these studies to evaluate dif-
ferent aspects of Object-Oriented (OO) software, including inheritance, coupling,
and cohesion for an OO class.

•	 Hybrid metrics: In some studies, the prediction of fault proneness has been con-
ducted using OO and procedural metrics.

•	 Miscellaneous metrics: Various metrics are included in some studies, including
miscellaneous, elementary design evolution, file age, fault slip-through, churn,
network metrics derived from dependency graphs, and requirements that cannot
be classified as object-oriented or procedural metrics.

Several studies have reported that OO metrics are strongly related to fault proneness.
OO metrics useful for SFP are presented in Fig. 3. This figure depicts LOC, response to a
class (RFC), and coupling between objects (CBO) as highly useful metrics for SFP.

SFP has been conducted using a wide range of datasets. As evidenced by our obser-
vations, the NASA dataset is the most commonly used in SFP, following the PROM-
ISE repository and open-source datasets. The datasets have been classified into six
types. Most of these datasets are freely accessible, while a few are private. These data-
sets are described in the following.

Page 23 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

•	 NASA dataset: It is one of the widely available datasets. Several research papers have
employed NASA datasets in their research analyses. These datasets are available in
the NASA metrics DATA program repository.

•	 PROMISE dataset: It is also widely used in the SFP field. PROMISE repository pro-
vides free access to the datasets.

•	 Eclipse dataset: The majority of its versions are free to download. During our investi-
gation, we identified four studies that utilized eclipse datasets.

•	 Student dataset: It mainly pertains to academic studies produced by students. Out of
154 studies, four were based on student datasets.

•	 Open-source dataset: There are also other open-source software efforts, including
Kspread, Kpdf, Klac, OpenOffice, Gnome, Apache, Lucene, and Xylan.

•	 Other: This is a private or enterprise dataset, such as a data set from a commercial
banking dataset or a commercial Java application.

Data validation strategies are critical to verify SFP dataset accuracy and reliabil-
ity. Cross-validation refers to dividing the data set into multiple subsets to iteratively
test and validate the model, reducing overfitting and improving generalization. A data
cleansing process comprises removing or correcting errors, duplicates, and inconsisten-
cies. This is critical to eliminating noise that distorts predictions. Data quality is increas-
ingly monitored in real-time as new information is generated, ensuring models remain
relevant and accurate over time. As a result, SFP models become more robust and reli-
able, providing clean, precise, and timely predictions, thereby improving prediction
results in real-world applications.

Future trends and recommendations in SFP

In real-world SFP scenarios, large datasets and imbalanced data are common chal-
lenges, especially in industrial applications. The efficiency of MFO and PSO algo-
rithms makes them suitable for handling large datasets. Combining SVM with

Fig. 3  OO metrics for SFP

Page 24 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

ensemble methods like boosting, which improves accuracy while mitigating bias, is
the best approach for dealing with imbalanced data. An example is the combination
of MFO for feature selection and SVM for classification in a large-scale financial soft-
ware application that significantly increased fault detection rates and reduced com-
putational costs. These strategies ensure robust and scalable SFP implementations in
industrial environments.

As shown in Fig. 4, useful information related to software faults can be predicted
from a more complex model that distinguishes between defective and non-defective
code. Besides predicting fault severity in terms of high, medium, and low, an estima-
tion can be indicated by the Fibonacci series regarding story points or low, medium,
and high values. Classifying faults according to a particular module, package, and his-
torical fault dataset makes it possible to predict possible code changes for the spe-
cific faults. According to historical records, the resource allocation for the fault is also
affected by a collection of variables, such as the team’s resources, which have worked
on similar faults in history and have a thorough understanding of the codebase.

Class imbalance, a common problem in SFP models, results from a large gap
between fault-prone and non-faulty instances, leading to biased predictions. In the
models discussed in this study, resampling and class weighting are typically used
to address this problem. Resampling methods such as the synthetic minority over-
sampling technique (SMOTE) or undersampling balance the data set by increasing
the samples of the minority classes or reducing the samples of the majority classes.
Class weighting, on the other hand, gives greater importance to minority classes dur-
ing model training to ensure that the model provides equal attention to underrepre-
sented data. These techniques have been effectively implemented in various studies
to enhance SFP accuracy and reliability, especially in datasets with significant class
imbalances.

Forecasting or classifying the fault’s functional or nonfunctional category is also
possible. Does this represent a security vulnerability? Are there any problems result-
ing from a regression? These are the major data points for software development
teams to consider when planning their projects. This results in an improved alloca-
tion of resources. In the production environment, prediction-based testing can reveal
more defects than manual analysis, restricted by cost concerns, thus reducing the
number of unidentified faults. The study does not suggest replacing traditional fault-
fixing techniques with prediction-driven approaches. When combined with hybrid
implementation, prediction-based methods can offer significant potential, and obtain-
ing reliable prediction insights is crucial in making informed planning decisions. The
following future trends are recommended to be studied in upcoming works.

•	 The training data distribution significantly impacts the efficiency of SFP models.
As the name implies, class distribution refers to the number of class instances in a
training dataset. The class imbalance problem arises when instances belonging to
one class exceed those belonging to another. The majority classes are those with
the most instances, while minority classes are those with fewer instances. When-
ever there are fewer instances of the faulty class under consideration, the problem
becomes more serious.

Page 25 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

Fi
g.

