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Abstract 

Transcriptome-wide association studies (TWAS) goal is to better understand the etiol-
ogy of diseases and develop preventative and therapeutic approaches by examining 
the connections between genetic variants and phenotypes while overcoming the limi-
tations of the genome-wide association study (GWAS). It is a valuable complement 
to GWAS, reducing the negative effects of multiple tests and enabling a more thorough 
investigation of gene expression patterns in various tissues. A systematic review is pre-
sented in this paper to identify articles that utilize TWAS to understand the genetic 
factors behind complex diseases. A detailed selection process was carried out using 
standard PRISMA criteria to select relevant articles for the review. Twenty-five articles 
passed the inclusion criteria and were selected for additional review. The studies 
cover a diverse range of disorders, including Tourette’s syndrome, Alzheimer’s disease, 
rheumatoid arthritis, and major depression. Leveraging gene expression data from dif-
ferent tissues and populations, these investigations successfully identified novel genes 
and pathways associated with the studied conditions. The collective findings highlight 
the transformative impact of integrative genomics in advancing our understanding 
of complex diseases, providing insights into potential therapeutic targets, and laying 
the foundation for precision medicine approaches.

Keywords:  Transcriptome-wide association studies, Genomic wide association study, 
Genetics, Expression quantitative trait loci, Gene expression

Introduction
Transcriptome-wide association study (TWAS) is a cutting-edge genetic approach that 
uncovers the relationships between genes and certain traits such as complex diseases 
that aid in the understanding of how changes in the amounts of gene expression may 
be linked to various traits [1]. By analyzing the RNA in particular tissues, TWAS can 
identify which genes are active and their corresponding expression levels. TWAS offers 
significant insight into gene-trait interactions in a variety of complex traits since expres-
sion patterns vary across tissue types [2]. TWAS offers a framework for discovering and 
ranking candidate genes that may be involved in complex traits or disorders. This is 
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accomplished by combining genome-wide association study (GWAS) data and tissue-
specific gene expression profiles [3].

GWAS is a research method used to examine the associations between genetic vari-
ants and phenotypes across different populations. The primary objective of GWAS is 
to enhance the understanding of the etiology of diseases to improve strategies for pre-
vention and treatment [4]. Through conducting an analysis of polymorphisms in two 
distinct groups, namely a group of healthy controls and a group with the disease under 
investigation, it is possible to establish connections between single nucleotide poly-
morphisms (SNPs) and the likelihood of developing those diseases [5]. GWAS offers an 
objective approach to exploring the genetic foundations of phenotypes by identifying 
disease-associated SNPs. GWAS data can be utilized to forecast how susceptible a per-
son is to both physical and mental ailments, based on their genotype [6]. Unfortunately, 
GWAS have encountered constraints in yielding therapeutic insights due to barriers to 
interpreting their findings, mostly because the majority of GWAS variations reside in 
non-coding areas of the genome, hence rendering their direct influence on gene coding 
sequences questionable [7].

Investigating the correlation between a trait and gene expression is an alternate strat-
egy for deciphering the molecular basis of complicated traits. Using this strategy, we can 
find genes whose expression in disease-related cell types differs significantly between 
patients and controls using RNA sequencing. Nevertheless, performing such a study is 
currently not feasible because it would involve gene expression profiling on a massive 
scale across multiple tissues and a large number of samples in both the case and control 
groups.

