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Abstract 

This study presents an enhanced fractional-order mathematical model for analyzing 
the dynamics of Klebsiella pneumonia infections and antibiotic resistance over time. 
The model incorporates fractional Caputo derivative operators and kernel, to provide 
a more comprehensive understanding of the complex temporal dynamics. The model 
consists of three groups: Susceptible (S), Infected (I), and Resistant (R) individuals, each 
controlled by a fractional differential equation. The model represents the interaction 
between infection, recovery from infection, and the possible development of antibiotic 
resistance in susceptible individuals. The existence, uniqueness, stability, and align-
ment of the model’s prediction to the observed data were analyzed and buttressed 
with numerical simulations. The results show that imipenem has the highest efficacy 
compared with ertapenem and meropenem category drugs. The estimated reproduc-
tion number and reproduction coefficient illustrate the potential impact of this model 
in improving treatment strategies, while the memory effects highlight the advantages 
of fractional differentiation. The model predicts an increased possibility of antibiotic 
resistance despite effective treatment, suggesting a new treatment approach.

Keywords:  Klebsiella pneumonia, Infection dynamics, Antibiotic resistance, Fractional 
differential equations, Caputo derivative, Mathematical modeling
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Introduction
Klebsiella pneumoniae is a Gram-negative bacterium that has posed a serious pub-
lic health challenge in the world. It can cause different types of infections, from uri-
nary tract infections to life-threatening pneumonia, and with its growing antibiotic 
resistance. This necessitates a deep understanding of how it causes infections as well 
as develops resistance [1–5]. According to [6], K. pneumonia is by far the most signifi-
cant contributor to global antibiotic resistance particularly within institutions where 
there are always high-risk (HiR) epidemic strains that are generally resistant to multi-
ple antibiotics. Consequently, these strains cause limited treatment options leading to 
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more deaths, complications, and increased costs of healthcare. Klebsiella pneumoniae, 
being a hospital-acquired pathogen, continuously receives exposure to different antibi-
otics leading to evolutionary pressure aiming for further positive mutations. The drug 
resistance pattern also comprises a wide range of antibiotic resistance genes (ARGs) that 
encompass both chromosomal and plasmid-encoded gene cassettes. Plasmid-mediated 
resistome and transposons facilitate horizontal transfer to other bacterial strains, con-
tributing to the spread of resistance determinants. Authors of [7] emphasize that man-
aging antimicrobial resistance in multi-drug-resistant K. pneumonia (MDR-KP) poses a 
significant challenge for clinicians. The optimal treatment approach for MDR-KP infec-
tions remains uncertain, prompting the exploration of various combination therapies 
involving antibiotics like meropenem, colistin, fosfomycin, tigecycline, and aminoglyco-
sides. New antimicrobials targeting MDR-KP are in different stages of clinical research 
and development. They emphasize the need for coordinated strategies, infection con-
trol, and prudent antimicrobial use to limit MDR-KP spread and improve treatment out-
comes. Combination therapies and newer drugs like ceftazidime-avibactam are explored 
for their potential in treating MDR-KP infections.

Mathematical models have shown to be useful in describing complex phenomenons, 
which have led to the development and optimization of treatment strategies and pub-
lic health interventions [8–13]. Authors of [14] investigated the future clinical scenario 
of K. pneumonia, a significant pathogen causing healthcare-associated infections with 
antibiotic resistance. They used an integer mathematical modeling approach (SIS-type 
model) with retrospective medical data to predict the spread of extended-spectrum 
beta-lactamase (ESBL)-producing K. pneumonia. The study revealed that ESBL-pro-
ducing strains will possibly exceed non-ESBL strains in around 70 months, indicating 
the urgent need for preventive measures. Sensitivity analysis highlighted the critical role 
of antibiotic use in the development of ESBL-producing strains. The study emphasizes 
proper antibiotic use, infection control, and surveillance to mitigate the rise of antibi-
otic-resistant K. pneumonia. Integer ordinary differential equation models (ODE), while 
widely used in epidemiology, have some limitations when applied to the study of com-
plex infectious diseases such as K. pneumonia infections and antibiotic resistance. A 
significant limitation is their inability to fully represent the complex dynamics and dif-
ferentials of non-integer order observed in real systems. Integer-order models typically 
assume constant rates of transmission, recovery, and resistance development and ignore 
possible differences that may be critical in the context of rapid pathogen evolution. 
Furthermore, these models can have difficulty describing population diversity because 
they often rely on averages and assumptions of homogeneous mixtures. Integer ODE 
methods can generalize dynamics, leading to inaccurate predictions of the increase and 
spread of antibiotic-resistant strains. The model proposed in this study incorporates 
fractional differential equations to better explain the complexity and dynamics of infec-
tious disease dynamics by proposing a more flexible framework to address some of these 
limitations. Many scientists [15–19] have employed the Susceptible-Infected-Resistant 
(SIR) framework in studying infections and drug effectiveness. However, no author in 
the literature has narrowed their research to  K. pneumonia using (SIR) fractional-order 
dynamics to ascertain and compare drug effectiveness as well as predict future scenarios 
of the susceptible, infected, and resistant population.
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In this study, we introduce an advanced mathematical model that integrates 
fractional Caputo derivative operators into the traditional Susceptible-Infected-
Resistant (SIR) framework. The use of fractional-order differentiation improves the 
model’s competence to capture intricate chronological behaviors in the context of K. 
pneumonia infections and antibiotic resistance. Our model consists of three groups: 
Susceptible (S), Infected (I), and Resistant (R), each governed by fractional-order dif-
ferential equations. Within the model, the Susceptible group accounts for individu-
als susceptible to infection and their recovery rates. In the Infected group, we study 
the dynamic interaction among susceptible individuals becoming infected, recuper-
ating from infection, and possibly developing antibiotic resistance. The Resistant 
group demonstrates people who have become immune to antibiotics.