 4
 F

ut
ur

e
tr

en
ds

 fo
r S

FP

Page 26 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

•	 Ironically, most of the work in SFP has been focused on its ease of use, while very few
have considered its economic value. It can be extremely expensive to misclassify a
component, particularly when faulty components are predicted to be non-faulty.

•	 The other problem with SFP is that researchers and scholars use different techniques
on different datasets. There is, however, no standard framework or procedure for
applying SFPs to local or cross-company projects.

•	 The collected dataset should include a wide range of features to predict more infor-
mation about the software faults. A multi-label classification approach requires the
application of appropriate Artificial Intelligence techniques.

•	 Effective data validation strategies must be implemented to produce credible predic-
tions for each category of SFP. This is necessary to verify that all data used in mak-
ing predictions is accurate, up-to-date, and reliable. Having reliable data is especially
important for making predictions, as prediction accuracy is determined by the data
quality used.

•	 As a future research direction, it might be useful to examine more sophisticated
methods of assessing misclassified errors in SFP models. A cost-sensitive learning
framework that dynamically adapts to different project contexts or the integration
of more comprehensive economics-based metrics may provide deeper insight into
the true cost–benefit ratio. Furthermore, expanding the Return on Investment (ROI)
analysis to include long-term impacts such as maintenance savings and operational
efficiency could provide a more holistic view of the economic value of SFP imple-
mentations.

•	 Future research directions could include expanding the study of comprehensive fea-
ture sets and advanced classification techniques, such as multi-label classification,
which can significantly improve SFP models’ effectiveness. Researchers could explore
integrating more diverse and domain-specific metrics tailored to different software
projects. Additionally, further development of multi-label classification techniques
to better manage overlapping defect categories and interdependencies between soft-
ware components could lead to more precise and actionable predictions.

•	 Investigating how SFP models can better adapt to software changes over time by
using incremental learning and transfer learning techniques could be of substantial
benefit. Incremental learning allows models to be updated as relevant data becomes
available. This ensures that predictions remain accurate even as the software evolves.
Transfer learning, on the other hand, allows models to leverage knowledge from
previous projects or related areas, reducing the need for extensive retraining when
applied to upcoming or evolving software systems. By focusing on these adaptive
techniques, future research could improve the flexibility and longevity of SFP mod-
els, making them more resilient to software development dynamics and more appli-
cable to a wider range of projects.

•	 Research into integrating SFP models into DevOps workflows could focus on using
automated triggers for retraining based on software changes. By examining how
these triggers can initiate real-time model updates in response to evolving software
conditions, future studies can improve SFP models’ adaptability and relevance. This
integration would support continuous defect detection and improvement within
DevOps pipelines, ensuring more reliable and resilient software systems.

Page 27 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

•	 The labels in the collected dataset must be accurate and well-defined to ensure the
model is well-equipped to predict the classes accurately. If the labels are inaccurate,
the model may not be able to discern the features associated with each class properly.
This can lead to misclassification errors, and the model’s predictions may not accu-
rately reflect the true classes of the data.

•	 Due to the extensive setup required to perform the prediction, SFP is relatively
underutilized in the industry. A dedicated SFP tool can aggregate predictions and
provide valuable knowledge of software faults. The tool should enable the user to
perform the necessary steps for fault prediction through an interactive user interface.

•	 Investigate methods for adapting software fault prediction models dynamically as the
software evolves. Software systems are subject to changes over time, and prediction
models should be able to adjust their predictions based on these changes. This could
involve techniques for incremental learning or transfer learning to update models
with new data.

•	 Develop techniques to estimate uncertainty and confidence levels in the predictions
provided by SFP models. This is particularly important when making critical deci-
sions based on predictions. Users need to understand the reliability of the model’s
output to avoid making incorrect decisions.

•	 Consider incorporating temporal aspects into SFP models. Software faults may
exhibit patterns over time, and analyzing these patterns could lead to more accurate
predictions. Time series analysis techniques could capture and leverage this temporal
information.

•	 Explore ensemble methods and model combination techniques to improve the
robustness and accuracy of SFP models. Assembling predictions from diverse models
can mitigate the limitations of individual models and provide more reliable predic-
tions.

•	 Focus on developing interpretable and explainable AI techniques for SFP. Model pre-
dictions can enhance trust and understanding among stakeholders, such as develop-
ers and managers, and enable better decision-making.

•	 Investigate the generalization of fault prediction models across different projects and
domains. Creating models that can be transferred from one context to another with-
out significant loss of accuracy could save time and effort in developing new models
for every project.

•	 Design prediction frameworks that incorporate human expertise and feedback. Col-
laboration between machine learning models and domain experts can enhance the
quality of predictions and assist in fine-tuning models based on real-world insights.

•	 Extend the research to include cost-sensitive learning techniques. Misclassifying
faults can have different costs based on severity or impact. Models considering these
costs during learning could lead to more effective predictions.

•	 Integrate SFP models into DevOps practices to enable continuous monitoring and
improvement. This could involve automated triggers for retraining models based on
changing software and operational conditions.

•	 Establish benchmarks and standardized evaluation metrics for comparing different
SFP models. This would enable researchers and practitioners to objectively assess the
performance of different techniques and models.

Page 28 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

•	 Extend fault prediction beyond identification and classification to include proactive
measures such as predictive maintenance and proactive fault remediation. This could
help in preventing faults from occurring in the first place.

•	 Develop tools and plugins that facilitate the integration of software fault predic-
tion into the software development process. These tools could streamline the steps
involved in prediction and provide actionable insights to developers.

