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Abstract 

Transmission is an important aspect regarding an effective designing of electric supply 
system. Ensuring reliable and fault-free transmission from the source for effective distri-
bution to the end consumers is very much desirable. In this respect, fast and accurate 
fault detection, particularly in the overhead transmission lines, is very pertinent. Various 
algorithms and novel approaches have been formulated by various researchers aligned 
to this challenge. In this context, a new algorithm influenced by the biotic procedure 
of flight skills of hummingbird seems to be one of the best algorithms to address 
the cited problem. This paper focuses on the formulation of this Artificial Hummingbird 
Algorithm (AHA) and its high accuracy in ameliorating the fault location in transmission 
line. The most common flight skills being used in the algorithm are foraging schemes, 
which includes axial, diagonal, and omnidirectional flights. The proposed AHA 
has been tested using the Simulink prototype in MATLAB for an overhead transmis-
sion line having a length of 300 km and system voltage of 400 kV at suitable lengths. 
Specimen signal of voltages and currents waveforms has been taken at duo ends 
of the overhead transmission line. The results of the proposed algorithm have been 
compared with the results obtained from previous studies, and it has been observed 
that this algorithm yields better results for various kinds of asymmetrical and symmetri-
cal faults.

Keywords: Artificial Hummingbird Algorithm, Current signal, Fault location, Fitness 
function, Simulink, Transmission line and voltage signal

Introduction
One of the most important factors for efficient designing of an electric power system is 
the precise and fast detection of faults in the transmission line. Researchers and acad-
emicians along with industry persons, all across the globe, have carried out various stud-
ies regarding different methods for an effective designing of a power system. The main 
objective of their studies is centered around the most rapid and precise detection of 
faults in the transmission lines. Regarding locating the location of faults, [1–10] have all 
conducted studies to confirm the effective location of faults.

In general, fault locating algorithms which are applied are broadly categorized into two 
groups. In the first group, potential and ampere signals are evaluated only at single end 
[1–3]. In the second group, potential and ampere signals have been evaluated at duo 
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ends of the line [4, 11]. The findings of the studies have indeed put forth the need for a 
better algorithm to be framed for addressing the problem. In this regard, a novel opti-
mization algorithm stimulated by biological instinct of hummingbirds, known as AHA, 
has been elaborately discussed in the current study. Researchers, namely Zhao [12] and 
Ramadan [13], have effectively applied the AHA for engineering design case studies and 
accurate models for solar cell systems, respectively, and their findings have reported 
that AHA yields excellent results compared to the other methods used. The hazards 
associated with the overhead lines are magnified by their ubiquitous exposure to the 
atmosphere and to different natural disturbances and inherited short circuit faults. The 
proposed AHA in the study functions as the fault locator and works to readily identify 
the fault point and thereby to improve the reliability and performance of the power sys-
tem. This is even more so important to justify a sturdy transient detecting system [14]. 
Generally, applied techniques for fault location can be categorized mainly as follows:

i) Methods grounded on impedance measurement [15–17]
ii) Methods based on travelling waves [3, 18–22]
iii) Methods dependent on the higher frequency constituents of potentials and amperes 

caused by symmetrical and unsymmetrical faults on transmission line, known as 
faults-based methods [23, 24].

iv) Intelligent retrieval grounded techniques like artificial neural networks (ANN), 
machine learning [25], support vector regression [26], genetic algorithm (GA) [27], 
and deep learning [28–32]

v) The fuzzy logic systems [33, 34]
vi) Methods based on the wavelet analysis techniques [35, 36]

All the methods mentioned above suffer from some kind of drawbacks based on par-
ticular constraints as far as fault locating is concerned. The proposed AHA is based on 
three flying and foraging skills of hummingbirds, which encompasses all the technical 
attributes required regarding the effective location of faults and thereby to address them 
subsequently.

The study reports on the findings using the stated AHA with previous studies con-
ducted using the other fault location techniques mentioned above and justify the higher 
acceptability and accuracy of AHA in comparison to them.

Throughout the past several decades, various optimization techniques have been 
developed for solving the loads of optimization challenges in various fields of day-to-day 
life [37, 38]. In contemporary years, nevertheless, the complexity of actual optimization 
issues has turned up considerably with the growth of human community and present 
industry operations. Principally, the current optimization methodologies can be charac-
terized into deterministic and metaheuristic algorithm (routines).