Our model uses fractional-order differentiation as well and this facilitates more 
sophisticated investigations of the sequential dynamics which may not be appar-
ent using the traditional integer-order differential equations. It is a useful research 
tool for epidemiologists and medical mathematicians who aim at understanding 
K. pneumonia infections and antibiotic resistance better to improve disease man-
agement and treatment approaches. What distinguishes this study is the incorpo-
ration of fractional-order dynamics into the Susceptible-Infected-Resistant (SIR) 
framework for K. pneumonia. As a result, it explores more superior drug effective-
ness future scenarios and new perspectives on how to combat antibiotic-resistant 
K. pneumonia. The method used in this research involves employing fractional dif-
ferential equations within the Susceptible-Infected-Resistant (SIR) framework to 
simulate K. pneumonia infections and antibiotic resistance dynamics because it has 
several benefits. One significant advantage is its capacity to capture complex and 
intricate behaviors in the dynamics of the susceptible, infected, and resistant pop-
ulations, such as memory effect [20–22]. The fractional-order dynamics provide a 
refined representation of the temporal evolution of the system, allowing for a closer 
approximation of real-world complexities. Furthermore, the model’s increased sen-
sitivity to changes in parameters and initial conditions, especially as the fractional 
order approaches 1, has the potential to more accurately represent the impact of 
subtle changes on infection spread and resistance development. However, as with 
any modeling approach, there are inherent shortcomings. The complexity caused by 
fractional differential equations can lead to computational costs and interpretability 
challenges. The need for accurate parameter estimates and validation against empiri-
cal data is becoming increasingly important, and model performance depends on the 
availability of precise input parameters. Furthermore, adopting and applying frac-
tional-order dynamics may require a more comprehensive understanding by practi-
tioners and researchers, which may limit their accessibility for practical applications. 
Balancing the benefits of increased realism with the computational and interpretive 
requirements are key considerations for the successful application of this approach 
in understanding and predicting K. pneumonia infections and antibiotic resistance 
dynamics. To formulate a mathematical model to describe the dynamics of K. pneu-
monia infections and antibiotic resistance over time, we use a simple compartmental 
model as shown in Eq. (1), with the description of the variables and parameters in 
Table 1.
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Method
Collection of microbiological data

The study comprised 937 strains of K. pneumonia isolated in the university hospital micro-
biology laboratory between January 2018 and July 2023. Antibiotic susceptibilities of these 
strains, obtained from hospitalized patients, were determined using the Biomérieux Vitek® 
2 automated system. The effectiveness of carbapenem group antibiotics, namely ertapenem, 
imipenem, and meropenem, on these strains was evaluated using a mathematical model.

The K. pneumonia fractional‑order model

A fractional-order model of the Caputo type is employed to describe the disease dynam-
ics, schematically shown in Fig. 1, and mathematically in system (1). The proof of the 
existence and uniqueness of the system is established using the Banach contraction prin-
ciple, and the stability of the solution is shown using the Jacobian matrix. Numerical 
analysis was simulated using MATLAB implementing the Predictor Corrector Scheme 
[23, 24]. All variables and parameters are explained in Table 1.

where P(t) = S(t)+ I(t)+ R(t) and c0D
α
t  is the Caputo fractional differential operator 

which is defined in Definition 3, with the following initial conditions:

(1)

c
0D

α
t S(t) = �α − βα · I(t) · S(t)+ δα · I(t)

c
0D

α
t I(t) = βα · I(t) · S(t)− δα · I(t)− µα · I(t)

c
0D

α
t R(t) = µα · I(t)− θα · R(t)

Fig. 1  Schematic diagram of the model (1)

Table 1  Variables and parameters in the K. pneumonia infection and antibiotic resistance model

Symbol Description Meaning

S(t) Susceptible Number of individuals susceptible to

K. pneumonia infection at time t

I(t) Infected Number of infected individuals

(not necessarily resistant) at time t

R(t) Resistant Number of individuals infected with

K. pneumonia and resistant

to antibiotics at time t

�α Recruitment rate Rate at which individuals become susceptible

βα Transmission rate Rate of infection transmission

δα Infected recovery rate Rate of recovery of infected individuals

µα Resistance development rate Rate at which infected individuals

develop antibiotic resistance

θα Resistance recovery rate Rate of recovery of resistant individuals
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Fractional-order Caputo differential operator c0D
α
t  is used in the model (1). It presents 

a more comprehensive view of how K. pneumonia infections and antibiotic resistance 
develop over time. This model is divided into three groups: Susceptible (S), Infected (I), 
and Resistant (R) which are governed by fractional differential equations. The model 
explores how susceptible individuals may get infected at ( βα ) rate, recover from the 
infection at ( δα ) rate, and possibly develop antibiotic resistance over time at ( µα ) rate. 
In the case of the Susceptible group, the rate of change c0D

α
t S(t) shows the number of 

people who can be infected and then recover concerning the number of infected ones 
(I). The Resistant group consists of individuals who have developed resistance towards 
antibiotics and recover at a rate ( θα ) from infection. Complex dynamics are better stud-
ied using this Caputo derivative-based model for K. pneumonia infections and antibiotic 
resistance, which takes into account non-integer order differentiation to capture more 
non-linear and complex behaviors.