Instead of expensive RNA sequencing, genotypes can impute cell type-specific gene 
expression profiles. TWAS leverages data from GWAS and a reference panel such as 
expression quantitative trait loci (eQTL) catalogs to directly predict gene expression in 
cases and controls. An eQTL is a specific location in the genome that accounts for a por-
tion of the genetic variation in gene expression. This reference panel enables the devel-
opment of a predictive model capable of imputing gene expression variation. Imputation 
is the statistical estimation of gene expression levels in a target population using genetic 
variants and a reference panel [8]. Standard eQTL analysis is conducting a direct associ-
ation test between genetic variations and gene expression levels [9]. This approach elimi-
nates the need to personally measure gene expression in each sample participating in the 
GWAS. This imputation is plausible because gene expression is strongly heritable. An 
individual’s genotype is used to predict their transcriptome levels using TWAS, which 
trains predictors using tissue-specific eQTL maps as reference datasets. By prioritizing 
the heritable component of gene expression, this prediction approach enables the direct 
association between a disease and the expression of each gene. The prediction model is 
then applied to the genotyping data obtained from a GWAS. This allows for the impu-
tation of gene expression values that are directly associated with statistical SNPs dis-
covered during the GWAS. Once gene expression levels have been estimated, gene-trait 
association analyses are carried out to investigate the correlations between expected 
expression levels, genotypes, and observed traits among individuals in the study [10].

TWAS offers an extra benefit by reducing the problem of multiple testing penalties in 
GWAS during statistical inference. This is achieved by testing the imputed expression 
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of hundreds of genes instead of millions of SNPs in GWAS [11]. The Genotype-Tissue 
Expression (GTEx) project is widely recognized as the most prominent eQTL investiga-
tion, in which multiple tissues from hundreds of individuals were examined to uncover 
eQTLs specific to each tissue [12]. Version 8 of the GTEx has examined a total of 15,201 
RNA-sequencing samples obtained from 838 postmortem donors across 49 different tis-
sues. As a step in TWAS, GWAS examines the correlation between genetic variations 
and phenotype, as mentioned earlier. This can be accomplished by starting from the 
beginning as a stage in TWAS utilizing individual-based genetic data, or by gathering 
previously conducted GWAS-summary statistics. GWAS summary statistics refer to 
the combined p values and association data for each variant examined in a GWAS [13]. 
GWAS summary statistics offer advantages over individual phenotype and genotype 
data, such as being openly accessible, originating from meta-analyses, and bypassing 
challenges at the sample level. They are often derived from numerous studies, a larger 
cohort than individual samples, and can help identify non-normal distributions, con-
founding covariates, or outliers [14]. A flowchart summarizing the process of a TWAS 
is shown in Fig. 1.

Since 2015, various methodologies have been developed to conduct tissue-specific and 
multiple-tissue TWAS. Single-tissue TWAS examines the relationship between gene 
expression patterns in a specific tissue or cell type and complex traits or diseases, pro-
viding tissue-specific insights. Multiple-tissue TWAS analyzes the association between 
gene expression patterns across various tissues or cell types and the studied traits or dis-
eases, allowing for the identification of shared and tissue-specific associations.

Single‑tissue models

PrediXcan [15] uses Elastic NET regression and transcriptome data from reference pan-
els to predict gene expression levels in specific tissues based on genotype data. FUnc-
tional Summary-based ImputatiON (FUSION) [1] was the initial attempt to overcome 
PrediXcan’s issue that large-scale GWAS data are only publically available at the sum-
mary association statistic level. They used the Bayesian sparse linear mixed model 

Fig. 1  Flowchart summarizing the process of a TWAS study
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(BSLLM) to develop the prediction model and impute expression-trait association sta-
tistics directly from GWAS summary statistics. S-PrediXcan [16] was then introduced 
to extend the PrediXcan by employing GWAS summary statistics instead of genotype 
data to facilitate gene expression-trait associations without genetic data. Previous pre-
sented methods relied on parametric imputation models; however, they cannot model 
the complex genomic architecture of transcriptomic data. Transcriptome-Integrated 
Genetic Association Resource (TIGAR) [17] has been developed to specifically address 
these limitations, by employing a nonparametric Bayesian method that was originally 
proposed for the genetic prediction of complex traits, known as Dirichlet process regres-
sion (DPR) model. DPR is a more generalized model that uses PrediXcan’s Elastic-Net 
and FUSION’s BSLMM as special cases. Then, kernel-based transcriptome-wide asso-
ciation study (kTWAS) [18] was introduced, focusing on a kernel-based approach, using 
genomic data to construct kernels that capture genetic relationships and employing a 
regression framework to predict gene expression and assess associations with traits. 
Summary-level Unified Method for Modeling Integrated Transcriptome (SUMMIT) [19] 
and Omnibus Transcriptome Test using Expression Reference Summary data (OTTERS) 
were introduced to improve the accuracy of the expression prediction model and the 
power of TWAS by overcoming the limitation of small-expression reference panel sam-
ple sizes by using summary-level expression panels utilizing larger samples and allowing 
for more accurate expression prediction models and ultimately strengthening the power 
of TWAS.