•	 Investigate real-time fault prediction and monitoring techniques that can quickly
identify emerging faults and anomalies in the software system. This is especially rel-
evant for applications that require high availability and reliability.

•	 Involve end-users and stakeholders in the evaluation of fault prediction models.
Understand how predictions impact their decision-making and gather feedback on
the usefulness and effectiveness of the predictions.

Conclusions
This paper reviewed previous publications on the SFP problem to assess current research
and propose suggestions for further research. Our evaluation focused on papers that
used meta-heuristic algorithms with particular attention to parameters, strategies, and
datasets. Review results indicate that public datasets have significantly increased, and the
number of meta-heuristic algorithms used has increased slightly since 2015. Researchers
working in the SFP field are encouraged to develop better fault predictors using public
datasets and meta-heuristic algorithms. This trend underscores the growing recognition
of the importance of SFP in ensuring software quality and reliability. Our findings sug-
gest that while there has been progress in applying meta-heuristic algorithms to SFP,
there is still ample room for improvement and innovation.

Researchers are encouraged to develop more sophisticated fault predictors by lever-
aging the wealth of available public datasets and refining existing meta-heuristic algo-
rithms. The integration of these algorithms with advanced machine learning techniques
and hybrid approaches could yield significant improvements in prediction accuracy and
computational efficiency. Moreover, there is a noticeable gap in the literature concerning
the practical applications of SFP. Most studies focus on theoretical and experimental val-
idations, with limited emphasis on real-world implementations. Future research should
aim to bridge this gapby exploring the practical challenges and solutions associated with
deploying SFP models in industry settings. This includes addressing issues such as scal-
ability, adaptability to evolving software environments, and the integration of SFP tools
into existing software development workflows.

Abbreviations
ACO	� Ant colony optimization
ARNN	� Adaptive recurrent neural network
ACOFS	� Ant colony optimization feature selection
ANN	� Artificial neural network
ABC	� Artificial bee colony
ALO	� Ant-lion optimizer
BP	� Backpropagation algorithm
BA	� Bat-based search algorithm
BBBC	� Big-bang big-crunch
BCE	� Binary cross-entropy
BBO	� Biogeography-based optimizer
BH	� Black hole
BWO	� Black widow optimization

Page 29 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

CSS	� Charged system search
CI	� Choquet integral
CFS	� Co-relation-based feature selection
CBO	� Coupling between objects
CS	� Cuckoo search
DT	� Decision tree
DNN	� Deep neural network
DE	� Differential evolution
DEFS	� Differential evolution feature selection
EP	� Evolutionary programming
ES	� Evolutionary strategy
EMA	� Exchange market algorithm
FCNN	� Faster convolutional neural networks
FA	� Firefly algorithm
GbSA	� Galaxy-based search algorithm
GA	� Genetic algorithm
GPGSA	� Genetic programming gravitational search algorithm
HS	� Harmony search
HHO	� Harris hawks optimization
IoT	� Internet of Things
JA	� Jaya algorithm
KNN	� K-nearest neighbors
LCA	� League championship algorithm
LICS	� Levy-flight integrated cuckoo search optimization
LOC	� Lines of code
LOA	� Lion optimization algorithm
LR	� Logistic regression
MI	� Maintainability index
MFA	� Memetic firefly algorithm
MASP	� Model for assisted software process
MFO	� Moth-flame optimization
MLP	� Multilayer perceptron
MVO	� Multi-verse optimization
NRMSE	� Normalized root mean square error
NB	� Naive bayes
OO	� Object-oriented
PCA	� Principal component analysis
PSO	� Particle swarm optimization
RF	� Random forest algorithm
QPSO	� Quantum theory-particle swarm optimization
ROI	� Return on investment
SA	� Simulated annealing
SFLA	� Shuffled frog leaping algorithm
SVM	� Support vector machine
SFP	� Software fault prediction
SSA	� Sparrow search algorithm
SLR	� Systematic literature review
TLBO	� Teaching-learning-based optimization
WOA	� Whale optimization algorithm

Acknowledgements
Not applicable.

Authors’ contributions
ZD contributed to writing the draft, editing the manuscript, and conceptualizing the research. HW contributed to super-
vising the research, formatting the manuscript, and read and approved the final manuscript.

Funding
No funding.

Availability of data and materials
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Declarations

Competing interests
The authors declare that they have no competing interests.

Received: 23 July 2024 Accepted: 16 September 2024

Page 30 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

References
	 1.	 Hayyolalam V et al (2022) Single-objective service composition methods in cloud manufacturing systems: recent

techniques, classification, and future trends. Concurrency and Computation: Practice and Experience 34(5):e6698
	 2.	 Pourghebleh, B., et al., A roadmap towards energy‐efficient data fusion methods in the Internet of Things. Concurrency

and Computation: Practice and Experience, 2022: p. e6959.
	 3.	 Sakhnini J et al (2021) Security aspects of Internet of Things aided smart grids: a bibliometric survey. Internet of

things 14:100111
	 4.	 Manchala P, Bisi M (2022) Diversity based imbalance learning approach for software fault prediction using

machine learning models. Appl Soft Comput 124:109069
	 5.	 Rathi, S.C., et al., Empirical evaluation of the performance of data sampling and feature selection techniques for soft-

ware fault prediction. Expert Systems with Applications, 2023: p. 119806.
	 6.	 Thirukonda Krishnamoorthy Sivakumar Babu, R.B., S. Sivasubramanian, and S. Natarajan, MLPNN‐RF: software fault

prediction based on robust weight based optimization and Jacobian adaptive neural network. Concurrency and Com-
putation: Practice and Experience, 2022. 34(21): p. e7122.