Deterministic routines are particular arithmetical algorithms and functions cycli-
cally and repetitively devoid of any unpredictable characteristics. On a stated problem, a 
deterministic approach invariably acquires the identical result for a specific information.

The metaheuristic algorithm has merits which enable this algorithm to efficiently 
search universal optimal answers to given challenges that deterministic methods cannot 
answer. Bioinspired algorithms have attained the maximum acceleration among these 
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methods and are progressively implemented on different engineering problems success-
fully [39–42]

Methods
Aim of the study

The main aim of the study is to find the accurate location of the fault point.

Design of the study

For solving the challenge of accurate fault location, first of all, Simulink model of the 
transmission line is constructed in MATLAB as shown in Fig. 3A and explained in “Sim-
ulink model” section. To optimize the fault location point, a fitness function is formu-
lated on the basis of travelling wave theory. The difference of the voltage at the fault point 
as seen from sending end and receiving end should be zero. Considering this fact, fitness 
function is formulated on the basis of the equations for the voltage at the sending end 
and receiving end as explained in the “Formulation of fitness function” section. These 
equations are constructed on the principle of travelling wave theory as explained in the 
“Formulation of fitness function” section. The voltage at the sending end and receiving 
end is illustrated in Eqs. (10) and (11). AHA is used to optimize the fault location point. 
The algorithm is run in MATLAB.

Methodology used

The methodology used including the introduction to the algorithm used is explained in 
subsequent “Artificial Hummingbird Algorithm (AHA)” and “Results and discussion” 
sections. All the required signals are taken from the Simulink model after running the 
required programs in MATLAB.

Artificial Hummingbird Algorithm (AHA)
Introduction to the algorithm

This algorithm is inspired by biological process, rooted on intellectual conducts of hum-
mingbirds. The hummingbirds by virtue of their ease in mobility are capable of moving 
from one location to the other at a ready pace; also, the locations once visited (called the 
hunt areas) are retained in their memories. They efficiently remember the information 
about individual florets for a particular area counting the location of flower, quality of 
the nectar, and the time they travelled to the flower. Keeping all these information, hum-
mingbirds decide where to visit next for their nourishment and refrain from returning to 
recently visited flowers. Three main foraging models of hummingbirds, which includes 
guided foraging, territorial foraging, and migration foraging, are explained as follows 
[12].

Guided foraging

The arithmetical equation imitating the guided foraging is formulated as follows:

(1)v1i(t + 1) = x1i,tar(t)+ a1.D1.(x1i(t)− x1i,tar(t))
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where x1i(t) denotes the position of ith meal origin at time t and x1i,tar(t) is the point 
of the desired meal source that the ith hummingbird aspires to travel and where a1 is a 
directed component.

Territorial foraging

The following equation illustrates the local hunt of hummingbirds in the territorial for-
aging strategy:

where b1 is a factor related with territory.

Migration foraging

The arithmetical equation for the migration foraging of a hummingbird is denoted as 
follows:

where xwor is the food origin with the poorest rate of nectar replenishment, r is a random 
factor, and up and low are the upper and lower limit ranges, respectively.

The fitness function forms the basis of the algorithm which is explained in the follow-
ing section.

Formulation of fitness function

The proposed AHA is based primarily on the formulation of fitness function which 
serves as the platform for optimization to arrive precisely and readily at the fault loca-
tion in the transmission line. Figure 1 represents the single-phase prototype of a three-
phase transmission line assuming distributed parameters [43, 44]. AS and AR represent 
the voltage sources at sending terminal and the receiving terminal respectively of phase 
A in Fig. 1 [45].

(2)a1 ∼ N1(0, 1)

(3)v1i(t + 1) = x1i(t)+ b1.D.x1i(t)

(4)b1 ∼ N (0, 1)

(5)xwor(t + 1) = Low + r.(Up− Low)

Fig. 1 Single-phase prototype of three-phase line
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The distributed model of transmission line from sending end (S) to fault point (F) seg-
ment of the transmission wire is reflected in Fig. 2.

The following equations are obtained in accordance with Fig. 2 [46].