Preliminaries

Definition 1  Caputo derivative [25]

The Caputo derivative of order α ∈ (0, 1) of a sufficiently differentiable function f(t) is 
defined as follows:

where Ŵ is the gamma function.

Definition 2  Gamma function [26]

The gamma function Ŵ(z) is defined for Re(z) > 0 by the integral

Definition 3  Let α ∈ R , n− 1 < α ≤ n , n ∈ N , and f(t) be absolutely continuous on 
[0,∞) . The Caputo fractional derivative of order α is defined as [27, 28]:

where f(t) is n times differentiable and Ŵ(x) is the Gamma function:

S(0) = S0 > 0, I(0) = I0 > 0, R(0) = R0 > 0.

Dα
t f (t) =

1

Ŵ(1− α)

t

0
(t − τ )−α d

dτ
f (τ )dτ ,

Ŵ(z) =

∫ ∞

0
xz−1e−xdx.

c
0D

α
t f (t) =

1

Ŵ(n− α)

∫ t

0
(t − s)n−α−1, f (n)(s), ds, t ∈ [0,Tf ], α ∈ (0, 1],

Ŵ(x) =

∫ ∞

0
e−z , zx−1, dz, Re(z) > 0.
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Definition 4  The Riemann–Liouville fractional integral of order α > 0 of a function 
f(t) is defined as [27, 28]:

This integral exists almost everywhere for any integrable function f(t).

The Riemann–Liouville integral and the Caputo fractional derivative operators satisfy 
the following property:

Definition 5  The Mittag–Leffler function Eσ (w) is defined as:

Its generalized form Eσ ,ς (w) is defined as:

These functions are called Mittag–Leffler functions [29].

Definition 6  Laplace transform of the Caputo derivative [30]

The Laplace transform of the Caputo derivative Dα
t  of order α ∈ (0, 1) of a function f(t) 

is defined as:

where Lf (t)(s) is the Laplace transform of f(t) and f (0+) denotes the right-sided limit of 
f(t) at t = 0.

Definition 7  Banach contraction principle [31]

Let (X, d) be a metric space, and let T : X → X be a function. Then T is a Banach con-
traction if there exists a constant 0 ≤ k < 1 such that for all x, y ∈ X,

Model analysis

Theorem 1  The solution to system (1) exists and is unique.

RL
0 Iαt f (t) =

1

Ŵ(α)

∫ t

0
(t − s)α−1, g(s), ds, t ∈ [0,Tf ].

RL
0 Iαt (

c
0D

α
t f (t)) = f (t)−

n−1
∑

k=0

f (k)(0)
tk

k!
, n− 1 < α ≤ n.

Eσ (w) =

∞
∑

k=0

wk

Ŵ(1+ kσ)
, σ ∈ C, , Re(σ ) > 0, ,w ∈ C.

Eσ ,ς (w) =

∞
∑

k=0

wk

Ŵ(ς + kσ)
, σ , ς ∈ C, , Re(σ ), Re(ς) > 0, ,w ∈ C.

LDα
t f (t)(s) = sαLf (t)(s)− sα−1f (0+),

d(T (x),T (y)) ≤ k , d(x, y).
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Proof  We first show that system (1) is bounded [32, 33]:

Theorem 2  The system solution (1) exists and is unique.

Proof 

Using the Laplace transform method in Defintion 6 to solve Gronwall’s inequality [34] 
with initial condition P(t0) ≥ 0 , we get:

where the series of the Mittag-Leffler functions Eα(−θαtα) and E(α,i+1)(−θαtα) converge 
(see Definition 5). Therefore, the system (1) has a bounded solution and the biologically 
feasible region is given as: � =

{

P(t) ∈ R
5 | P(t) ≤ �α

θα [1− Eα(−θα tα)]+
∑

n−1
i=0 E(α,i+1)(−θα tα)P(i)(t0)t

i

}.

c
0D

α
t P(t) =

c
0D

α
t S(t)+

c
0D

α
t I(t)+

c
0D

α
t R(t)

≤ �α − θαP(t),

L{c0D
α
t P(t)+ θαP(t)} ≤ L{�α},

SαL{P(t)} −

n−1
∑

i=0

Sα−i−1P(i)(t0)+ θαL{P(t)} ≤
�α

S
,

L{P(t)}(Sα + θα) ≤

n−1
∑

i=0

Sα−i−1P(i)(t0)+
�α

S
,

L{P(t)} ≤

n−1
∑

i=0

Sα−i−1

(Sα + θα)
P(i)(t0)+

�α

S(Sα + µα)
,

L{P(t)} ≤
�α

θα

[

1

S
−

1

S{1+ θα

Sα }

]

+

n−1
∑

i=0

1

Si+1{1+ θα

Sα }
P(i)(t0).