	 7.	 Shafiq, M., et al., Scientific programming using optimized machine learning techniques for software fault prediction to
improve software quality. IET Software, 2023.

	 8.	 Chatterjee S, Roy A (2014) Web software fault prediction under fuzzy environment using MODULO-M multivari-
ate overlapping fuzzy clustering algorithm and newly proposed revised prediction algorithm. Appl Soft Comput
22:372–396

	 9.	 Chen G et al (2015) A lightweight software fault-tolerance system in the cloud environment. Concurrency and
Computation: Practice and Experience 27(12):2982–2998

	 10.	 Jin C, Jin S-W (2015) Prediction approach of software fault-proneness based on hybrid artificial neural network
and quantum particle swarm optimization. Appl Soft Comput 35:717–725

	 11.	 García Nieto PJ et al (2015) Hybrid PSO–SVM-based method for forecasting of the remaining useful life for aircraft
engines and evaluation of its reliability. Reliab Eng Syst Saf 138:219–231

	 12.	 Arar ÖF, Ayan K (2016) Deriving thresholds of software metrics to predict faults on open source software: repli-
cated case studies. Expert Syst Appl 61:106–121

	 13.	 Hryszko J, Madeyski L (2017) Assessment of the software defect prediction cost effectiveness in an industrial
project. Software Engineering: Challenges and Solutions. Springer, pp 77–90

	 14.	 Singh, P., et al., Fuzzy rule-based approach for software fault prediction. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2016.

	 15.	 Erturk E, Sezer EA (2015) A comparison of some soft computing methods for software fault prediction. Expert Syst
Appl 42(4):1872–1879

	 16.	 Kumar, L., S. Misra, and S.K. Rath, An empirical analysis of the effectiveness of software metrics and fault prediction
model for identifying faulty classes. Computer Standards & Interfaces, 2017.

	 17.	 Anju A, Judith J (2024) Hybrid feature selection method for predicting software defect. J Eng Appl Sci 71(1):124
	 18.	 Deng P et al (2015) An integrated framework of formal methods for interaction behaviors among industrial equip-

ments. Microprocess Microsyst 39(8):1296–1304
	 19.	 Chen Y et al (2017) Application of fault tree analysis and fuzzy neural networks to fault diagnosis in the Internet of

Things (IoT) for Aquaculture. Sensors 17(1):153
	 20.	 Arora I, Tetarwal V, Saha A (2015) Open issues in software defect prediction. Procedia Computer Science

46:906–912
	 21.	 Liu F, Zhou Z (2014) An improved QPSO algorithm and its application in the high-dimensional complex problems.

Chemom Intell Lab Syst 132:82–90
	 22.	 Czibula G, Marian Z, Czibula IG (2014) Software defect prediction using relational association rule mining. Inf Sci

264:260–278
	 23.	 Wu, Y. and R. Yang. Software reliability modeling based on SVM and virtual sample. in Reliability and Maintainability

Symposium (RAMS), 2013 Proceedings - Annual. 2013.
	 24.	 Catal C, Diri B (2009) A systematic review of software fault prediction studies. Expert Syst Appl 36(4):7346–7354
	 25.	 Mauša, G. and T.G. Grbac, Co-evolutionary multi-population genetic programming for classification in software defect

prediction: an empirical case study. Applied Soft Computing, 2017.
	 26.	 Kaur, I., G.S. Narula, and V. Jain, Differential analysis of token metric and object oriented metrics for fault prediction.

International Journal of Information Technology, 2017: p. 1–8.
	 27.	 Wu, X. and H. Zhu, Formalization and analysis of the REST architecture from the process algebra perspective. Future

Gener. Comput. Syst., 2016. 56(C): p. 153–168.
	 28.	 Denaro, G., et al., Deriving models of software fault-proneness, in Proceedings of the 14th international conference on

Software engineering and knowledge engineering. 2002, ACM: Ischia, Italy. p. 361–368.
	 29.	 Baier, C. and J.-P. Katoen, Principles of model checking (representation and mind series). 2008: The MIT Press. 975.
	 30.	 Bowes, D., T. Hall, and J. Petrić, Software defect prediction: do different classifiers find the same defects? Software Qual-

ity Journal, 2017: p. 1–28.
	 31.	 Ali A, Gravino C (2021) An empirical comparison of validation methods for software prediction models. Journal of

Software: Evolution and Process 33(8):e2367
	 32.	 Pourghebleh B, Navimipour NJ (2017) Data aggregation mechanisms in the Internet of things: a systematic review

of the literature and recommendations for future research. J Netw Comput Appl 97:23–34
	 33.	 Catal C, Sevim U, Diri B (2011) Practical development of an Eclipse-based software fault prediction tool using

Naive Bayes algorithm. Expert Syst Appl 38(3):2347–2353
	 34.	 Hajimirzaei B, Navimipour NJ (2019) Intrusion detection for cloud computing using neural networks and artificial

bee colony optimization algorithm. ICT Express 5(1):56–59
	 35.	 Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) GSA: a gravitational search algorithm. Inf Sci 179(13):2232–2248
	 36.	 Hassanzadeh, H.R. and M. Rouhani. A multi-objective gravitational search algorithm. in 2010 2nd international confer-

ence on computational intelligence, communication systems and networks. 2010. IEEE.