Multi‑tissue models

Through tissue integration, multiple tissue TWAS reveals shared and tissue-specific 
gene-trait associations. MultiXcan [20] extended PrediXcan by merging tissue data to 
create a meta-model that predicts gene expressions across tissues. Also, S-MultiXcan 
[20], building upon MultiXcan, predicts multi-tissue gene expressions using GWAS 
summary data. S-MultiXcan facilitates association testing across several tissues with-
out requiring individual genetic information using summary statistics instead of geno-
type data. Hu et al. 2019 [21] addressed the limitations of previous methods, stating that 
previous methodologies often train separate imputation models for different tissues, 
neglecting transcriptional regulation similarities. They introduced the Unified Test for 
MOlecular SignaTures (UTMOST) framework that involves training cross-tissue expres-
sion imputation, assessing single-tissue associations, and using a generalized BerkJones 
test for each gene to summarize single-tissue association statistics into a powerful metric 
that quantifies the gene-trait association. Finally, the joint-tissue imputation (JTI) [22] 
approach was developed as an extension to improve target tissue prediction accuracy by 
integrating all tissues using a weighted square error loss function, preferring comparable 
tissues over dissimilar ones.

In conclusion, multiple approaches have been proposed, each one achieving a balance 
between specificity and breadth in association testing by utilizing different prediction 
models.

This article examines the various ways in which TWAS techniques can be used to 
uncover the complicated genetic foundations of traits and disorders. By combining gene 
expression data with genetic information, TWAS offers a potent approach to uncover 
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the regulatory mechanisms that control variations in traits. One of its key benefits is 
its ability to provide significant scientific knowledge by explaining how genetic varia-
tions affect gene expression and, therefore, the characteristics of various tissues. Using 
TWAS, tissue-specific effects can be identified, shedding light on the complex functions 
of genes in many biological settings. Finally, TWAS is a remarkable tool that will change 
the face of precision medicine and therapies by opening the door to a detailed under-
standing of the genetic architecture of complex disorders.

Methods
To ensure transparency, a comprehensive analysis of existing research was conducted 
following the well-established Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) [23].

Search strategy and inclusion criteria

To assess the latest research in the context of TWAS, a comprehensive search for rel-
evant studies was conducted. The search was conducted electronically to select papers 
published in the previous 10 years in the PubMed database. The keywords and search 
algorithms employed to refine the selection of articles that are significant to this study 
are presented below.

“Transcriptome-Wide Association Study” AND ((y_10[Filter]) AND (ffrft[Filter]) 
AND (excludepreprints[Filter]) AND (humans[Filter]) AND (data[Filter]) AND 
(english[Filter]))”.

Studies were selected based on three inclusion requirements: (1) focusing primarily on 
human traits (2) employing TWAS, and (3) should be an original article. Figure 2 dem-
onstrates the PRISMA flowchart that outlines the criteria for selecting studies and the 
grounds for their exclusion.

Data collection

The relevant data were extracted from the articles after performing a qualitative screen-
ing of publications and acquisition of related research that satisfied the inclusion require-
ments. The subsequent information was collected from every article: year of publication, 
investigated trait, type of data used, TWAS approach, and their findings.