L{P(t)} ≤
�α

θα

[

1

S
−

1

S

∞
∑

n=0

(

−
θα

Sα

)n
]

+

n−1
∑

i=0

∞
∑

n=0

(−θα)n

Sαn+i+1
P(i)(t0),

L{P(t)} ≤
�α

θα

[

1−

∑∞
n=0 (−θαtα)n

Ŵ(αn+ 1)

]

+

n−1
∑

i=0

∞
∑

n=0

(−θα)n

Sαn+i+1
P(i)(t0)t

i,

P(t) ≤
�α

θα

[

1−

∑∞
n=0(−θαtα)n

Ŵ(αn+ 1)

]

+

n−1
∑

i=0

∞
∑

n=0

(−θα)n

Sαn+i+1
P(i)(t0)t

i,

P(t) ≤
�α

θα
[1− Eα(−θαtα)]+

n−1
∑

i=0

E(α,i+1)(−θαtα)Pi(t0)t
i.
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Next, we rewrite system (1) as:

where y(t) is the vector of dependent variables S(t), I(t), and R(t), and H(t, y(t)) is the vec-
tor of corresponding right-hand sides of the differential equations

where L = (�A� + 1) , and L�y(t)− yα(t)� < ∞.
Hence, H is uniformly Lipschitz continuous and bounded.
We proceed to complete the proof for the uniqueness of the system (1).
Let 0 < α < 1 , φ = [0, z∗] ⊆ R and ψ = �y(t)− y(0)� ≤ K  , and h : φ × ψ → R be a 

continuous bounded function, such that |h(t, y)| ≤ M , since H is Lipschitz continuous.
Let LK < M , then there exists a unique y ∈ Cα[0, z∗] for the initial value problem (2), 

where z∗ =

{

z,
(

KŴ(α+1)
M

)
1
α

}

.

Let E = {y ∈ Cα[0, h∗] : �y(t)− y(0)� ≤ K } , observe that E ⊆ R is closed and hence a 
complete metric space.

Transforming the system (2) to the equivalent Volterra integral equation:

Defining an operator H in E , as H : E → E:

(2)

c
0D

α
t y(t) = H(t, y(t)), t ∈ [0,T0],

H(t, y(t)) = A(y)+ B(y)+ c,

y(0) = y0.

y(t) =





S(t)
I(t)
R(t)



, H(t, y(t)) =





�α − βα · I(t) · S(t)+ δα · I(t)
βα · I(t) · S(t)− δα · I(t)− µα · I(t)

µα · I(t)− θα · R(t)



.

|H(t, y)−H(t, y∗)| = |A(y)+ B(y)+ c − (A(y∗)+ B(y∗)+ c)|,

= |A(y(t)− y∗(t))+ B(y(t)− y∗(t))|,

≤ �A(y(t)− y∗(t))� + �B(y(t)− B(y∗(t))�,

= �A��y(t)− y∗(t)� + �B��y(t)− B(y∗(t))�,

≤ �A��y(t)− y∗(t)� + �y(t)− y∗(t)�,

= (�A� + 1)�y(t)− y∗(t)�,

= L�y(t)− y∗(t)�.

c
0D

−α
t

[

c
0D

α
t y(t)

]

= c
0D

α
t h(t, y),

y(t)− y(0) =
1

Ŵ(α)

∫ t

0
(t − ϕ)α−1h(ϕ, y(ϕ)) dϕ,

y(t) = y(0)+
1

Ŵ(α)

∫ t

0
(t − ϕ)α−1h(ϕ, y(ϕ)) dϕ.

H [y](t) = y0 +
1

Ŵ(α)

∫ t

0
(t − ϕ)α−1h(ϕ, y(ϕ)) dϕ.
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It follows that:

So, H is well defined.
Next;

So, |H [y] −H [y∗]| ≤ LK
M �y− y∗� , and from hypothesis LKM < 1.

Therefore, as a consequence of the Banach contraction principle [35], E is a contrac-
tion and has a unique fixed point [36]. Hence, from the Picard-Lindelöf theorem [37], 
the system (1) has a unique solution.

Theorem 3  System (1) is locally asymptotically stable at the given positive equilibrium.

Proof  To prove the local asymptotic stability of the system described by Eq. (1), we will 
analyze the system’s equilibrium points and the stability of those points using lineariza-
tion. The equilibrium points are those where the derivatives are zero, i.e., where

Equilibrium points:
To find the equilibrium points, we set c0D

α
t S(t) = 0 , c0D

α
t I(t) = 0 , and c0D

α
t R(t) = 0 . 

This leads to the following equations:

From Eq. (3), we can solve for Seq:

|H [y(t)] − y(0)| =

∣

∣

∣

∣

1

Ŵ(α)

∫ t

0
(t − ϕ)α−1h(ϕ, y(ϕ)) dϕ

∣

∣

∣

∣

,

≤
1

Ŵ(α)

∫ t

0
(t − ϕ)α−1L dϕ,

≤
M

Ŵ(α + 1)
h∗α ,

≤
M

Ŵ(α + 1)

KŴ(α + 1)

M
,

≤ K .

|H [y](t)−H [y∗](t)| =

∣

∣

∣

∣

1

Ŵ(α)

∫ t

0
(t − ϕ)α−1

[

h(ϕ, y(ϕ))− h(ϕ, y∗(ϕ))
]

dϕ

∣

∣

∣

∣

,

≤
1

Ŵ(α)

∫ t

0
(t − ϕ)α−1L�y− y∗� dϕ,

≤
L

Ŵ(α + 1)
�y− y∗�h∗α ,

≤
L

Ŵ(α + 1)
�y− y∗�

KŴ(α + 1)

M
,

c
0D

α
t S(t) = 0, c

0D
α
t I(t) = 0, and c

0D
α
t R(t) = 0.

(3)−βα · S · I + δα · I = 0,

(4)βα · S · I − (δα + µα) · I = 0,

(5)µα · I − θα · R = 0.
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Substituting this into Eq. (4), we can solve for Ieq:

Finally, substituting the values of Ieq and Seq into Eq. (5), we can solve for Req:

So, the equilibrium points are given by:

Stability analysis [38]:
To analyze the stability of the equilibrium points, we will linearize the system around 

these points. We will calculate the Jacobian matrix J  of the system evaluated at the equi-
librium point (Seq , Ieq ,Req):

where Ṡ, İ , and Ṙ are the right-hand sides of your equations. Then, we will evaluate the 
eigenvalues of the Jacobian matrix J  at the equilibrium point.

