
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zhang
Journal of Engineering and Applied Science (2024) 71:175
https://doi.org/10.1186/s44147-024-00512-9

Journal of Engineering
and Applied Science

Optimizing scientific workflow scheduling
in cloud computing: a multi-level approach
using whale optimization algorithm
Xiaowen Zhang1*

Abstract

Cloud computing has evolved into an indispensable tool for facilitating scientific
research due to its ability to efficiently distribute and process workloads in a virtual
environment. Scientific tasks that involve complicated task dependencies and user-
defined constraints related to quality of service (QoS) and time constraints require
the efficient use of cloud resources. Planning these scientific workflow tasks represents
an NP-complete problem, prompting researchers to explore various solutions, includ-
ing conventional planners and evolutionary optimization algorithms. In this study, we
present a novel, multistage algorithm specifically designed to schedule scientific work-
flows in cloud computing contexts. This approach addresses the challenges of effi-
ciently mapping complex workflows onto distributed cloud resources while consider-
ing factors like resource heterogeneity, dynamic workloads, and stringent performance
requirements. The algorithm uses the whale optimization algorithm (WOA) with a two-
phase approach to shorten execution time, minimize financial costs, and effectively
maintain load balancing.

Keywords: Cloud computing, Workflow scheduling, QoS, Whale optimization
algorithm

Introduction
Cloud computing has emerged as a rapidly expanding area of distributed computing,
providing scalable services over the Internet through hardware and software virtualiza-
tion. This business model allows customers to access and purchase services under ser-
vice-level agreements (SLAs) and pay for what they use, similar to conventional utilities
[1]. The main strengths of cloud computing lie in its adaptability and flexibility, enabling
individuals to access resources and services customized to their requirements remotely
[2]. Cloud providers typically offer two resource provisioning plans for different user
needs [3]. The first plan is the on-demand plan, where users request resources whenever
needed, accommodating fluctuating and unpredictable inquiries. The second plan is the
long-term preservation plan, where users reserve resources in advance, providing pre-
dictability and stability for their resource allocation. Leading cloud providers like Ama-
zon EC2 and GoGrid offer services with both on-demand and reservation plans [4, 5].

*Correspondence:
qtianmumu@163.com

1 School of Computer
and Information Engineering,
Henan University of Economics
and Law, Zhengzhou 450000,
China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-024-00512-9&domain=pdf

Page 2 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

Heterogeneous distributed computing environments consist of various computers,
machines, and processors interconnected by high-speed networks [6]. These systems
can collectively utilize their resource capacities to tackle complicated issues. Previously,
scientific workloads were often executed on distributed grid computing, also known
as e-science [7]. However, as cloud computing has evolved, it has been increasingly
adopted for e-business purposes and for addressing e-science challenges. Cloud comput-
ing’s widespread availability, cost-effectiveness, and flexibility, enabled by virtualization
technology, have garnered significant interest from scientific and research communities.
Scientific workflows, which are mathematical parallelizable processes, are implemented
in various actual engineering tasks like FFT, GJ elimination, and LU decomposition.
These workflows are commonly modeled as directed acyclic graphs (DAGs), with nodes
reflecting application tasks and directed edges connecting data-dependent tasks [8]. The
shapes and resource demands of such parallelizable applications vary widely. As users
may not be able to expand existing infrastructure, distributed systems like cloud com-
puting offer scalability, especially with the elasticity attribute, enabling the provision of
services according to users’ varying resource demands [9]. In a cloud environment, mul-
tiple virtual machines (VMs) can execute independent tasks simultaneously. Turnaround
time represents one of the most critical QoS indicators, measuring the overall elapsed
time between the initiation of the first task in an application and the completion of the
last. A user’s experience is directly affected by this time duration, known as makespan.
Therefore, minimizing makespan is a significant objective function in this research [10].

The successful execution of scientific workflows relies on efficiently utilizing avail-
able resources. To achieve this, researchers focus on developing effective strategies to
assign workflow tasks to computing resources, known as workflow scheduling. Work-
flow scheduling involves coordinating the execution of interdependent tasks, taking into
account resource priority constraints [11]. Due to the NP completeness of this prob-
lem, researchers have focused on finding near-optimal solutions. To ensure workflows
are well-defined and handled for future execution, an effective workflow management
system (WMS) is essential. Figure 1 illustrates that a workflow scheduler (bridge) is
required in a cloud environment to organize workflow tasks and allocate them to tar-
geted resources. This workflow scheduler is crucial for efficient resource distribution
and management of scientific workflows within cloud computing environments.

Fig. 1 Scientific workflow execution model in cloud computing

Page 3 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

The task scheduling process presents a significant issue within cloud computing, espe-
cially for complex and diverse scientific workflows. Scientific workflows can be sensitive
to large data volumes, complex processing, and multiple criteria simultaneously [12].
This complexity has motivated researchers to come up with strategies that optimize the
handling of scientific workflows, with a particular focus on finding a balance between
two conflicting QoS variables: cost and time [13]. QoS is a measure of user satisfaction
with a given service and is often evaluated based on criteria like reliability, computa-
tional cost, and computational time. Balancing the conflicting goals of minimizing pro-
cessing time and reducing costs can be challenging. Faster processing often requires
more powerful and expensive resources, while cheaper resources may result in slower
completion times [14]. To address this contradiction, it is necessary to shorten process-
ing time while reducing costs, all while adhering to deadlines and budgets. This strat-
egy seeks to maintain an ideal balance between meeting performance requirements and
optimizing resource utilization.

This study aims to optimize scientific workflow scheduling performance within cloud
computing environments. This is achieved by focusing on three key objectives: enhanc-
ing execution time, reducing financial costs, and maintaining effective load balancing
across resources. By utilizing the whale optimization algorithm (WOA) in a multi-level
approach, the proposed method seeks to minimize the makespan, ensuring that work-
flows are completed in the shortest possible time. Additionally, the algorithm aims to
minimize the monetary costs associated with resource utilization by optimizing the
task distribution among VMs. Finally, the study emphasizes maintaining load balancing,
ensuring that the computational load is equally dispersed across all available resources
to prevent bottlenecks and enhance overall system performance.