Page 31 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

	 37.	 Shah-Hosseini H (2011) Principal components analysis by the galaxy-based search algorithm: a novel metaheuris-
tic for continuous optimisation. Int J Comput Sci Eng 6(1–2):132–140

	 38.	 Novák P et al (2013) RepeatExplorer: a galaxy-based web server for genome-wide characterization of eukaryotic
repetitive elements from next-generation sequence reads. Bioinformatics 29(6):792–793

	 39.	 Mirjalili S, Mirjalili SM, Hatamlou A (2016) Multi-verse optimizer: a nature-inspired algorithm for global optimiza-
tion. Neural Comput Appl 27(2):495–513

	 40.	 Tandu, C., et al. A two-fold multi-objective multi-verse optimization-based time series forecasting. in Proceedings of the
Seventh International Conference on Mathematics and Computing. 2022. Springer.

	 41.	 Kirkpatrick, S., C.D. Gelatt Jr, and M.P. Vecchi, Optimization by simulated annealing. science, 1983. 220(4598): p.
671–680.

	 42.	 Friesz TL et al (1993) The multiobjective equilibrium network design problem revisited: a simulated annealing
approach. Eur J Oper Res 65(1):44–57

	 43.	 Erol OK, Eksin I (2006) A new optimization method: big bang–big crunch. Adv Eng Softw 37(2):106–111
	 44.	 Singh R, Verma H (2012) Multi-objective big bang–big crunch optimization algorithm for recursive digital filter

design. Int J Eng Innov Res (IJEIR) 1(2):194–200
	 45.	 Kaveh A, Talatahari S (2010) A novel heuristic optimization method: charged system search. Acta Mech

213(3):267–289
	 46.	 Kaveh A, Laknejadi K (2011) A novel hybrid charge system search and particle swarm optimization method for

multi-objective optimization. Expert Syst Appl 38(12):15475–15488
	 47.	 Kumar S, Datta D, Singh SK (2015) Black hole algorithm and its applications. Computational intelligence applica-

tions in modeling and control. Springer, pp 147–170
	 48.	 Wu, C., et al., AMOBH: adaptive multiobjective black hole algorithm. Computational intelligence and neuroscience,

2017. 2017.
	 49.	 Geem, Z.W., J.H. Kim, and G.V. Loganathan, A new heuristic optimization algorithm: harmony search. simulation,

2001. 76(2): p. 60–68.
	 50.	 Sivasubramani S, Swarup K (2011) Multi-objective harmony search algorithm for optimal power flow problem. Int

J Electr Power Energy Syst 33(3):745–752
	 51.	 Rao R (2016) Jaya: a simple and new optimization algorithm for solving constrained and unconstrained optimiza-

tion problems. Int J Ind Eng Comput 7(1):19–34
	 52.	 Rao RV et al (2016) A new multi-objective Jaya algorithm for optimization of modern machining processes.

Advances in Production Engineering & Management 11(4):271
	 53.	 Ghorbani N, Babaei E (2014) Exchange market algorithm. Appl Soft Comput 19:177–187
	 54.	 Ghorbani N, Babaei E, Sadikoglu F (2017) Exchange market algorithm for multi-objective economic emission

dispatch and reliability. Procedia computer science 120:633–640
	 55.	 Rao RV, Savsani VJ, Vakharia D (2011) Teaching–learning-based optimization: a novel method for constrained

mechanical design optimization problems. Comput Aided Des 43(3):303–315
	 56.	 Zou F et al (2013) Multi-objective optimization using teaching-learning-based optimization algorithm. Eng Appl

Artif Intell 26(4):1291–1300
	 57.	 Kashan, A.H. League championship algorithm: a new algorithm for numerical function optimization. in 2009 interna-

tional conference of soft computing and pattern recognition. 2009. IEEE.
	 58.	 Subbaraj S, Thiagarajan R, Rengaraj M (2020) Multi-objective league championship algorithm for real-time task

scheduling. Neural Comput Appl 32(9):5093–5104
	 59.	 Dorigo M, Birattari M, Stutzle T (2006) Ant colony optimization. IEEE Comput Intell Mag 1(4):28–39
	 60.	 Gao Y et al (2013) A multi-objective ant colony system algorithm for virtual machine placement in cloud comput-

ing. J Comput Syst Sci 79(8):1230–1242
	 61.	 Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng Softw 95:51–67
	 62.	 Aziz MAE, Ewees AA, Hassanien AE (2018) Multi-objective whale optimization algorithm for content-based image

retrieval. Multimedia tools and applications 77(19):26135–26172
	 63.	 Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw 83:80–98
	 64.	 Mirjalili S, Jangir P, Saremi S (2017) Multi-objective ant lion optimizer: a multi-objective optimization algorithm for

solving engineering problems. Appl Intell 46(1):79–95
	 65.	 Yang X-S (2010) Firefly algorithm, stochastic test functions and design optimisation. International journal of bio-

inspired computation 2(2):78–84
	 66.	 Yang X-S (2013) Multiobjective firefly algorithm for continuous optimization. Engineering with Computers