If all eigenvalues of J  have negative real parts, then the equilibrium point is locally 
asymptotically stable.

Calculation of Jacobian matrix:
Let us calculate the Jacobian matrix J  for the given system. We will differentiate each 

equation with respect to S, I , and R:

where 1̇, 2̇, 3̇ are the right-hand sides of your equations. Differentiating Eq. (1) with 
respect to S, I , and R , we get:

Differentiating Eq. (4) with respect to S, I , and R , we get:

Seq =
β

δα
Ieq .

Ieq =
δα + µα

δα
.

Req =
θα(δα + µα)

µαδα
.

(Seq , Ieq ,Req) =

(

β

δα
Ieq ,

δα + µα

δα
,
θα(δα + µα)

µαδα

)

.

J =







∂ Ṡ
∂S

∂ Ṡ
∂I

∂ Ṡ
∂R

∂ İ
∂S

∂ İ
∂I

∂ İ
∂R

∂Ṙ
∂S

∂Ṙ
∂I

∂Ṙ
∂R






,

J =







∂ 1̇
∂S

∂ 1̇
∂I

∂ 1̇
∂R

∂ 2̇
∂S

∂ 2̇
∂I

∂ 2̇
∂R

∂ 3̇
∂S

∂ 3̇
∂I

∂ 3̇
∂R






,

∂ 1̇

∂S
= −βα · Ieq ,

∂ 1̇

∂I
= −βα · Seq ,

∂ 1̇

∂R
= 0.
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Differentiating Eq. (5) with respect to S, I , and R , we get:

Now, we can assemble the Jacobian matrix J :

Next, we will evaluate the eigenvalues of this matrix at the equilibrium point (Seq , Ieq ,Req) 
to determine the stability. To compute the eigenvalues of the Jacobian matrix J at the equi-
librium point (Seq, Ieq,Req) , we will use the Jacobian matrix J that we derived previously. 
Now, we can calculate the eigenvalues by solving the characteristic equation:

where I is the identity matrix, and � is the eigenvalue we are solving for.
Substituting the values from the Jacobian matrix:

Now, we can simplify and solve for � by expanding the equation:

So we get:

	�  �

∂ 2̇

∂S
= βα · Ieq ,

∂ 2̇

∂I
= βα · Seq − (δα + µα),

∂ 2̇

∂R
= 0.

∂ 3̇

∂S
= 0,

∂ 3̇

∂I
= µα ,

∂ 3̇

∂R
= −θα .

J =





−βαIeq βαIeq 0
βαSeq βαSeq − (δα + µα) 0
0 µα − θα



.

det(J − �I) = 0.

det









−βα · Ieq − � − βα · Seq 0
βα · Ieq βα · Seq − (δα + µα)− � 0

0 µα − θα − �







 = 0

⇒
�

−βα · Ieq − �
���

βα · Seq − (δα + µα)− �
�

(−θα − �)
�

− β2 · Ieq · Seq = 0.

(

−βα · Ieq − �
)((

βα · Seq − (δα + µα)− �
)

(−θα − �)
)

− β2 · Ieq · Seq = 0

⇒
(

βα · Ieq + �
)(

βα · Seq − (δα + µα)− �
)

(θα + �)− β2 · Ieq · Seq = 0

�1 = −θα ,

�2 = −
1

2

(

δα +

√

(δα + βαIeq + µα − βαSeq)2 − 4βαµαIeq + βα
Ieq + µα − βα

Seq

)

,

�3 = −
1

2

(

δα −

√

(δα + βαI(t)+ µα − βαSeq)2 − 4βαµαIeq + βα
Ieq + µα − βα

Seq

)

.
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Since all three eigenvalues have negative real parts, it indicates that the equilibrium 
point of the system (1) is locally asymptotically stable. Therefore, the system (1) is 
stable.

Reproduction number and coefficient
Reproduction number (R0)  [39]: The basic reproduction number, denoted as (R0) , por-
trays the expected number of secondary cases produced by one infected individual when 
introduced into a completely susceptible population. For our model, the linearized equa-
tions can be written as follows:

Now, let us find the Laplace transforms of I(t) and R(t) by solving these equations:

Since we are interested in the behavior near the disease-free equilibrium, we consider 
the case where I(s) and R(s) are both zero. Now, we can compute (R0) using the next-
generation matrix approach:

Reproduction coefficient (R) [40]: The reproduction coefficient, denoted as R, por-
trays the expected number of secondary cases produced by one infected individual when 
introduced into a partially immune population. It is related to(R0) as follows:

Sensitivity analysis
We want to compute the sensitivity of the final susceptible population S(T) to a change 
in the parameters βα and δα . To compute the sensitivity coefficients, we first need to find 
the solution to the fractional differential equation for the baseline parameters and then 
for the perturbed parameters.

Baseline solution: Let us denote the baseline solution as Sb(T ) for the baseline param-
eters βb and δαb.

sαS(s) = δαI(s)

sαI(s) = −δαI(s),

sαR(s) = −θαR(s).

I(s) =
sα

δ
I(s) =⇒ I(s) = 0 or sα = δα ,

R(s) =
sα

θα
R(s) =⇒ R(s) = 0 or sα = θα .