Related work
This section reviews significant contributions to scientific workflow scheduling in cloud-
based systems, highlighting various methodologies and their effectiveness. Table 1 lays
out a detailed comparison of these approaches, highlighting objectives, evaluation meth-
ods, and key findings.

Shi et al. [15] developed a resource allocation and task management framework in
the cloud to handle scientific workflows in an elastic manner. This method is designed
to efficiently execute critical workflow tasks within specified time and budget limita-
tions. The approach encompasses four key phases: task preprocessing, task authoriza-
tion, resource assignment on an elastic basis, and task scheduling. The performance
assessment involves four types of real scientific workflow tasks with varying financial
limitations. Additionally, uncertainties regarding task failures, processing delays, and
estimated runtimes are considered in the assessment. The results demonstrate that in
most scenarios, their mechanism outperforms other alternatives.

Aziza and Krichen [16] have introduced a novel model aimed at optimizing the exe-
cution time of interconnected tasks in the cloud while simultaneously reducing the
workload and fulfilling strict demands and budget constraints. Their approach utilizes
a hybrid process that incorporates a genetic algorithm to effectively model and improve
cloud computing workflow scheduling. The heterogeneous earliest finish time (HEFT)
generates the sample population. Through extensive experiments applied to actual

Page 4 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

Ta
bl

e
1

Re
la

te
d

w
or

k
on

 w
or

kfl
ow

 s
ch

ed
ul

in
g

in
 c

lo
ud

 c
om

pu
tin

g

St
ud

y
M

et
ho

do
lo

gy
Ev

al
ua

tio
n

Fi
nd

in
gs

[1
5]

Ta
sk

 s
ch

ed
ul

in
g

an
d

re
so

ur
ce

 a
llo

ca
tio

n
fra

m
ew

or
k;

 ta
sk

 p
re

-
pr

oc
es

si
ng

, t
as

k
au

th
or

iz
at

io
n,

 e
la

st
ic

 re
so

ur
ce

 a
ss

ig
nm

en
t,

an
d

ta
sk

 s
ch

ed
ul

in
g

ph
as

es

Pe
rf

or
m

an
ce

 w
as

 a
ss

es
se

d
w

ith
 fo

ur
 ty

pe
s

of
 re

al
 s

ci
en

tifi
c

w
or

kfl
ow

 ta
sk

s
un

de
r d

iff
er

en
t fi

na
nc

ia
l c

on
st

ra
in

ts
O

ut
pe

rf
or

m
s

ot
he

r a
lte

rn
at

iv
es

 in
 m

os
t s

ce
na

rio
s;

pe
rf

or
m

an
ce

re

m
ai

ns
 re

la
tiv

el
y

un
aff

ec
te

d
by

 u
nc

er
ta

in
tie

s
in

 ta
sk

 ru
nt

im
e

es
tim

at
io

ns
, V

M
 p

ro
vi

si
on

in
g

de
la

ys
, a

nd
 ta

sk
 fa

ilu
re

s

[1
6]

Th
e

hy
br

id
 m

od
el

 in
co

rp
or

at
es

 a
 g

en
et

ic
 a

lg
or

ith
m

 a
nd

 H
EF

T
he

ur
is

tic
 fo

r w
or

kfl
ow

 s
ch

ed
ul

in
g

Ex
te

ns
iv

e
ex

pe
rim

en
ts

 o
n

re
al

-w
or

ld
 s

ci
en

tifi
c

w
or

kfl
ow

s,
in

te
gr

at
ed

 G
A

-b
as

ed
 m

od
ul

e
in

to
 W

or
kfl

ow
Si

m
 fr

am
ew

or
k

D
em

on
st

ra
te

s
su

pe
rio

r p
er

fo
rm

an
ce

 c
om

pa
re

d
to

 e
xi

st
-

in
g

H
EF

T
an

d
ot

he
r a

pp
ro

ac
he

s,
hi

gh
 e

ffi
ci

en
cy

 in
 w

or
kfl

ow

sc
he

du
lin

g

[1
7]

G
en

et
ic

 a
lg

or
ith

m
s

w
ith

 in
no

va
tiv

e
an

d
m

od
ifi

ed
 g

en
et

ic

op
er

at
or

s
in

cl
ud

e
a

lo
ad

-b
al

an
ci

ng
 ro

ut
in

e
Co

m
pr

eh
en

si
ve

 e
va

lu
at

io
n

w
ith

 a
n

ad
ap

tiv
e

fit
ne

ss
 fu

nc
tio

n
co

ns
id

er
in

g
bo

th
 c

os
t a

nd
 m

ak
es

pa
n,

 c
om

pa
re

d
w

ith
 s

ta
te

-
of

-t
he

-a
rt

 a
lg

or
ith

m
s

Ex
hi

bi
ts

 re
m

ar
ka

bl
e

su
pe

rio
rit

y
ov

er
 o

th
er

 a
pp

ro
ac

he
s,

ac
hi

ev
-

in
g

ta
sk

 s
ch

ed
ul

in
g

w
ith

 th
e

lo
w

es
t m

ak
es

pa
n

an
d

co
st

[1
8]