Results and discussion
Three hundred and sixty-one references were retrieved from the PubMed database. 
After performing a preliminary assessment of each publication, 341 articles were elimi-
nated because they failed to fulfill the inclusion requirements. After evaluating 47 suit-
able full-text references, 22 proved irrelevant and were eliminated. Eventually, 25 articles 
were chosen for final evaluation based on the previously demonstrated eligibility crite-
ria. Figure 2 illustrates the criteria used for research inclusion.

Researchers conducted different TWAS approaches to gain an understanding of the 
intricate relationship between genetic variations and complex traits or diseases. Table 1 
presents the findings and methods employed in the chosen studies. Figure 3 analyzes the 
distribution of the TWAS algorithms employed in the chosen research.
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Fifteen of the presented studies used FUSION as their approach to further under-
stand complex diseases. Liao et  al. [24] investigated the biological significance of 
GWAS signals of Tourette’s syndrome and determined gene targets for further func-
tional analysis by performing a TWAS utilizing summary statistics from a recent 
GWAS involving more than 14,000 participants. They successfully Provided evidence 
that elevated FLT3 expression in the dorsolateral prefrontal cortex is linked to Tou-
rette syndrome. Li et al. [26] attempted to convert the GWAS findings of Depression 
into risk genes by combining GWAS summary statistics from 807,553 individuals 
with summary-level gene-expression data from the dorsolateral prefrontal cortex of 
the samples. They successfully identified fifty-three risk genes associated with depres-
sion, 23 of which were not included in the initial GWAS, and 7 were found to be asso-
ciated with depression in the two separate brain eQTL datasets. Gockley et  al. [27] 
adjusted the FUSION TWAS pipeline to incorporate gene expression data from vari-
ous neocortical regions by conducting a TWAS analysis on Alzheimer’s disease, using 
weights that were trained based on RNA-Seq expression values obtained from six dif-
ferent cortical regions. Consequently, they presented proof of genetic variations that 
contribute to the risk of Alzheimer’s disease through 8 genes located in six different 
genomic regions. Park et al. [28] conducted a TWAS to uncover genes associated with 

Fig. 2  PRISMA flowchart
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Table 1  Findings and methods employed in the chosen studies

Authors Trait Data Methods Findings

GWAS Tissue

Liao et al. 2022 
[24]

Tourette’s syn-
drome

GWAS Summary 
statistics

14 tissue types Fusion Increase in expres-
sion of the FLT3 
gene across many 
brain tissues

Levey et al. 2021 
[25]

Major depressive 
disorder

Individual-based 13 brain and 
whole-blood 
tissues

MetaXcan Links were 
observed with the 
expression of the 
DRD2 gene in the 
nucleus accum-
bens and the 
NEGR1 gene in the 
hypothalamus

Li et al. 2021 [26] Depression GWAS summary 
statistics

Tissue-type-spe-
cific 54 human 
tissues

FUSION Of the 53 genes 
associated with 
Depression, 23 
were not included 
in the initial GWAS 
and 7 were found 
to be associated 
with depression 
in the 2 separate 
brain eQTL datasets

Gockley et al. 
2021 [27]

Alzheimer’s 
disease

GWAS summary 
statistics

6 distinct cortical 
regions

FUSION They identified 
an association 
between 8 different 
genes and Alzhei-
mer’s disease

Park et al. 2021 
[28]

Amyotrophic 
lateral sclerosis

GWAS summary 
statistics

19 tissue refer-
ence panels

FUSION They identified 
an association 
between 7 novel 
genes and Amyo-
trophic lateral 
sclerosis

Traylor et al. 2021 
[29]

Lacunar stroke GWAS summary 
statistics + addi-
tional cases

Multi-tissue FUSION They identified 
the association 
between 6 novel 
genes and lacunar 
stroke