(6)
R0 =

Sum of products of contact rates and fractions of the population that is susceptible

Recovery rate
,

=

βα
· S

δ
.

(7)
R = R0 ·

(

1−
1

R0

)

· Fraction of the population that is susceptible,

=
βα · S

δ
·

(

1−
1

R0

)

.
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Perturbed solution (for βα ): We perturb the parameter βα by a small amount δαβα to 
obtain a new equation:

Solve this equation to obtain the solution S′(β)(T ) with the perturbed parameter 
βα
b + δαβ.
Perturbed solution (for δα ): Similarly, we perturb the parameter δα by δαβα to obtain a 

new equation:

Solve this equation to obtain the solution S′′(δα)(T ) with the perturbed parameter 
δαb + δαβα.

Compute sensitivity coefficients:
For βα:

For δα:

These sensitivity coefficients Sβα and Sδα represent how changes in the parameters βα and 
δα influence the final susceptible population S(T).

Sensitivity of group I(t):
For group I(t), the fractional differential equation is:

Sensitivity to βα:
We perturb the parameter βα by δαβα:

The sensitivity coefficient for βα is calculated as:

Sensitivity to δα:
We perturb the parameter δα by δαβα:

The sensitivity coefficient for δα is calculated as:

(8)0 = βα
b + δαβα · I(t) · S′(t)− δαb · I(t)

(9)0 = βb · I(t) · S
′′(t)− δα · I(t)− (δαb + δαβα) · I(t)

(10)δαSβα =
dβα

dS(T )
=

δαβα

S′(T )− Sb(T )
.

(11)δαSδα =
dδα

dS(T )
=

δαβα

S′′(T )− Sb(T )
.

(12)0 = βα · I(t) · S(t)− δα · I(t)− µα · I(t).

(13)0 = (βα
b + δαβα) · I(t) · S(t)− δα · I(t)− µα · I(t).

(14)δαIβα =
dβ

dI(T )
=

δαβα

I ′(T )− Ib(T )
.

(15)0 = βα · I(t) · S(t)− δα · I(t)− (µα
b + δαβα) · I(t).

(16)δαIδα =
dδα

dI(T )
=

δαβα

I ′′(T )− Ib(T )
.
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Sensitivity of group R(t):
For group R(t), the fractional differential equation is:

Sensitivity to βα:
We perturb the parameter βα by δαβ:

The sensitivity coefficient for βα is calculated as:

Sensitivity to δα:
We perturb the parameter δα by δαβα:

The sensitivity coefficient for δα is calculated as:

These sensitivity coefficients represent how changes in the parameters βα and δα influ-
ence the final populations of groups I(t) and R(t).

Drug effectiveness analysis
To integrate a drug effectiveness analysis with model (1), we will introduce variables to 
represent the effectiveness indices of each drug category and modify the infection and 
recovery rates based on these indices. Let us denote the effectiveness indices as follows:

We can update the model equations in (1) as follows to incorporate the drug 
effectiveness:

We can compute the efficiency indices for each drug class as follows:

In Eq. (22), the recovery rate ( δα ) is adapted based on the efficiency catalogs of each drug 
category. To regulate the most effective drug category over time, we can calculate the 
effectiveness indices ( E1 , E2 , E3 ) based on the data. Then, we can use these efficiency 
indices in the adapted model equations to simulate the dynamics of K. pneumonia 

(17)0 = µα · I(t)− θα · R(t).

(18)0 = µα · I(t)− θα · R′(t).

(19)δαRβα =
dβα

dR(T )
=

δαβα

R′(T )− Rb(T )
.

(20)0 = µα · I(t)− (θαb + δαβα) · R′′(t).

(21)δαRδα =
dδα

dR(T )
=

δαβα

R′′(T )− Rb(T )
.

E1 : Effectiveness index of Ertapenem

E2 : Effectiveness index of Imipenem

E3 : Effectiveness index of Meropenem.

(22)

c
0D

α
t S(t) = �α − βα · I(t) · S(t)+ δα · I(t) · (1− E1) · (1− E2) · (1− E3)

c
0D

α
t I(t) = βα · I(t) · S(t)− δα · I(t)− µα · I(t)

c
0D

α
t R(t) = µα · I(t)− θα · R(t).

Effectiveness Index = Sensitivity− Resistance.
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infections and antibiotic resistance over time. The drug category with the highest effec-
tiveness index at a given time will be the most effective in controlling the infection. This 
method allows us to implement the analysis of drug efficiency into the original model, 
providing an all-inclusive understanding of the disease dynamics while considering the 
influence of diverse treatments.

Numerical analysis
To numerically solve systems (1) and (22), we consider the initial value problem in (1):

Employing the Riemann–Liouville integral operator in Definition 4, we get:

Substituting t = tm and t = tm+1 into Eq. (23) and subtracting the obtained equa-
tions, we get:

where tj = jh , j = 0, 1, . . . ,N  , and h = Tf /N  portrays the step size. We approximate 
f(s, y(s)) on [tm, tm+1] using two-step Lagrange polynomial interpolation:

where yk = y(tk) . Using (24) and (25), we have:

Employing integration by parts, (26) becomes:

Since ym+1 appears on the right side of (27), this equation is implicit, requiring the 
prediction of ym+1 as ypm+1 . Therefore, (27) serves as a corrector formula. In (24), we use 
the rectangle rule for the integral part, resulting in the following predictor formula:

c
0D

α
t y(t) = f(t, y(t)), y(0) = y0.

(23)y(t)− y0 =
1

Ŵ(α)

∫ t

0
(t − s)α−1 f(s, y(s)) ds.