A
 h

yb
rid

 m
ul

ti-
ob

je
ct

iv
e

op
tim

iz
at

io
n

al
go

rit
hm

 (H
G

SO
A

-
G

O
A

) c
om

bi
ne

s
th

e
se

ag
ul

l o
pt

im
iz

at
io

n
al

go
rit

hm
 (S

O
A

) a
nd

gr

as
sh

op
pe

r o
pt

im
iz

at
io

n
al

go
rit

hm
 (G

O
A

) a
nd

 u
se

s
ch

ao
tic

m

ap
s

fo
r r

an
do

m
 v

al
ue

 g
en

er
at

io
n

Ev
al

ua
te

d
vi

a
C

lo
ud

Si
m

 a
nd

 W
or

kfl
ow

Si
m

 to
ol

s,
co

m
pa

re
d

w
ith

 S
PE

A
2

al
go

rit
hm

 u
si

ng
 in

di
ca

to
rs

 li
ke

 IG
D

 a
nd

 c
ov

er
ag

e
ra

te

O
ut

pe
rf

or
m

s
ot

he
r m

et
ho

ds
, e

vi
de

nc
ed

 b
y

su
pe

rio
r I

G
D

, c
ov

er
-

ag
e

ra
te

, a
nd

 o
th

er
 p

er
fo

rm
an

ce
 in

di
ca

to
rs

[1
9]

Ta
sk

 c
lu

st
er

in
g

an
d

pa
rt

ia
l c

rit
ic

al
 p

at
h

al
go

rit
hm

 in
co

rp
or

at
e

dy
na

m
ic

 v
ol

ta
ge

 a
nd

 fr
eq

ue
nc

y
sc

al
in

g
(D

VF
S)

Si
m

ul
at

io
ns

 o
n

va
rio

us
 s

ci
en

tifi
c

ap
pl

ic
at

io
ns

 (L
IG

O
 in

sp
ira

l
an

al
ys

is
, S

IP
H

T,
 C

yb
er

Sh
ak

e,
 M

on
ta

ge
)

Si
gn

ifi
ca

nt
 re

du
ct

io
ns

 in
 tr

an
sm

is
si

on
 c

os
ts

 a
nd

 e
ne

rg
y

co
ns

um
pt

io
n,

 im
pr

ov
ed

 p
er

fo
rm

an
ce

 in
 s

ci
en

tifi
c

w
or

kfl
ow

ex

ec
ut

io
n

[2
0]

Tw
o-

st
ag

e
ap

pr
oa

ch
 w

ith
 re

lia
bi

lit
y-

aw
ar

e
st

ep
w

is
e

pe
rf

or
-

m
an

ce
-t

o-
po

w
er

 ra
tio

 (P
PR

) o
pt

im
iz

at
io

n
m

et
ho

d
Si

m
ul

at
io

ns
 in

 re
al

-w
or

ld
 a

nd
 s

yn
th

es
iz

ed
 w

or
kfl

ow
 a

pp
lic

a-
tio

ns
A

ch
ie

ve
s

en
ha

nc
ed

 re
lia

bi
lit

y
w

hi
le

 m
ai

nt
ai

ni
ng

 re
du

ce
d

en
er

gy
 c

on
st

ra
in

ts
, o

ut
pe

rf
or

m
s

co
m

pe
tin

g
w

or
kfl

ow
 m

ap
pi

ng

m
et

ho
ds

 in
 te

rm
s

of
 b

ot
h

re
lia

bi
lit

y
an

d
en

er
gy

 e
ffi

ci
en

cy

Page 5 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

scientific tasks, they have demonstrated the superior performance of their developed
approach compared to existing HEFT and other approaches analyzed in their research.
The experiments clearly demonstrate the high efficiency of their approach, making it a
viable approach to cloud workflow planning. To implement their proposed model effec-
tively, they have developed a GA-based module, which has been seamlessly adapted to
the CloudSim-based WorkflowSim framework.

Workflow optimization heavily relies on efficient task scheduling, considered a widely
recognized NP-hard issue. The genetic algorithm has been used in numerous strategies
for cloud task scheduling, but the strategy puts forth by Iranmanesh and Naji [17] stands
out as more efficient than others. This is due to the application of altered genetic opera-
tors and the integration of a load-balancing mechanism. Notably, their method employs
a heuristic solution to generate one primary population chromosome and utilizes a heu-
ristic method to generate the remaining primary population chromosomes. To ensure
a comprehensive evaluation, an adaptive fitness function is employed, taking both cost
and makespan into consideration. By introducing a load-balancing routine, their algo-
rithm maximizes resource efficiency during execution. The results are evaluated against
leading algorithms in this domain to gauge the performance of their algorithm. The find-
ings reveal that the approach exhibits substantial advantages over other approaches,
achieving the most efficient and cost-effective task scheduling.

Mohammadzadeh and Masdari [18] have introduced a mixed multi-objective opti-
mization algorithm named HGSOA-GOA, combining the grasshopper optimization
algorithm (GOA) and seagull optimization algorithm (SOA). The algorithm utilizes
chaotic patterns to generate stochastic values, achieving a balance between exploiting
and exploring, resulting in improved convergence rates. The HGSOA-GOA algorithm
addresses scheduling challenges for scientific workflows in cloud settings, incorporating
multiple factors like throughput, energy, cost, and makespan. It aims to optimize these
objectives simultaneously, enabling better decision-making for task assignments in a
multi-cloud scenario. In this approach, Pareto Solutions are chosen using the knee-point
strategy, which helps identify an optimal compromise solution. This selected solution
is then used to assign scientific workflow tasks in multi-cloud environments. To evalu-
ate the performance of HGSOA-GOA, comprehensive analyses are performed via the
CloudSim and WorkflowSim simulators, and the outcomes are evaluated against those
obtained from the SPEA2 model. The findings demonstrate that the HGSOA-GOA
algorithm outperforms alternative methods, as evidenced by indicators including IGD
(inverted generational distance), coverage rate, and others.

Choudhary et al. [19] have implemented a task clustering and partial critical path algo-
rithm to enhance the efficiency of scientific workflow execution. This algorithm groups
fine-grained tasks into jobs and assigns sub-deadlines recursively to tasks situated on the
partial critical path. This approach helps optimize the workflow and improves the over-
all performance. Additionally, they address the energy efficiency aspect by incorporating
the dynamic voltage and frequency scaling (DVFS) method. This procedure constantly
adjusts the voltage and frequency of computing nodes’ processors based on workload,
allowing for energy-saving opportunities during execution. To validate their proposed
framework, simulations are performed on various scientific applications, includ-
ing LIGO inspiral analysis, SIPHT, CyberShake, and Montage. The results from these

Page 6 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

simulations demonstrate that the implemented task clustering and DVFS techniques
effectively address the mentioned issues. The analysis of the results reveals considera-
ble savings in transmission costs and energy utilization, indicating the efficiency of the
suggested approach in achieving energy savings and improved performance in scientific
workflow execution.