29(2):175–184
	 67.	 Karaboga D, Basturk B (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee

colony (ABC) algorithm. J Global Optim 39(3):459–471
	 68.	 Akbari R et al (2012) A multi-objective artificial bee colony algorithm. Swarm Evol Comput 2:39–52
	 69.	 Kennedy, J. and R. Eberhart. Particle swarm optimization. in Proceedings of ICNN’95-international conference on neural

networks. 1995. IEEE.
	 70.	 Coello, C.C. and M.S. Lechuga. MOPSO: a proposal for multiple objective particle swarm optimization. in Proceedings of

the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600). 2002. IEEE.
	 71.	 Yang, X.-S. and S. Deb. Cuckoo search via Lévy flights. in 2009 World congress on nature & biologically inspired comput-

ing (NaBIC). 2009. Ieee.
	 72.	 Yang X-S, Deb S (2013) Multiobjective cuckoo search for design optimization. Comput Oper Res

40(6):1616–1624
	 73.	 Heidari AA et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst

97:849–872
	 74.	 Du, P., et al., A novel hybrid model based on multi-objective Harris hawks optimization algorithm for daily PM2. 5

and PM10 forecasting. Applied Soft Computing, 2020. 96: p. 106620.

Page 32 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

	 75.	 Hayyolalam V, Kazem AAP (2020) Black widow optimization algorithm: a novel meta-heuristic approach for
solving engineering optimization problems. Eng Appl Artif Intell 87:103249

	 76.	 Rahbari, M., et al., A risk-based green location-inventory-routing problem for hazardous materials: NSGA II, MOSA,
and multi-objective black widow optimization. Environment, Development and Sustainability, 2021: p. 1–37.

	 77.	 Koza JR, Poli R (2005) Genetic programming. Search methodologies. Springer, pp 127–164
	 78.	 Zhao H (2007) A multi-objective genetic programming approach to developing pareto optimal decision trees.

Decis Support Syst 43(3):809–826
	 79.	 Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85
	 80.	 Murata T, Ishibuchi H, MOGA: multi-objective genetic algorithms. in IEEE international conference on evolu-

tionary computation. (1995) IEEE Piscataway. NJ, USA
	 81.	 Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713
	 82.	 Jamuna K, Swarup K (2012) Multi-objective biogeography based optimization for optimal PMU placement.

Appl Soft Comput 12(5):1503–1510
	 83.	 Fleetwood, K. An introduction to differential evolution. in Proceedings of Mathematics and Statistics of Complex

Systems (MASCOS) One Day Symposium, 26th November, Brisbane, Australia. 2004.
	 84.	 Xue, F., A.C. Sanderson, and R.J. Graves. Pareto-based multi-objective differential evolution. in The 2003 Congress

on Evolutionary Computation, 2003. CEC’03. 2003. IEEE.
	 85.	 Alavi M, Henderson JC (1981) An evolutionary strategy for implementing a decision support system. Manage

Sci 27(11):1309–1323
	 86.	 Binh, T.T. and U. Korn. MOBES: a multiobjective evolution strategy for constrained optimization problems. in The

third international conference on genetic algorithms (Mendel 97). 1997.
	 87.	 Zhang J-H, Xu X-H (1999) An efficient evolutionary programming algorithm. Comput Oper Res 26(7):645–663
	 88.	 Meza JLC, Yildirim MB, Masud AS (2009) A multiobjective evolutionary programming algorithm and its applica-

tions to power generation expansion planning. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans 39(5):1086–1096

	 89.	 Eusuff M, Lansey K, Pasha F (2006) Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete
optimization. Eng Optim 38(2):129–154

	 90.	 Arshi SS, Zolfaghari A, Mirvakili S (2014) A multi-objective shuffled frog leaping algorithm for in-core fuel
management optimization. Comput Phys Commun 185(10):2622–2628

	 91.	 Khatri, Y. and S.K. Singh, An effective software cross-project fault prediction model for quality improvement. Science
of Computer Programming, 2023: p. 102918.

	 92.	 Gill GK, Kemerer CF (1991) Cyclomatic complexity density and software maintenance productivity. IEEE Trans
Softw Eng 17(12):1284–1288

	 93.	 Khoshgoftaar TM, Allen EB (1998) Classification of fault-prone software modules: prior probabilities, costs, and
model evaluation. Empir Softw Eng 3(3):275–298

	 94.	 Gondra I (2008) Applying machine learning to software fault-proneness prediction. J Syst Softw 81(2):186–195
	 95.	 Khoshgoftaar TM, Allen EB (1999) A comparative study of ordering and classification of fault-prone software

modules. Empir Softw Eng 4(2):159–186
	 96.	 Khoshgoftaar TM, Munson JC (1990) Predicting software development errors using software complexity met-

rics. IEEE J Sel Areas Commun 8(2):253–261
	 97.	 Khoshgoftaar TM, Lanning DL, Pandya AS (2006) A comparative study of pattern recognition techniques for

quality evaluation of telecommunications software. IEEE J Sel A Commun 12(2):279–291
	 98.	 Lehman, M.M., D.E. Perry, and J.F. Ramil. Implications of evolution metrics on software maintenance. in Proceed-

ings. International Conference on Software Maintenance (Cat. No. 98CB36272). 1998.
	 99.	 Li HF, Cheung WK (1987) An empirical study of software metrics. IEEE Trans Softw Eng 13(6):697–708
	100.	 Jolliffe, I., Principal component analysis. Wiley StatsRef: Statistics Reference Online, 2002.
	101.	 Neumann DE (2002) An enhanced neural network technique for software risk analysis. IEEE Trans Software Eng

28(9):904–912
	102.	 Xing, F., P. Guo, and M.R. Lyu, A novel method for early software quality prediction based on support vector

machine, in Proceedings of the 16th IEEE International Symposium on Software Reliability Engineering. 2005, IEEE
Computer Society. p. 213–222.