Yao et al. 2021 
[30]

Bipolar disorder GWAS summary 
statistics

13 brain tissues FUSION The risk of bipolar 
disorder is associ-
ated with 44 genes 
whose expression 
levels can be pre-
dicted genetically. 
Additionally, 11 
novel genes were 
found in the cer-
ebellar hemisphere, 
1 of which is ASB16

Wang et al. 2021 
[31]

Schizophrenia GWAS summary 
statistics

Peripheral blood 
and brain tissues

FUSION The expression 
of TMEM180 
mRNA was found 
strongly linked 
to an increased 
risk of developing 
schizophrenia

Bhat et al. 2021 
[32]

Mismatch nega-
tivity

Individual level Cortex and fron-
tal cortex

PrediXcan They identified 
the association 
between 2 novel 
genes and Mis-
match Negativity
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Table 1  (continued)

Authors Trait Data Methods Findings

GWAS Tissue

Xu et al. 2021 [33] Hand osteoar-
thritis

GWAS summary 
statistics

Skeletal muscle 
and blood

FUSION They identified 
the association 
between 5 novel 
genes and Hand 
Osteoarthritis

Reus et al. 2021 
[34]

Frontotemporal 
dementia

GWAS summary 
statistics

53 tissue types FUSION They identified 73 
significant gene-
tissue associations, 
involving 44 dis-
tinct genes across 
34 different types 
of tissues

Liu et al. 2021 [35] Alzheimer’s 
disease

GWAS summary 
statistics

Hippocampal 
tissue

S-PrediXcan They identified 
the association 
between 24 novel 
genes and Alzhei-
mer’s disease in 
hippocampal tissue

Bruinooge et al. 
2021 [36]

Inflammatory 
bowel disease

Individual-level 44 non-diseased 
human tissue

PrediXcan They discovered 
that differ-
ent genetically 
regulated genes 
in different tissues, 
including skeletal 
muscle, the cer-
ebellar hemisphere 
of the brain, and 
the frontal cortex 
of the brain, are 
associated with 
inflammatory 
bowel disease

Huang et al. 2021 
[37]

Autism spectrum 
disorder

GWAS summary 
statistics

10 brain tissues UTMOST 31 genes were 
discovered to be 
associated with 
Autism, including 
the POU3F2 gene

Kia et al. 2021 [38] Parkinson’s 
disease

GWAS summary 
statistics

10 brain regions FUSION They identified 
the association 
between 11 novel 
genes with Parkin-
son’s disease

Wu et al. 2021 
[39]

Rheumatoid 
arthritis

GWAS summary 
statistics

4 different tissues FUSION They identified 
the association 
between 692 novel 
genes with rheu-
matoid arthritis, 
four of which were 
associated and the 
four tissues

Dall’Aglio et al. 
2021 [40]

Major depression GWAS summary 
statistics

21 tissue datasets FUSION They linked 94 
novel genes to 
major depression, 
half of which were 
novel
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Table 1  (continued)

Authors Trait Data Methods Findings

GWAS Tissue

Guo et al. 2021 
[41]

Colorectal cancer 
risk

GWAS summary 
statistics

Different colon 
tissues, including 
carcinoma and 
adenoma tissues

MetaXcan They linked 25 
unique genes to 
colorectal cancer, 
including 4 novel 
loci. Furthermore, 
in 9 known GWAS 
loci, they discov-
ered nine novel 
genes

Lu et al. 2018 [42] Epithelial ovarian 
cancer risk

GWAS summary 
statistics

53 different 
tissues

MetaXcan They discovered 
35 genes, which 
include FZD4, 
a possible new 
epithelial ovarian 
cancer risk

Wu et al. 2018 
[43]

Breast cancer Individual-based Breast tissue PrediXcan They linked 48 
genes to breast 
cancer, including 
14 novel genes

Shi et al. 2019 
[44]