Ir and  Ix in Eqs. (6) and (7) represent dependant current sources respectively and are 
defined as follows:

where
τ = Time elapsed for the wave to propagate from sending terminal to fault terminal.
Zc = Characteristic impedance of transmission wire.
R.’ = Resistance of line from sending end(S) to fault point (F)

Cancelling the current ix from Eqs. (6, 7, 8 and 9) the voltage at the point of fault loca-
tion can be formulated as function of sending end voltage and current as in Eq. (10).
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Fig. 2 Distributed prototype of overhead transmitting wire (S to F segment)
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Similarly, the voltage at the point of fault location can be formulated as function of 
receiving end voltage and current as in Eq. (11).

where:
T = Time taken for the wave to propagate from sending terminal (S) to receiving ter-

minal (R)
Rr = Line resistance from receiving end (R) to fault point (F)

The voltage at the point of occurrence of fault should be lone in any instance of the 
data utilized for the calculation [47]. In view of this, the two extracted voltages must be 
equivalent at all times. As the potential through the overhead wire is continual, Eqs. (10) 
and (11) can be merged leading to the following equation

Equation (12) ought to be correct as the variation between the voltages must be zero. 
Where the function F is defined as follows:

Equation (13) is the fitness function which has to be minimized to assess the point of 
fault. In this paper, the fitness function is minimized utilizing AHA.
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Fig. 3 Simulink model of the system under study
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Simulink model

The Simulink model of the system as shown in Fig. 3 below is simulated in MATLAB. 
The sending end and receiving end voltage and current signals from this model are used 
in fitness function which is formulated in Eq. 13 and subsequently for running of AHA.

Results and discussion
Suggested method

In this proposed study, AHA is run in MATLAB to get the fault point on the basis of for-
mulated objective function. The Simulink of the network being investigated is illustrated 
in Fig. 3. The single-line diagram of the system is shown in Fig. 4 below.

The parameters of transmission line are denoted in Table  1 [48]. The nominal volt-
age of power system is 400 kV with system frequency as 50 HZ. Phase angle difference 
between sending end and receiving end voltage sources is 25°. The error % is calculated 
as per the formula given in Eq. (14).

where:
XCALCULATED is the calculated location
XREAL is real location
L is total length of line
Various cases of faults at different spans have been simulated, which have been 

reported in the subsequent sections.

(14)EFL = [(XCALCULATED − XREAL ) / L] × 100

Fig. 4 System under study

Table 1 Parameters of transmission line

Parameter Value

R (positive) 0.0275 Ω/km

R (zero) 0.275 Ω/km

L (positive) 1.002768 mH/km

L (zero) 3.4505998 mH/km

C (positive) 13 nF/km

C (zero) 8.5 nF/km
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Table 2 Simulation results for fault occurring at 10 km from sending end

Fault type Calculated location of fault error %age absolute

A-G 9.9856 0.004

B-G 10.0205 0.006

C-G 10 0

AB-G 10.0205 0.006

BC-G 9.9973 0.0009

CA-G 10.0126 0.004

ABC-G 10.0531 0.01

Table 3 Simulation results for fault for fault occurring at 50 km from sending end

Fault type Calculated location of fault error %age absolute

A-G 49.9856 0.005

B-G 49.9272 0.02

C-G 49.9763 0.008

AB-G 50.012 0.004

BC-G 49.9682 0.01

CA-G 49.9574 0.01

ABC-G 49.6434 0.01

Table 4 Simulation results for fault occurring at 100 km from sending end

Fault type Calculated location of fault error %age absolute

A-G 100.01 0.003

B-G 100.0236 0.008

C-G 99.9982 0.0006

AB-G 100.0213 0.007

BC-G 99.9962 0.001

CA-G 100.113 0.0004

ABC-G 99.9987 0.0037

Table 5 Simulation results for fault occurring at 200 km from sending end

Fault type Calculated location of fault error %age absolute

A-G 199.985 0.005

B-G 200.0123 0.004

C-G 200.101 0.03

AB-G 200 0

BC-G 199.9763 0.007

CA-G 200.0112 0.004

ABC-G 199.9815 0.006
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Impact of fault type and location

Various kinds of faults simulated are phase A to ground (A-G), phase B to ground (B-G), 
phase C to ground (C-G), phase A to phase B to ground (AB-G), phase B to phase C to 
ground (BC-G), phase C to phase A to ground (CA-G), and phase A to phase B to phase 
C to ground (ABC-G) with value of fault resistance as 0.00001 Ω. Results for localization 
of fault in transmission line are presented in Tables 2, 3, 4, and 5.