	103.	 Catal, C. and B. Diri, Software defect prediction using artificial immune recognition system, in Proceedings of the
25th conference on IASTED International Multi-Conference: Software Engineering. 2007, ACTA Press: Innsbruck,
Austria. p. 285–290.

	104.	 Vandecruys O et al (2008) Mining software repositories for comprehensible software fault prediction models. J
Syst Softw 81(5):823–839

	105.	 Dejaeger K, Verbraken T, Baesens B (2013) Toward comprehensible software fault prediction models using
bayesian network classifiers. IEEE Trans Software Eng 39(2):237–257

	106.	 Rajaganapathy C, Subramani A (2015) A comparative study of different software fault prediction and classifica-
tion techniques. Res J Appl Sci Eng Technol 10(7):831–840

	107.	 De Carvalho AB, Pozo A, Vergilio SR (2010) A symbolic fault-prediction model based on multiobjective particle
swarm optimization. J Syst Softw 83(5):868–882

	108.	 Kwok, J., B.-L. Lu, and L. Zhang, Advances in neural networks--ISNN 2010: 7th International Symposium on Neural
Networks, ISNN 2010, Shanghai, China, June 6–9, 2010, Proceedings. Vol. 6063. 2010: Springer.

	109.	 Malhotra R, Kaur A, Singh Y (2010) Empirical validation of object-oriented metrics for predicting fault proneness
at different severity levels using support vector machines. International Journal of System Assurance Engineering
and Management 1(3):269–281

	110.	 Monden, A., et al. A heuristic rule reduction approach to software fault-proneness prediction. in 2012 19th Asia-Pacific
Software Engineering Conference. 2012.

	111.	 Abdi Y, Parsa S, Seyfari Y (2015) A hybrid one-class rule learning approach based on swarm intelligence for soft-
ware fault prediction. Innov Syst Softw Eng 11(4):289–301

Page 33 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189 	

	112.	 Pourghebleh, B., et al., The importance of nature-inspired meta-heuristic algorithms for solving virtual machine consoli-
dation problem in cloud environments. Cluster Computing, 2021: p. 1–24.

	113.	 Pourghebleh B, Hayyolalam V, Anvigh AA (2020) Service discovery in the Internet of Things: review of current
trends and research challenges. Wireless Netw 26(7):5371–5391

	114.	 Kitchenham B et al (2009) Systematic literature reviews in software engineering–a systematic literature review. Inf
Softw Technol 51(1):7–15

	115.	 Comert SE, Yazgan HR (2023) A new approach based on hybrid ant colony optimization-artificial bee colony
algorithm for multi-objective electric vehicle routing problems. Eng Appl Artif Intell 123:106375

	116.	 Farshidpour S, Keynia F (2012) Using artificial bee colony algorithm for MLP training on software defect prediction.
Oriental Journal of Computer Science & Technology 5(2):231–239

	117.	 Huang L, Ai J (2015) Automatic software fault localization based on artificial bee colony. J Syst Eng Electron
26(6):1325–1332

	118.	 Hussein MK, Mousa MH (2020) Efficient task offloading for iot-based applications in fog computing using ant
colony optimization. IEEE Access 8:37191–37201

	119.	 Kumar K, Gyani DJ, Narsimha G (2018) Software defect prediction using ant colony optimization. Int J Appl Eng
Res 13(19):14291–14297

	120.	 Manivasagam, G. and R. Gunasundari, An optimized feature selection using fuzzy mutual information based ant
colony optimization for software defect prediction. International Journal of Engineering & Technology, 2018. 7(1.1): p.
456–460.

	121.	 Singh P, Verma S (2020) ACO based comprehensive model for software fault prediction. International Journal of
Knowledge-based and Intelligent Engineering Systems 24(1):63–71

	122.	 Azar D, Vybihal J (2011) An ant colony optimization algorithm to improve software quality prediction models: case
of class stability. Inf Softw Technol 53(4):388–393

	123.	 Mohanthy, R., V. Naik, and A. Mubeen. Software reliability prediction by using ant colony optimization technique. in
2014 Fourth International Conference on Communication Systems and Network Technologies. 2014. IEEE.

	124.	 Mondal, S., et al. Software fault prediction using wrapper based ant colony optimization algorithm for feature selection.
in 2023 6th International Conference on Information Systems and Computer Networks (ISCON). 2023. IEEE.

	125.	 Wahdan, H.G., S.S. Kassem, and H.M. Abdelsalam. Product modularization using cuckoo search algorithm. in Interna-
tional Conference on Operations Research and Enterprise Systems. 2016. Springer.

	126.	 Song, K., et al., Software defect prediction based on elman neural network and cuckoo search algorithm. Mathematical
Problems in Engineering, 2021. 2021.

	127.	 Cai X et al (2020) An under-sampled software defect prediction method based on hybrid multi-objective cuckoo
search. Concurrency and Computation: Practice and Experience 32(5):e5478

	128.	 Badvath D et al (2022) Prediction of software defects using deep learning with improved cuckoo search algorithm.
Concurrency and Computation: Practice and Experience 34(26):e7305

	129.	 Rath, P.K., et al. CSOFS: feature selection using cuckoo search optimization algorithm for software fault detection. in
2024 International Conference on Emerging Systems and Intelligent Computing (ESIC). 2024. IEEE.