(24)y(tn+1) = y0 +
1

Ŵ(α)

n
∑

m=0

∫ tm+1

tm

(tn+1 − s)α−1 f(s, y(s)) ds,

(25)
f(s, y(s)) ≈

s − tm+1

tm − tm+1
f(tm, ym)+

s − tm

tm+1 − tm
f(tm+1, ym+1)

= −
s − tm+1

h
f(tm, ym)+

s − tm

h
f(tm+1, ym+1),

(26)

yn+1 = y0 +
1

hŴ(α)

{ n
∑

m=0

∫ tm+1

tm

(tn+1 − s)α−1 (s − tm) f(tm+1, ym+1) ds

−

n
∑

m=0

∫ tm+1

tm

(tn+1 − s)α−1 (s − tm+1) f(tm, ym) ds

}

, n = 0, 1, . . . ,N .

(27)
yn+1 = y0 +

hα

Ŵ(α + 2)

n
∑

m=0

{

[(n−m+ 1)α+1 − (n−m)α(n−m+ α + 1)] f(tm+1, y
p
m+1)

− [(n−m+ 1)α(n−m− α)− (n−m)α+1] f(tm, ym)

}

, n = 0, 1, . . . ,N .
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where

Therefore, the numerical formula for system (1) is as follows:
The predictor formula:

The corrector formula:

Results and discussion
The analytic computations show that the model (1) has a unique and stable solution, and 
the numerical analysis further buttresses these results. According to Fig. 2, our compu-
tations demonstrate a strong fit between model predictions and the empirical data. Our 
model correctly predicts the average of the observed annual data. Based on our model 
predictions, Meropenem’s effectiveness index is negative in Figs. 3 and 6. For instance, 
this could indicate that Meropenem would not be best suited to treating K. pneumo-
nia according to such assumptions about what works within such models. The efficiency 
ratios obtained from the modeling process give insight into which drug category are 
most effective against K. pneumonia infections. Imipenem emerged as the most effica-
cious antibiotic, showcasing a positive effectiveness index as depicted in Figs. 4 and 6, 

(28)y
p
n+1 = y0 +

hα

Ŵ(α + 1)

n
∑

m=0

Bn(n+1)
2 +m+1

f(tm, ym), n = 0, 1, . . . ,N ,

Bn(n+1)
2 +m+1

= (n−m+ 1)α − (n−m)α , n = 0, 1, . . . ,N , m = 0, 1, . . . , n.

S
p
n+1 = S0 +

hα

Ŵ(α + 1)

n
∑

m=0

Bn(n+1)
2 +m+1

{

�α − βα · Im · Sm + δα · Im

}

,

I
p
n+1 = I0 +

hα

Ŵ(α + 1)

n
∑

m=0

Bn(n+1)
2 +m+1

{

βα · Im · Sm − δα · Im − µα · Im

}

,

R
p
n+1 = R0 +

hα

Ŵ(α + 1)

n
∑

m=0

Bn(n+1)
2 +m+1

{

µα · Im − θα · Rm

}

.

Sn+1 = S0 +
hα

Ŵ(α + 2)

n
∑

m=0

[

((n−m+ 1)α+1 − (n−m)α(n−m+ α + 1))

{

�α − βα · I
p
m+1 · S

p
m+1

+ δα · I
p
m+1

}

− ((n−m+ 1)α(n−m− α)− (n−m)α+1)

{

�α − βα · Im · Sm + δα · Im

}]

,

In+1 = I0 +
hα

Ŵ(α + 2)

n
∑

m=0

[

((n−m+ 1)α+1 − (n−m)α(n−m+ α + 1))

{

βα · I
p
m+1 · S

p
m+1 − δα · I

p
m+1

− µα · I
p
m+1

}

− ((n−m+ 1)α(n−m− α)− (n−m)α+1)

{

βα · Im · Sm − δα · Im − µα · Im

}]

,

Rn+1 = R0 +
hα

Ŵ(α + 2)

n
∑

m=0

[

((n−m+ 1)α+1 − (n−m)α(n−m+ α + 1))

{

µα · I
p
m+1 − θα · R

p
m+1

}

− ((n−m+ 1)α(n−m− α)− (n−m)α+1)

{

µα · Im − θα · Rm

}]

.
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while Ertapenem is deemed the least effective. It suggests that Imipenem should be pri-
oritized for treatment. The combination of its lower transmission rate, faster recovery, 
reduced mortality, and the development of resistance positions Imipenem as a potent 
tool in managing and controlling the disease. Figures 5 and 6 indicate that Ertapenem 

Fig. 2  a Observed data versus model’s prediction. b Observed data plot over model’s prediction mean 
projection

Fig. 3  a Meropenem sensitive and resistance trend. b Meropenem effectiveness trend

Fig. 4  a Imipenem sensitive and resistance trend. b Imipenem effectiveness trend
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has a significantly negative effectiveness index, thus showing that it is not effective in 
reducing infection. Therefore, Ertapenem may be inappropriate for treating this infec-
tion under these circumstances because its efficacy is very low (Figs.  7, 8, 9, and 10). 
Conversely, the model shows a positive effectiveness index for Imipenem (as compared 
with other antibiotics), which implies that it will reduce infections in 2023 as per the 
model hypothesis. Thus, there exists a better choice of Imipenem than Meropenem and 

Fig. 5  a Ertapenem sensitive and resistance trend. b Ertapenem effectiveness trend

Fig. 6  a Plot of comparison of drug effectiveness. b Surface plot of comparison of drug effectiveness