Khaleel [20] addressed the scientific workflow scheduling problem as a multi-objective
optimization challenge, aiming to find an equilibrium between scheduling reliability and
energy efficiency. They suggest a two-step approach to reach this compromise. In the
first step, tasks requiring moderate computational demands are placed on fog resources,
while tasks with higher computational demands are assigned to cloud resources. This
strategy avoids high-failure-rate resources, thereby enhancing scheduling reliability. In
the second step, they employ the reliability-sensitive stepwise performance-to-power
ratio (PPR) optimization method to minimize energy usage significantly. This involves
measuring the machine’s utilization rates using PPR. The PPR is determined by the ratio
of transactions completed at certain times to the energy consumed. Through simulations
in real-world and synthesized workflow applications, the proposed approach, called dis-
RMEE, achieves significantly enhanced reliability while maintaining reduced energy
constraints. It outperforms its competing workflow mapping methods in terms of both
reliability and energy efficiency.

Methods
This section introduces a many-objective algorithm for task scheduling. It consists of
two main components: preprocessing and a scheduling approach based on the WOA.
Before the scheduling process begins, the workflow and its associated tasks are pre-
processed to gather essential information. This step involves analyzing the workflow’s
structure, identifying task dependencies, and assessing the resource requirements
of each task. The algorithm searches for optimal solutions by iteratively updating the
positions of candidate solutions, known as whales, in the search space. In the context
of task scheduling, the WOA algorithm is adapted to find an optimal assignment of
tasks to available computing resources. The positions of the whales represent different
possible task-resource assignments, and the algorithm iteratively explores and updates
these assignments to improve the overall performance of the workflow. By employing
the WOA-based scheduling approach, our multi-objective hybrid algorithm aims to
optimize multiple objectives, such as minimizing makespan (processing time), reducing
resource utilization costs, and meeting deadline constraints.

Problem statement

In the context of workflow scheduling in cloud computing, workflows are expressed as
DAGs, denoted by G = (V, E), where V corresponds to the set of points that signify indi-
vidual workflow tasks and E indicates the set of edges representing task dependencies. In a
DAG, each task has a specific execution order, and a parent task must be completed before
any of its child tasks can start execution. Each workflow task in the DAG has various param-
eters that are crucial for scheduling and resource allocation. Execution time denotes the
time required for a task to be executed on a particular resource. Different tasks may have
different execution times depending on their computational complexity. Dependencies

Page 7 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

stand for the relationships between tasks, where a child’s task depends on the completion
of its parent task(s). These dependencies need to be considered during scheduling to ensure
correct execution order.

Workflow tasks can vary in their computational and data intensity. Some tasks may be
computation intensive, involving complex computations, while others may be data inten-
sive, requiring significant data handling and transfer. In some cases, tasks may be both
data and computation intensive, making the scheduling process more challenging. The
cloud structure is formed of multiple data centers, each containing a number of physical
machines. These machines are equipped with data storage resources and bandwidth capa-
bilities. In cloud computing, resources are depicted as VMs. VMs are virtualized instances
that can be deployed and managed on the physical machines within data centers. Each VM
has fixed attributes such as bandwidth, processing capabilities (measured by the number of
processing elements or PEs), and storage cost per unit of time. The processing capacity of
VMs is calculated by Eq. 1.

The capacity of n VMs is calculated by Eq. 2.

The VMs’ loads are computed by Eq. 3 as the percentage of the total number of tasks per-
formed by VMs to their capacities.

Equation 4 calculates the load of all VMs in the cloud system. The time taken to finish the
ith task is the sum of the duration needed to retrieve the necessary data for execution (time
to obtain data for task i) and the execution time of the task itself. This time of completion
is a vital measurement to consider in task scheduling and load balancing algorithms, as it
directly impacts the overall makespan of the workflow and the performance of the system.
Equation 5 calculates the completion time of a workflow task i.

Equation 5 defines Transti ,tj as the duration of data transmission between tasks i and j,
while TimeE(ti,VMk) represents the execution time of the ith task on VMk . The transmis-
sion duration is estimated using Eq. 6, while Eq. 7 provides the ability to compute the exe-
cution time.

(1)Ci = (MIPSi × PE)

(2)C =

n

i=1

Ci

(3)Lvmi =
TL

Ci

(4)L =

n
∑

i=1

Lvmi

(5)Time(ti) = TimeE((ti,VMk)+ Time(Transti ,tj)

(6)Trans
(

ti, tj
)

=
sizeof (ti, tj)

β(VMk ,VMm)

Page 8 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

Within the aforementioned equations, the term sizeof (ti, tj) corresponds to the data
size transmitted between tasks i and j, and β(VMk ,VMm) denotes the bandwidth of data
centers in which VMk and VMm are situated. When both VMs are located within the
same data center, the transmission cost is effectively reduced to zero. Equation 7 incor-
porates the variables li and Cmj , where li represents the length of task i and Cmj denotes
the processing capacity of VMj , as determined using Eq. 2. The makespan corresponds to
the last task’s completion time within the workflow, calculated by Eq. 8.

Equation 8 defines the makespan as the task’s finish time (FT). The monetary cost
(MC) associated with a workflow encompasses both the data transfer and execution
costs between workflow tasks. This cost can be computed using Eq. 9. The MC further
comprises the total transfer cost (TTC) determined using Eq. 10 and the total execution
cost (TEC) evaluated with Eq. 10.