Fig. 5 Simulated current signal recorded at a distance of 10 km against the sending point for A-G fault, 
bearing fault resistance value as 0.00001 Ω 

Table 6 Simulation results for transient existing a stretch of 10 km against sending station bearing 
resistance of fault path as 10 Ω 

Fault type Calculated location of fault error %age absolute

A-G 9.9804 0.006

B-G 10.0119 0.004

C-G 9.9973 0.0009

AB-G 10.0217 0.007

BC-G 10.0014 0.0005

CA-G 9.9978 0.0007

ABC-G 10.0264 0.009
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Table 7 Simulation results for transient existing at a stretch of 10 km against sending station 
bearing resistance of fault path as 50 Ω 

Fault type Calculated location of fault error %age absolute

A-G 9.9864 0.005

B-G 10.0126 0.004

C-G 10.1073 0.0036

AB-G 9.9768 0.008

BC-G 9.9961 0.004

CA-G 9.8657 0.04

ABC-G 10.0254 0.008

Table 8 Simulation results for transient existing at a stretch of 10 km against sending station 
bearing resistance of fault path as 100 Ω 

Fault type Calculated location of fault error %age absolute

A-G 9.9953 0.001

B-G 10.0197 0.006

C-G 10 0

AB-G 10.002 0.0007

BC-G 10.0174 0.006

CA-G 9.9876 0.004

ABC-G 10.0521 0.017

Table 9 Simulation results for transient existing against at a stretch of 50-km sending station 
bearing resistance of fault path as 10 Ω 

Fault  type Calculated location of fault error %age absolute

A-G 49.9763 0.008

B-G 49.935 0.02

C-G 50.0123 0.004

AB-G 50.0658 0.02

BC-G 49.9871 0.004

CA-G 50.0234 0.008

ABC-G 50.0123 0.004

Table 10 Simulation results for transient existing at a stretch of 50 km against sending station 
bearing resistance of fault path as 50 Ω 

Fault  type Calculated location of fault error %age absolute

A-G 49.9531 0.02

B-G 50.0476 0.02

C-G 49.9154 0.03

AB-G 49.7829 0.07

BC-G 49.9967 0.001

CA-G 50.0679 0.02

ABC-G 50.0012 0.0004
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Table 11 Simulation results for transient existing at a stretch of 50 km against sending station 
bearing resistance of fault path as 100 Ω 

Fault  type Calculated location of fault error %age absolute

A-G 49.9962 0.001

B-G 50.0035 0.001

C-G 50.0465 0.01

AB-G 50.123 0.04

BC-G 49.9967 0.001

CA-G 50.0798 0.02

ABC-G 49.9872 0.004

Table 12 Simulation results for transient existing at a stretch of 100 km against sending station 
bearing resistance of fault path as 10 Ω 

Fault type Calculated location of fault error %age absolute

A-G 100.001 0

B-G 100.0175 0.006

C-G 99.9765 0.008

AB-G 100.0157 0.005

BC-G 99.892 0.04

CA-G 100.126 0.04

ABC-G 99.9965 0.001

Table 13 Simulation results for transient existing at a stretch of 100 km against sending station 
bearing resistance of fault path as 50 Ω 

Fault type Calculated location of fault error %age absolute

A-G 99.9967 0.001

B-G 100.026 0.008

C-G 99.9873 0.004

AB-G 100.107 0.03

BC-G 99.9867 0.004

CA-G 100.002 0.0006

ABC-G 99.9793 0.007

Table 14 Simulation results for transient existing at a stretch of 100 km against sending station 
bearing resistance of fault path as 100 Ω 

Fault type Calculated location of fault error %age absolute

A-G 100.1123 0.037

B-G 100.0347 0.011

C-G 99.8963 0.034

AB-G 99.9872 0.004

BC-G 100.0175 0.006

CA-G 100.012 0.004

ABC-G 99.8672 0.045
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Figure 5 shows the current waveform for A-G fault, occurring at a distance of 10 km 
from the sending end, having fault resistance value of 0.00001Ω.