Fig. 7  a Dynamics of system (1). b Dynamics of system (22)
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Ertapenem having favorable contributions toward reducing infections. The reproduction 
number and coefficient ( R0 and R) depicted in Fig. 11 displays the reproduction number 
and coefficient as R0 and R, which provide valuable insights into possible K. pneumonia 
infections and antibiotic resistance within a population. The baseline estimate of trans-
mission potential is R0 while R considers immunity plus interventions. These measures 
are essential in evaluating whether public health controls, vaccination programs, and 
antibiotic strategies are working effectively against this organism. A value of between 

Fig. 8  a Plot of S(t) of system (1). b Plot of S(t) of system (22)

Fig. 9  a Plot of I(t) of system (1). b Plot of I(t) of system (22)

Fig. 10  a Plot of S(t) of system (1). b Plot of S(t) of system (22)
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1.02 and 1.25 for R0 indicates that the illness has low to moderate potential for sus-
tained transmission within the population (Fig. 11). It can cause local outbreaks but is 
not highly contagious. Therefore, it cannot spread easily and quickly across populations. 
Other calculated values of R ranged from between 0.02 to 0.1 demonstrating that there 
could be additional infections despite partial immune response or drug-resistant pop-
ulations; however, the infection rates are extremely slow with limited spread pathways 
implying reduced fast trackability among people.

Sensitivity coefficients calculated for each group, (S) Sensitive, (I) Infected, and 
(R) Resistant, provide detailed information about the response of the system It was 
observed for the sensitive group that infection rate ( βα ) and intensity ( δα ) were 

Fig. 11  a Reproduction number (6) trend for various values of α. b Reproduction coefficient (7) trend for 
various values of α

Fig. 12  a Sensitivity coefficient of βα to S(t) in (10). b Sensitivity coefficient of δα to S(t) in (11). c Sensitivity 
coefficient plot of βα and δα to S(t) in (10) and (11)
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affected which stands out as shown in Fig.  12. A sensitivity coefficient close to 0.3 
for βα indicated that a small increase in infection rate resulted in a corresponding 
increase in the number of susceptible individuals, emphasizing significance if the 
spread of the disease is suppressed. On the other hand, a sensitivity coefficient of 1.8 
for δα indicated that small perturbations have a more pronounced effect of increasing 
sensitivity in the group a for the infected case; changes in βα and in δα had a notice-
able effect, with sensitivity coefficients of − 0.2 and − 2.8, respectively, as shown in 
Fig. 13. This indicated that higher infection rates resulted in a corresponding decrease 
in infected individuals, emphasizing the importance of monitoring disease transmis-
sion, whereas higher recovery rates resulted in human infection rates decreasing dra-
matically, emphasizing the importance of effective treatment in the management of 
the disease. Differences in factors such as the development of antimicrobial resistance 
( µα ) and recovery rates had a significant effect on individual infection rates of resist-
ance ( θα ). The rate of development of antibiotic resistance against the resistant group 
µα was found to reduce the number of resistant individuals (R) with a sensitivity coef-
ficient of − 0.2 as depicted in Fig. 14. This highlights the importance of controlling 
the development of antibiotic resistance to maintain the effectiveness of treatments. 
These parameters’ sensitivity can give insight into how K. pneumonia infections and 
antibiotic resistance change with model parameters. This helps to improve or even 
re-engineer disease control strategies of antibiotic resistance, leading to a better 
understanding of the system’s behavior as well as possible impacts caused by param-
eter fluctuations in time.

Fig. 13  a Sensitivity coefficient of βα to I(t) in (14). b Sensitivity coefficient of δα to I(t) in (16). c Sensitivity 
coefficient plot of βα and δα to I(t) in (14) and (16)
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Conclusion
We proposed a fractional-order model to simulate K. pneumonia infections and anti-
biotic resistance using real data from Northern Cyprus. Comparatively, this is a model 
that has several advantages over traditional integer-order models. Firstly, the fractional-
order models allow for more long-term memory of bacterial infection and antibiotic 
resistance dynamics accurately represented than traditional integer order models do. 
This is much closer to reality given the fact that such system behaviors change with 
time. Also, anomalous dynamical phenomena observed in K. pneumonia infections 
are effectively described by the model through the incorporation of fractional deriv-
atives. Furthermore, the complex spatial dynamics and processes that the model can 
cover are improved. It also helps in simulating non-local interactions between bacte-
rial strains, antibiotics, and host immune responses which contributes to a more com-
prehensive understanding of system dynamics. Moreover, as regards real data obtained 
from North Cyprus, the fractional-order model demonstrates an improved fit with the 
specific parameters or trends for K. pneumonia infections including antibiotic resist-
ance patterns which indicate high efficiency for monitoring the spread out process of 
this infection in a region like North Cyprus. However, unlike other studies that mod-
eled bacterial infection and antibiotic resistance dynamics using ordinary differential 
equations, our approach uses fractional differential equations with real-world data 
that completely revolutionize how modeling disease transmission using ODEs looks 

Fig. 14  a Sensitivity coefficient of βα to R(t) in (19). b Sensitivity coefficient of δα to R(t) in (21). c Sensitivity 
coefficient plot of βα and δα to R(t) in (19) and (21)
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like today. Future recommendations would include a further study designed to expand 
its applicability to other geographic regions and infectious diseases. Additionally, the 
model can be expanded to include factors such as environmental influences, treatment 
strategies, and evolutionary dynamics, which will provide valuable insights for disease 
surveillance and public health intervention.
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