Equation 10 presents the relationship between the size, representing the data size and
cost, which denotes the bandwidth cost for data transfer. Additionally, load balance is
expressed as the variance of the load across all nodes, as depicted in Eq. 12. Smaller val-
ues of load balance indicate more effective load management.

In Eq. 12, Lvmi denotes the load of vmi , R represents the mean load across all VMs, and
m indicates the total number of VMs in the system.

Whale optimization algorithm

The WOA is a computational intelligence algorithm that draws inspiration from the forag-
ing behavior of humpback whales, specifically their bubble-net hunting mechanism. Hump-
back whales are highly intelligent creatures with brain cells called spindle cells, similar to
humans [21]. They exhibit complex behaviors, including communication through their own
dialect, making them an intriguing inspiration for optimization algorithms. The WOA algo-
rithm begins by randomly generating a population of candidate solutions across the search
space. Each candidate solution’s fitness is calculated based on the objective function, and

(7)TE =
li

Cmj

(8)Makespan = FTn
i=1[taskitime]

(9)MC = TTC + TEC

(10)TTCwi =

n
∑

i=1

size(ti, tj)

βcost

(11)TECwi =

n
∑

i=1

vmtime
i vmcost

i

(12)L =

√

∑m
i=1 (Lvmi − R)2

m

Page 9 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

the best solution is identified. The WOA operates in three main phases: encircling prey,
bubble-net hunting, and prey searching.

Once the humpback whales find the best search agent (the one with the highest fitness
value), the rest of the whale population starts encircling that agent. This behavior is a part
of the WOA’s exploration phase. Search agents update their positions during this process as
they approach prey (the best search agent). The mathematical model for the current posi-
tion update during the encircling behavior in the WOA can be described as follows:

Ddis represents the distance between the current solution WXcurr(t) and the best solution
WXbest(t) at iteration t. The values of r1 and r2 are random numbers within the range [0, 1].
The variable a is the shrinking decreased linearity value, which starts at two and gradually
decreases to 0 as the iterations progress. If the WOA algorithm chooses the first method,
i.e., the shrinking encircling mechanism, for updating the solution, it follows the same pro-
cess as described earlier using the decreasing value of Eq. 18. This method involves cal-
culating the encircling vector and updating the current solution’s position based on the
shrinking decreased linearity value and the current iteration number. On the other hand,
if the WOA algorithm opts for the second method, i.e., the spiral update based on random
selection probability, the population of whales will navigate around the current optimal
solution denoted as WXbest . The process for this method is defined as follows:

k varies randomly between [− 1, 1], and b controls the magnitude of the spiral move-
ment. The algorithm switches between the shrinking and spiral paths for solution
updates based on a probability distribution. The equation to determine whether to use
the shrinking encircling mechanism or the spiral update method is as follows:

The whales engage in a random search for their optimal prey, denoted as WXbest , by
exploring a random position (WXrand) instead of relying on the best solution (also WXbest),
which is determined using the following equations.

(13)WXcurr(t + 1) = WXbest(t)− A× Ddis

(14)A = 2a× r1 − a

(15)Ddis = |C ×WXbest(t)−WXcurr(t)|

(16)C = 2× r2

(17)WXcurr(t + 1) = Dt ′dis × ebk × cos(2πk)+WXbest(t)

(18)D′
dis = |WXbest(t)−WXcurr(t)|

(19)WXcurr(t + 1) =

{

WXbest(t)− A× Ddisifr3 ≥ 0.5

D′
dis × ebk × cos(2πk)+WXbest(t)ifr3 < 05

(20)WXcurr(t + 1) = WXrand(t)− A× Ddis

(21)Ddis = |C .WXrand(t)−WXcurr(t)|

Page 10 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

The WOA algorithm utilizes four parameters, namely a, A, C, and r3, to update solu-
tions. If r3 is greater than 0.5, Eq. 17 is employed for solution updating. On the other
hand, if r3 is less than 0.5, Eqs. 20 and 21 are used. Furthermore, depending on the value
of |A|, the solution can also be updated using Eqs. 13 and 15. The WOA updates the
position vector of the solution until the specified conditions are satisfied. Upon meeting
the criteria for termination, WOA’s best solution is returned as WXbest. Figures 2 and 3
depict how solutions are updated in the WOA, demonstrating that solutions have the
flexibility to move close to a solution in random positions or follow a spiral path.

Proposed algorithm

The proposed algorithm utilizes WOA to optimize both execution time (makespan) and
monetary cost of workflows while ensuring a balanced load distribution across all nodes.
WOA stands out among other meta-heuristics due to its speed and faster convergence,
making it a favorable choice for this application. The algorithm finds its application in
various cloud computing areas, including VM scheduling and placement, among others.
To effectively execute the algorithm, the scheduler is assumed to possess knowledge of
task dependencies within the workflow, and the execution times of individual tasks are
predetermined. The main objective of the suggested algorithm is to efficiently allocate
cloud resources to workflow tasks, thereby minimizing both execution time and mon-
etary cost. Achieving this allocation is crucial for ensuring the effective utilization of
cloud resources. In addition to this, the scheduler needs to take other relevant param-
eters into account while scheduling cloud resources, further enhancing the overall effi-
ciency and effectiveness of the scheduling process.

Before applying the WOA, the proposed algorithm employs a preprocessing step to
organize resources and tasks for optimization. Initially, the algorithm prioritizes tasks based
on the number of descendants they have, giving priority to tasks with a large number of

Fig. 2 Bubble-net search strategy

Page 11 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

descendants. These tasks tend to become bottlenecks for cloud resources and consequently
lead to longer execution times. Similarly, the algorithm also sorts cloud resources according
to their processing power, distinguishing between low-processing power and high-process-
ing power resources. It maintains two lists of resources for processing workflow tasks. Par-
ent tasks, which require significant processing time due to their dependencies, are handled
by high-processing nodes to expedite dependency elimination. Once the parent tasks are
completed, the children’s tasks are addressed based on their place in the workflow graph.
Leaf tasks are performed using low-processing nodes, while parent and intermediate tasks
are assigned to available high-processing nodes. To ensure load balance across resources,
the algorithm periodically switches tasks between two lists: the dependency list containing
tasks with dependencies and the independent list containing tasks without dependencies.
The WOA is then utilized for resource-to-task assignments for both lists. Each task begins
execution with random whale positions and velocities, and each whale’s performance is
assessed using the fitness function. Variables are adjusted iteratively through multiple itera-
tions until a stopping criterion is reached. The fitness function, used to calculate the fitness
of a whale, considers both the execution time and the cost, as represented in Eq. 22. Fig-
ure 4 depicts the flowchart of the proposed algorithm.