Impact of resistance of fault

Resistance of fault is a very important parameter which influences the correctness 
of methods for fault location. Hence, to estimate the influence of resistance of fault, 
simulations have been performed for numerous fault resistances (10, 50, and 100 Ω) 
with several fault types. Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17 show the 
respective results. Figure 6 shows the current waveform for B-G fault, occurring at a 
distance of 50 km from the sending point having fault resistance value as 10 Ω.

Table 15 Simulation results for transient existing at a stretch of 200 km against sending station 
bearing resistance of fault path as 10 Ω 

Fault type Calculated location of fault error %age absolute

A-G 199.996 0.0013

B-G 200.0175 0.006

C-G 200 0

AB-G 200.123 0.04

BC-G 199.979 0.007

CA-G 200.114 0.038

ABC-G 199.8765 0.04

Table 16 Simulation results for transient existing at a stretch of 200 km against sending station 
bearing resistance of fault path as 50 Ω 

Fault type Calculated location of fault error %age absolute

A-G 199.987 0.004

B-G 199.995 0.0017

C-G 199.865 0.045

AB-G 200.104 0.035

BC-G 200.012 0.004

CA-G 200.102 0.034

ABC-G 199.966 0.011

Table 17 Simulation results for transient existing at a stretch of 200 km against sending station 
bearing resistance of fault path as 100 Ω 

Fault type Calculated location of fault error %age absolute

A-G 200.112 0.004

B-G 200.023 0.007

C-G 199.984 0.005

AB-G 199.987 0.004

BC-G 200.017 0.005

CA-G 199.97 0.01

ABC-G 200.126 0.042



Page 13 of 17Verma et al. Journal of Engineering and Applied Science          (2024) 71:149  

Fig. 6 Simulated current signal recorded at a distance of 50 km from sending point side for B-G fault bearing 
fault resistance value as 10 Ω 

Fig. 7 Fitness graph for AB-G at a stretch of 10 km from sending terminal bearing resistance of fault path as 
10 Ω 
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Fitness graphs for AB-G fault occurring at a distance of 10 km from sending point 
side with fault resistance of 10 Ω and for ABC-G fault, occurring at 200-km dis-
tance from the sending point, and bearing fault resistance value of 50 Ω are shown 
in Figs. 7 and 8, respectively.

Comparison with other studies

Takagi et al. [2] conducted the fault localization study and found that maximum and 
minimum error is 2.6% and 0.6%, respectively. Girgis et  al. [4] reported that when 
electromagnetic transient program (EMTP) is used for locating the fault point, 
the maximum value of the error is less than 1%. The maximal fault location errors 
observed in the study conducted by Mustari et al. [49] and Lavand et al. [50] are 1.5% 
and 1%, respectively. A. Sanad Ahmed et al. [47] concluded that by using GA method 
with the value of fault resistance being 10 Ω, the maximum value of percentage error 
is 0.13% and with fault resistance value of 50 Ω is 0.068%. A. Sanad Ahmed et al. [47] 
concluded that by using Harmonic Search method (HS) with fault resistance value 
of 10 Ω, the maximum value of percentage error is 0.178% and with fault resistance 
of 50 Ω is 0.39%. A. Sanad Ahmed et al. [47] also concluded that by using method of 
teaching-learning-based optimization (TLBO) with fault resistance of 10 Ω, the maxi-
mum value of percentage error is 0.13% and with fault resistance of 50 Ω is 0.833%. 
Contrarily in the presented study, as established from Tables 2, 3, 4, and 5 with fault 
resistance value 0.00001 Ω, the maximum magnitude of the absolute of the % age 
error in fault location is 0.03%, and with varying fault resistances, the study reveals 
from Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, and 17, the maximum magnitude of 
the absolute of % age error in fault location is 0.04%. Consequently, higher precision 

Fig. 8 Fitness graph for ABC-G at a stretch of 200 km from sending terminal bearing resistance of fault path 
as 50 Ω 
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is acquired for the exhibited algorithm compared to the earlier revealed studies. It 
is also concluded that preciseness of location is hardly affected by kind of transient 
(fault) and fault resistance.

Conclusions
Precise and fast detection of fault locations form an intrinsic part of an effective trans-
mission line design, and it is directly related to the efficiency associated with it. Previous 
studies conducted show that the percentage error obtained is higher in magnitude for 
the methods adopted in them compared to the method suggested in this paper. Hence, 
the method suggested in the study offers highly accurate diagnosis of fault locations in 
the transmission line.
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