Age at natural 
menopause

Individual-based Normal hypo-
thalamus and 
ovarian tissues

PrediXcan They revealed 34 
genes strongly 
linked with natural 
age Menopause, 
including 4 entirely 
novel genes, 
located over 
1 Mb away from 
any previously 
identified genetic 
variations linked 
to menopause 
through GWAS, 
24 genes found 
inside known 
GWAS regions but 
not previously 
associated with 
menopause, and 6 
previously discov-
ered genes

Gusev et al. 2018 
[45]

Schizophrenia GWAS summary 
statistics

Brain, blood, and 
adipose tissues

FUSION 157 unique genes 
were linked to 
schizophrenia, 35 
of which did not 
match an exist-
ing GWAS locus

Lamontagne 
et al. 2018 [46]

Chronic obstruc-
tive pulmonary 
disease

GWAS summary 
statistics

Lung tissues S-PrediXcan They identified 
the association 
between 12 genes/
loci and the disease

Thériault et al. 
2018 [47]

Calcific aortic 
valve stenosis

GWAS summary 
statistics

Aortic valve 
tissues

FUSION The study identi-
fied PALMD as a 
susceptibility gene
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amyotrophic lateral sclerosis. They successfully discovered seven novel genes in amyo-
trophic lateral sclerosis using the greatest GWAS summary statistic (n = 80,610) and 
19 tissue reference panels. Traylor et al. [29] combined data from recently recruited 
lacunar stroke patients and previous GWAS to implement a TWAS to identify genes 
associated with lacunar stroke and successfully found links between six genes and 
lacunar stroke. Yao et al. 2021 [30] employed TWAS to reveal novel bipolar disorder 
risk genes and causative genes at GWAS-previously identified loci. They discovered 
14 conditionally independent genes and 11 novel genes. They also showed that the 
Bipolar Disorder GWAS is influenced by genetically regulated expression, resulting in 
many genome-wide meaningful signals. Wang et al. [31] performed integrated analy-
sis using blood eQTL data and GWAS data to investigate schizophrenia in East Asian 
populations and demonstrated a significant association between reduced TMEM180 
mRNA expression and the risk of schizophrenia. Xu et al. 2021 [33] utilized the GWAS 
summary of hand osteoarthritis to conduct a TWAS while employing skeletal muscle 

Table 1  (continued)

Authors Trait Data Methods Findings

GWAS Tissue

Mancuso et al. 
2017 [48]

30 different 
complex traits

GWAS summary 
statistics

Multi-tissue FUSION They identified 
1196 complex 
trait-associated 
genes, including 
168 unique genes. 
Furthermore, 43 
trait pairs had a 
substantially high 
association with 
estimated expres-
sion