Results and discussion
In this section, we provide an overview of performance measures, simulation settings,
and the workflow design employed in the proposed algorithm. A collection of inter-
connected computational tasks characterizes a workflow. Various scientific workflows

(22)F = w
maxms −ms

maxmsminms + w
maxmc −mc

maxmc −minmc + w
maxlb − lb

maxlb −minlb

Fig. 3 Position update in a spiral

Page 12 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

like Pan-STARRS, Epigenomics, Cybershake, Montage, and LIGO have been docu-
mented in the literature. For this paper, the Pan-STARRS scientific workflow is
adopted as the framework for task execution. The Pan-STARRS project is dedicated
to ongoing sky monitoring to identify movable or varying celestial objects. The PS1
telescopic instrument is employed for this purpose. The astronomy data generated
by this project is managed by John Hopkins University and Microsoft, utilizing two

Fig. 4 The preprocessing step in the proposed algorithm

Page 13 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

distinct workflows: PSMerge and PSLoad. The PSMerge workflow focuses on data-
base updates, while the PSLoad workflow collects data from the telescope and records
them in the database. Detailed depictions of these workflows are illustrated in Figs. 5
and 6. Comprehensive characteristics of these workflows are outlined in Table 2.

The simulation of the cloud environment and validation of the proposed sched-
uling model are carried out using the CloudSim simulator. Two distinct host types
were deployed: HP ProLiant ML110 G4 and HP ProLiant ML110 G5. These host types
exhibit variations in energy consumption rates, quantified in watts per second (Ws-1).
Energy consumption rates for deployed hosts are specified. Also, a separate value is
provided for the energy consumption associated with transferring 1 gigabyte (GB) of
data. Four unique VM configurations were implemented in the simulation environ-
ment. These machines differ in terms of their processing power, measured in millions
of instructions per second (MIPS), and their available random access memory (RAM)
capacity, specified in megabytes (MB). Each VM configuration is broken down:

• VM type 1: This VM offers 500 MIPS of processing power and is equipped with 613
MB of RAM.

• VM type 2: This VM configuration provides 1000 MIPS of processing power and
boasts 1740 MB of RAM.

• VM type 3: The third VM configuration delivers 2000 MIPS of processing power
while maintaining the same 1740 MB of RAM capacity as VM type 2.

• VM type 4: This specialized VM configuration is designated for executing the sci-
entific workflow. It offers 2500 MIPS of processing power but has a reduced RAM
capacity of 870 MB.

Fig. 5 PSLoad workflow

Page 14 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

The average VM startup time was established within the simulation to align with scien-
tific workflow requirements. Furthermore, the average bandwidth between VMs was con-
figured to approximate the bandwidth capabilities offered by a prominent cloud computing
service provider, Amazon Web Services (AWS). A real-world scientific workflow, derived
from the Pan-STARRS astronomical survey project, was chosen as the benchmark for this
simulation. This workflow is categorized into three distinct groups based on the number of
tasks it entails. A detailed breakdown of these task groupings is provided in Table 2.

The assessment of the proposed method is carried out through a comparative analysis
against PESVMC [22] and EVMP [23], considering key performance metrics encompass-
ing execution time (makespan), energy consumption, and resource utilization. The makes-
pan, representing the time taken for the complete execution of the scientific workflow from
its initial tasks to the final task, is evaluated using Eq. 23. Here, subTimeworkflow denotes
the submission time of the workflow. Energy consumption quantifies the overall energy
expended by the servers during the execution of the scientific workflow. This is computed
utilizing Eq. 24, where ecrijk signifies the energy consumption rate of VM j on host k and
xijk indicates the mapping of task i onto VM j at host k. The variable xijk is set to 1 if task i is
scheduled on VM j at host k for execution; otherwise, it is 0. The average resource utiliza-
tion denotes the proportion of allocated computing resources for accomplishing the tasks
of the scientific workflow relative to the total computing resources available on the server.
This is calculated using Eq. 25.

(23)makespan = max

(

ftijk

)

− subTimeworkflow

Fig. 6 PSMerge workflow

Page 15 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

Table 2 Workflow description

Workflows Task
count

Child
task
count

Edge
count

Tasks
types

Task
count

Input file size
(MB)

Deadline
(second)