	130.	 Yang, L., et al., An analytical model of page dissemination for efficient big data transmission of C-ITS. IEEE Transactions
on Intelligent Transportation Systems, 2021.

	131.	 Anbu, M. and G. Anandha Mala, Feature selection using firefly algorithm in software defect prediction. Cluster Com-
puting, 2019. 22(5): p. 10925–10934.

	132.	 Yenduri G, Gadekallu TR (2021) Firefly-based maintainability prediction for enhancing quality of software. Internat
J Uncertain Fuzziness Knowledge-Based Systems 29(Suppl 2):211–235

	133.	 Pemmada SK, Nayak J, Naik B (2023) A deep intelligent framework for software risk prediction using improved
firefly optimization. Neural Comput Appl 35(26):19523–19539

	134.	 Karimi, A., M. Irajimoghaddam, and E. Bastami, Feature selection using combination of genetic-whale-ant colony
algorithms for software fault prediction by machine learning. Journal of Electronical & Cyber Defence, 2022. 10(1).

	135.	 Jin, C. and E. Dong. Software defect prediction using fuzzy integral and genetic algorithm. in Software Engineering and
Information Technology: Proceedings of the 2015 International Conference on Software Engineering and Information
Technology (SEIT2015). 2016. World Scientific.

	136.	 Fazel FS (2016) A new method to predict the software fault using improved genetic algorithm. Bull Soc Roy Sci
Liège 85:187–202

	137.	 Nalini, C. and T.M. Krishna. An efficient software defect prediction model using neuro evalution algorithm based on
genetic algorithm. in 2020 Second International Conference on Inventive Research in Computing Applications (ICIRCA).
2020. IEEE.

	138.	 Kaliraj, S. and Y. Reddy, Software fault prediction using an optimised feature selection process based on a genetic algo-
rithm. International Journal on Engineering Applications, 2023. 11(5).

	139.	 Gupta M, Rajnish K, Bhattacharjee V (2024) Software fault prediction with imbalanced datasets using
SMOTE-Tomek sampling technique and Genetic Algorithm models. Multimedia Tools and Applications
83(16):47627–47648

	140.	 Moussa R, Azar D (2017) A PSO-GA approach targeting fault-prone software modules. J Syst Softw 132:41–49
	141.	 Ibrahim, D.R., R. Ghnemat, and A. Hudaib. Software defect prediction using feature selection and random forest algo-

rithm. in 2017 International Conference on New Trends in Computing Sciences (ICTCS). 2017. IEEE.
	142.	 Yang L et al (2021) Software defects prediction based on hybrid particle swarm optimization and sparrow search

algorithm. IEEE Access 9:60865–60879
	143.	 Alsghaier, H. and M. Akour, Software fault prediction using whale algorithm with genetics algorithm. Software: Prac-

tice and Experience, 2021. 51(5): p. 1121–1146.
	144.	 Anju A, Judith J (2023) Adaptive recurrent neural network for software defect prediction with the aid of quantum

theory-particle swarm optimization. Multimedia Tools and Applications 82(11):16257–16278
	145.	 Alsghaier, H. and M. Akour, Software fault prediction using particle swarm algorithm with genetic algorithm and sup-

port vector machine classifier. Software: Practice and Experience, 2020. 50(4): p. 407–427.

Page 34 of 34Dang and Wang ﻿Journal of Engineering and Applied Science (2024) 71:189

	146.	 Goyal S, Bhatia PK (2021) Software fault prediction using lion optimization algorithm. Int J Inf Technol
13(6):2185–2190

	147.	 Tumar I et al (2020) Enhanced binary moth flame optimization as a feature selection algorithm to predict software
fault prediction. IEEE Access 8:8041–8055

	148.	 Anjali, C., J.P.M. Dhas, and J. Singh, Moth flame optimization based FCNN for prediction of bugs in software. Intelligent
Automation & Soft Computing, 2023. 36(2).

	149.	 Wahono RS, Suryana N (2013) Combining particle swarm optimization based feature selection and bagging
technique for software defect prediction. International Journal of Software Engineering and Its Applications
7(5):153–166

	150.	 Malhotra, R., et al. Software defect prediction using binary particle swarm optimization with binary cross entropy as the
fitness function. in Journal of Physics: Conference Series. 2021. IOP Publishing.

	151.	 Hassouneh Y et al (2021) Boosted whale optimization algorithm with natural selection operators for software fault
prediction. IEEE Access 9:14239–14258

	152.	 Halstead, M.H., Elements of software science (operating and programming systems series). 1977: Elsevier Science Inc.
	153.	 McCabe TJ (1976) A complexity measure. IEEE Trans Software Eng 4:308–320

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Leveraging meta-heuristic algorithms for effective software fault prediction: a comprehensive study
	Abstract
	Introduction
	Context
	Problem statement
	Motivation
	Systematic literature review
	Contribution

	Methods
	ABC-based approaches
	ACO-based approaches
	CS-based approaches
	FA-based approaches
	GA-based approaches
	Hybrid approaches
	LOA-based approaches
	MFO-based approaches
	PSO-based approaches
	WOA-based approaches

	Results and discussion
	Individual algorithm analyses
	Hybrid approaches analyses
	Feature reduction techniques in SFP
	Future trends and recommendations in SFP

	Conclusions
	Acknowledgements
	References