Fig. 3  Distribution of TWAS techniques in the selected studies
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and blood as a reference for gene expression. As a result, they successfully identified 
177 genes linked with skeletal muscle and 423 genes associated with blood. Reus et al. 
[34] conducted a TWAS to discover genes with anticipated expression levels linked to 
frontotemporal dementia. This was achieved by integrating GWAS summary statis-
tics with reference gene expression data. A total of 73 gene-tissue associations were 
discovered for frontotemporal dementia, encompassing 44 distinct genes across 34 
different tissue types. Kia et al. 2021 [38] attempted to enhance our comprehension of 
the fundamental genes and mechanisms at the earlier discovered GWAS loci to gain 
insight into the development of Parkinson’s disease by employing TWAS and success-
fully identified the association between 11 novel genes with Parkinson’s disease. Wu 
et  al. [39] attempted to find genetic factors associated with rheumatoid arthritis by 
applying TWAS considering four distinct tissue summary data from a GWAS involv-
ing 5539 patients and 20,169 controls. They successfully discovered a total of 692 
genes, with four of them being linked to the four used tissues. Dall’Aglio et  al. [40] 
conducted a TWAS to investigate the genetic factors of major depression. The analy-
sis relied on summary statistics obtained from the largest genome-wide association 
study of major depression, which included a sample size of 135,458 cases and 344,901 
controls. Additionally, gene expression levels from 21 tissue datasets were included. 
They linked 94 novel genes to major depression, half of which were novel. Although 
GWAS have shown a large number of genetic regions associated with an increased 
risk of schizophrenia, the specific mechanisms responsible for this link are still largely 
unclear. Gusev et al. [45] conducted a TWAS by combining a schizophrenia GWAS 
involving 79,845 individuals with expression data obtained from 3693 control indi-
viduals. They successfully discovered 157 genes, 35 of which were not associated with 
any previously reported GWAS location. By integrating GWAS and eQTL data, Thé-
riault et al. [47]were able to determine the underlying molecular factors responsible 
for calcific aortic valve stenosis. Through TWAS, they discovered that the PALMD 
gene is strongly linked to calcific aortic valve stenosis. Finally, Mancuso et al. [48] uti-
lized gene expression data from 45 panels and combined it with summary GWAS data 
to conduct 30 TWASs, which involved analyzing gene expression across many tissues. 
Of the 1196 genes related to these phenotypes, 168 are more than 0.5 Mb from any 
previously published GWAS significant variant.

In the second stage, PrediXcan was utilized in 4 studies, where Bhat et al. 2021 [32] 
conducted a TWAS on a sample of 728 individuals to examine the genetic factors under-
lying Mismatch negativity, an electrophysiological response that measures the cortical’s 
ability to adapt to unexpected stimulation. This study identified two genes, FAM89A and 
ENGASE, whose expression in cortical tissues is linked to mismatch negativity. Bruin-
ooge et al. [36] utilized TWAS to examine the genetic factors that underlie Inflammatory 
bowel disease utilizing genetically regulated gene expression patterns that were inferred 
from the genetic profiles of 240 individuals with inflammatory bowel disease and 44 
non-diseased human tissue-specific reference models obtained from the GTEx. They 
discovered that different genetically regulated genes in different tissues, including skel-
etal muscle, the cerebellar hemisphere of the brain, and the frontal cortex of the brain, 
are associated with Inflammatory bowel disease. In order to find new risk locations and 
genes suspected to cause breast cancer, Wu et  al. [43] conducted a TWAS study that 
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analyzed the relationships between genetically predicted gene expression and breast 
cancer risk. The study included 122,977 cases and 105,974 controls of European descent 
and linked 48 genes to breast cancer, including 14 novel genes. Finally, Shi et  al. [44] 
attempted to discover new genes that make individuals more susceptible to experiencing 
natural menopause at a certain age. They revealed 34 genes strongly linked with natu-
ral age menopause, including 4 entirely novel genes, located over 1 Mb away from any 
previously identified genetic variations linked to menopause through GWAS, 24 genes 
found inside known GWAS regions but not previously associated with menopause, and 
six previously discovered genes.

MetaXcan was employed in 3 studies, where Levey et al. [25] performed a comprehen-
sive meta-analysis of depression using TWAS, and observed links between the major 
depressive disorder and the expression of the DRD2 gene in the nucleus accumbens and 
the NEGR1 gene in the hypothalamus. Guo et al. [41] performed a TWAS to discover 
potential genes linked to colorectal cancer. They linked 25 unique genes to colorectal 
cancer, including 4 novel loci. Furthermore, in 9 known GWAS loci, they discovered 
nine new novel genes. Lu et al. [42] conducted a TWAS in order to identify new genomic 
regions and potential causative genes at previously identified GWAS regions. They suc-
cessfully discovered 35 genes, including FZD4, a possible new epithelial ovarian cancer 
risk factor.