Tasks
length

PSMerge_
small

80 79 234 Update-
Produc-
tionDB

1 2,232,008.604 3600 1,800,000–
9,000,000

Validat-
eMerge

1 2,199,023.256 60 30,000–
150,000

MergeDB 70 540,000–
27,000,000

10,800 540,000–
27,000,000

ColdDB/
LoadDB/
Preproc-
ess

1 104.86 and
104.86

300 150,000–
750,000

PSMerge_
medium

841 836 2505 Update-
Produc-
tionDB

1 2,232,008.604 3600 1,800,000–
9,000,000

Validat-
eMerge

5 2,199,023.256 6 30,000–
150,000

MergeDB 830 104.86 and
2,199,023.256

10,800 540,000–
27,000,000

ColdDB/
LoadDB/
Preproc-
ess

5 104.86 and
104.86

300 150,000–
750,000

PSMerge_
large

7622 7606 22,815 Update-
Produc-
tionDB

1 2,232,008.604 3600 1,800,000–
9,000,000

Validat-
eMerge

16 2,199,023.256 60 30,000–
150,000

MergeDB 7589 104.86 and
2,199,023.256

10,800 540,000–
27,000,000

ColdDB/
LoadDB/
Preproc-
ess

16 104.86 and
104.86

300 150,000–
750,000

PSLoad_
small

4 3 4 Validate-
LoadDB

1 97.52 5 2500–
12,500

LoadCSV 1 97.52 30 15,000–
75,000

Preproc-
essorCSV

1 97.52 5 2500–
12,500

End 1 104.86 10 5000–
25,000

PSLoad_
medium

489 389 776 Validate-
LoadDB

100 1.05–104.86 5 2500–
12,500

LoadCSV 288 1.05–104.86 30 15,000–
75,000

Preproc-
essorCSV

100 6.29–362.81 5 2500–
12,500

End 1 104.86 10 5000–
25,000

Page 16 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

The comparison of makespan across different methods, including WOA, PESVMC,
and EVMP, is presented for both PSMerge and PSLoad workflows, each with varying
numbers of tasks. Figures 7 and 8 depict simulation outcomes concerning makespan.
Results show that the WOA algorithm is superior to the others in terms of makes-
pan efficiency in both workflows. On average, there is a reduction of 10% and 98%
in makespan when compared to the EVMP and PESVMC algorithms, respectively.
The inferior efficiency of the current algorithm results from its failure to consider

(24)EC =

|Hosta|
∑

k=1

|VMk |
∑

j=1

T
∑

i=1

xijk .ecrijk .etijk

(25)ARU =

|Hosta|
∑

k=1

|VMk |
∑

j=1

T
∑

i=1

lijk .xijk ÷

|Hosta|
∑

k=1

ck .atk

Table 2 (continued)

Workflows Task
count

Child
task
count

Edge
count

Tasks
types

Task
count

Input file size
(MB)

Deadline
(second)

Tasks
length

PSLoad_
large

5084 4084 8166 Validate-
LoadDB

1000 1.05–104.86 5 2500–
12,500

LoadCSV 3083 1.05–104.86 30 15,000–
75,000

Preproc-
essorCSV

1000 1.05–438.3 5 2500–
12,500

End 1 104.86 10 5000–
25,000

Fig. 7 Makespan comparison for PSMerge workflow

Page 17 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

child-parent relationships during task scheduling on VMs. This deficiency has had a
noticeable impact on the workflow’s makespan.

The comparison of total energy consumption across different methods, including
WOA, PESVMC, and EVMP, is conducted for both PSMerge and PSLoad scientific
workflows with varying task counts. The test results concerning total energy consump-
tion, expressed in kilowatts (kWs), are illustrated in Figs. 9 and 10. The results suggest
that the WOA algorithm demonstrates an impressive reduction in energy usage. This
achievement stems from the WOA algorithm’s ability to allocate resources in alignment
with workflow task requirements, effectively curbing energy usage. Furthermore, the
suggested algorithm takes into account child-parent relationships in task scheduling,

Fig. 8 Makespan comparison for PSLoad workflow

Fig. 9 Energy consumption comparison for PSMerge workflow

Page 18 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

leading to a reduction in data transfer-related energy consumption. On average, the
WOA algorithm showcases a remarkable reduction of 20% and 42% in energy con-
sumption when compared to the EVMP and PESVMC algorithms, respectively. These
substantial energy savings highlight the potential of the WOA algorithm in optimizing
resource utilization and energy efficiency in the context of workflow scheduling.

The assessment of average resource utilization across different methods, including
WOA, PESVMC, and EVMP, is conducted for both PSMerge and PSLoad scientific
workflows, each encompassing varying numbers of tasks. The experimental findings
regarding average resource utilization are graphically presented in Figs. 11 and 12. The
findings underscore the better resource utilization performance of the WOA algorithm
when compared to EVMP and PESVMC. The dynamic nature of the WOA algorithm
contributes to its enhanced performance. The proposed algorithm strategically creates
new VMs when the currently deployed VMs prove inadequate to meet task deadlines.
This dynamic provisioning ensures optimal resource utilization. Additionally, the utiliza-
tion of a VM migration policy facilitates resource consolidation, leading to impressive
gains in resource utilization. On average, the WOA algorithm achieves a noteworthy
increase of 10% and 8.6% in resource utilization over the baseline algorithms. These sub-
stantial improvements validate the effectiveness of the WOA algorithm in dynamically
adapting to resource demands and efficiently utilizing available computing resources.

Conclusion
In the ever-evolving environment of cloud computing, where the submission of sci-
entific workflows by user groups is a prevalent scenario, the efficient scheduling of
extensive task sets within these workflows has emerged as a pivotal challenge. Task
scheduling optimization holds paramount significance in cloud computing, aiming to
minimize workflow execution time, optimize cloud resource consumption, and reduce
execution costs for users. To cope with these imperatives, this study introduced a novel

Fig. 10 Energy consumption comparison for PSLoad workflow

Page 19 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

WOA-based task scheduling technique. This algorithm achieved an optimal distribution
of tasks across available computing resources. The algorithm capitalizes on the concept
of “whales,” which symbolize potential task-resource assignments. Through an iterative
process, the algorithm explores and refines these assignments to enhance the overall
workflow performance, thereby striving to cut down execution time, resource usage, and
associated budgets. The findings of comprehensive simulations provide compelling evi-
dence for the better efficiency of the proposed WOA-based algorithm. Notably, in com-
parison to previous algorithms, the proposed approach excels in energy consumption,
resource utilization, and makespan.

Fig. 11 Resource utilization comparison for PSMerge workflow

Fig. 12 Resource utilization comparison for PSLoad workflow

Page 20 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

Abbreviations
AWS Amazon Web Services
DAG Directed acyclic graphs
DVFS Dynamic voltage and frequency scaling
FT Finish time
GOA Grasshopper optimization algorithm
HEFT Heterogeneous earliest finish time
IGD Inverted generational distance
MC Monetary cost
PPR Performance-to-power ratio
QoS Quality of service
SOA Seagull optimization algorithm
SLA Service-level agreement
TEC Total execution cost
TTC Total transfer cost
VM Virtual machine
WOA Whale optimization algorithm
WMS Workflow management system

Acknowledgements
Not applicable.

Author’s contributions
XZ contributed to writing—original draft preparation and conceptualization.

Funding
No funding.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable
request.

Declarations

Competing interests
The author declares no competing interests.

Received: 15 July 2024 Accepted: 11 August 2024

References
 1. Hayyolalam V, Pourghebleh B, Kazem AAP, Ghaffari A (2019) Exploring the state-of-the-art service composition

approaches in cloud manufacturing systems to enhance upcoming techniques. Int J Adv Manufact Technol
105(1–4):471–498

 2. Wang X, Sun Y, Sun Q, Lin W, Wang JZ, Li W (2023) HCIndex: a Hilbert-curve-based clustering index for efficient
multi-dimensional queries for cloud storage systems. Clust Comput 26(3):2011–2025

 3. Hayyolalam V, Pourghebleh B, Chehrehzad MR, Pourhaji Kazem AA (2022) Single-objective service composition
methods in cloud manufacturing systems: recent techniques, classification, and future trends. Concurr Comput
34(5):e6698

 4. Yakubu IZ, Murali M (2023) An efficient meta-heuristic resource allocation with load balancing in IoT-Fog-cloud
computing environment. J Ambient Intell Humaniz Comput 14(3):2981–2992

 5. Sefati S, Mousavinasab M, Zareh Farkhady R (2022) Load balancing in cloud computing environment using the grey
wolf optimization algorithm based on the reliability: performance evaluation. J Supercomputing 78(1):18–42

 6. Al-Jumaili AHA, Muniyandi RC, Hasan MK, Paw JKS, Singh MJ (2023) Big data analytics using cloud computing based
frameworks for power management systems: status, constraints, and future recommendations. Sensors 23(6):2952

 7. He J (2022) Cloud computing load balancing mechanism taking into account load balancing ant colony optimiza-
tion algorithm. Comput Intell Neurosci 2022:3120883

 8. Mangalampalli S et al (2023) Prioritized task-scheduling algorithm in cloud computing using cat swarm optimiza-
tion. Sensors 23(13):6155

 9. Praveenchandar J, Tamilarasi A (2021) Dynamic resource allocation with optimized task scheduling and improved
power management in cloud computing. J Ambient Intell Humaniz Comput 12(3):4147–4159

 10. Dubey K, Sharma SC (2021) A novel multi-objective CR-PSO task scheduling algorithm with deadline constraint in
cloud computing. Sustain Comput 32:100605

 11. M. Hosseinzadeh, M. Y. Ghafour, H. K. Hama, B. Vo, and A. Khoshnevis, (2020) Multi-objective task and workflow
scheduling approaches in cloud computing: a comprehensive review. J Grid Comput 18:1–30

 12. Kamanga CT, Bugingo E, Badibanga SN, Mukendi EM (2023) A multi-criteria decision making heuristic for workflow
scheduling in cloud computing environment. J Supercomput 79(1):243–264

 13. Mikram H, El Kafhali S, Saadi Y (2024) HEPGA: a new effective hybrid algorithm for scientific workflow scheduling in
cloud computing environment. Simul Model Pract Theory 130:102864

Page 21 of 21Zhang Journal of Engineering and Applied Science (2024) 71:175

 14. Asghari Alaie Y, Hosseini Shirvani M, Rahmani AM (2023) A hybrid bi-objective scheduling algorithm for execu-
tion of scientific workflows on cloud platforms with execution time and reliability approach. J Supercomputing
79(2):1451–1503

 15. Shi J, Luo J, Dong F, Zhang J, Zhang J (2016) Elastic resource provisioning for scientific workflow scheduling in cloud
under budget and deadline constraints. Clust Comput 19:167–182

 16. Aziza H, Krichen S (2020) A hybrid genetic algorithm for scientific workflow scheduling in cloud environment.
Neural Comput Appl 32:15263–15278

 17. Iranmanesh A, Naji HR (2021) DCHG-TS: a deadline-constrained and cost-effective hybrid genetic algorithm for
scientific workflow scheduling in cloud computing. Clust Comput 24:667–681

 18. A Mohammadzadeh, M Masdari (2021) Scientific workflow scheduling in multi-cloud computing using a hybrid
multi-objective optimization algorithm. J Ambient Intellig Humanized Comput 14:3509–3529

 19. Choudhary A, Govil MC, Singh G, Awasthi LK, Pilli ES (2022) Energy-aware scientific workflow scheduling in cloud
environment. Clust Comput 25(6):3845–3874

 20. Khaleel MI (2022) Multi-objective optimization for scientific workflow scheduling based on performance-to-power
ratio in fog–cloud environments. Simul Model Pract Theory 119:102589

 21. Al-Moalmi A, Luo J, Salah A, Li K, Yin L (2021) A whale optimization system for energy-efficient container placement
in data centers. Expert Syst Appl 164:113719

 22. Mohanapriya N, Kousalya G, Balakrishnan P, Pethuru Raj C (2018) Energy efficient workflow scheduling with virtual
machine consolidation for green cloud computing. J Intell Fuzzy Syst 34(3):1561–1572

 23. N. Garg, M. Raj, I. Gupta, V. Kumar, and G. Sinha, “Energy-efficient scientific workflow scheduling algorithm in cloud
environment,” Wireless Communications and Mobile Computing, vol. 2022, 2022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

	Optimizing scientific workflow scheduling in cloud computing: a multi-level approach using whale optimization algorithm
	Abstract
	Introduction
	Related work
	Methods
	Problem statement
	Whale optimization algorithm
	Proposed algorithm

	Results and discussion
	Conclusion
	Acknowledgements
	References