S-PrediXcan was utilized in two studies. Liu et  al. [35] explored the relationship 
between gene expression in the hippocampus and Alzheimer’s disease using TWAS and 
identified the association between 24 novel genes and Alzheimer’s disease in hippocam-
pal tissue. Lamontagne et  al. [46] attempted to identify genes that may cause chronic 
obstructive pulmonary disease and provide valuable biological insights into the recently 
identified chronic obstructive pulmonary disease susceptibility loci. They identified an 
association between 12 genes/loci and chronic obstructive pulmonary disease. Finally, 
Huang et al. [37] utilized UMOST to perform a TWAS to better understand the genetic 
factors behind autism spectrum disorder. As a result, 31 genes were discovered to be 
associated with autism, including the POU3F2 gene.

Our main goal was to act as a reference for future TWAS investigations. The frame-
work describes various computational models that are used at each computational stage 
and highlights the significance of choosing models that are in line with SNP regulatory 
effects on target genes and relevant tissues related to the trait under study. Subsequently, 
case studies of TWAS implementations are demonstrated, including case studies. After 
a comprehensive examination of 15 studies that employed the FUSION approach and 
further studies using PrediXcan, MetaXcan, S-PrediXcan, and UMOST, an intriguing 
pattern was revealed that highlights the critical function of TWAS in interpreting com-
plex genetic factors of a range of complex diseases. The FUSION studies demonstrate 
the diversity of disorders examined, from Alzheimer’s disease to Tourette’s syndrome, 
and the effectiveness of TWAS in identifying new genes and pathways linked to these 
disorders. By integrating gene expression data from various tissues and populations with 
GWAS summary statistics, scientists have been able to understand previously unknown 
genetic variations, which has led to important new understandings of the molecular 
mechanisms underlying disease. Also, the effective utilization of PrediXcan, MetaX-
can, S-PrediXcan, and UMOST in various settings highlights the adaptability of these 
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techniques in determining the genetic components of disorders such as autism spectrum 
disorder, Alzheimer’s disease, breast cancer, inflammatory bowel disease, and mismatch 
negativity. When taken as a whole, these studies demonstrate how genomic research is 
changing and how it may change how we understand complicated diseases by opening 
up new possibilities for tailored medicine and more focused therapeutic interventions.

Conclusion
Aspects of expanded TWAS applications were examined in this review article, which 
also sheds light on the significance of gene-trait associations for complex diseases and 
traits. Providing an all-encompassing examination of recent developments, methodolo-
gies, and practical implementations in the field of complex trait analysis. The presented 
array of studies employing TWAS and related methodologies shed light on the pivotal 
role of integrative genomics in advancing our understanding of complex diseases. These 
investigations not only unravel the complex genetic landscapes associated with various 
disorders but also showcase the adaptability of TWAS methodologies across different 
types of conditions. The findings presented in these studies not only contribute to our 
understanding of the genetic underpinnings of diseases such as Tourette’s syndrome, 
Alzheimer’s, and rheumatoid arthritis but also unveil novel genes and pathways that may 
serve as potential therapeutic targets. Furthermore, the application of advanced meth-
odologies of TWAS in subsequent stages of research emphasizes the need for compre-
hensive and multidimensional approaches in deciphering the genetic architecture of 
complex traits.

Although this review comprehensively summarizes the applications of TWAS, it is 
important to acknowledge certain inherent limitations. As TWAS is a rapidly evolving 
field, methodologies and tools are constantly changing, making it difficult to directly 
compare studies. Additionally, the heterogeneity observed in the types of diseases, tis-
sues, and populations studied can make it challenging to draw generalized conclusions. 
Lastly, statistical complexities and challenges in interpreting biological mechanisms fur-
ther necessitate cautious interpretation of results. Despite these limitations, TWAS’s 
transformative impact in revealing the genetic foundations of complex disorders is clear, 
and future research in this field promises to advance our understanding of disease gen-
esis while establishing the path for novel personalized disease prevention, diagnosis, and 
treatment, ultimately fostering a new era in precision medicine.
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