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Abstract 

It is costly, time-consuming, and difficult to measure unconfined compressive strength 
(UCS) using typical laboratory procedures, particularly when dealing with weak, 
extremely porous, and fractured rock. By efficiently choosing the variables from a sub-
set of the dataset that includes the Schmidt hammer rebound number (SRn), bulk 
density (BD), bulk tensile strength (BTS), dry density (DD) test, p-wave velocity test 
(Vp), and point load index test (Is(50)), this study seeks to establish predictive models 
for the UCS of rocks. A prediction model for UCS was prepared using K-nearest neigh-
bor (KNN). KNN was preferred over machine learning algorithms because it is simple, 
versatile, and interpretable. It is particularly useful when it has limited training time, 
faces non-parametric data with changing distributions, or requires straightforward 
explanations for predictions. In order to improve KNN’s prediction performance in this 
research, two optimization procedures (namely, Alibaba and the Forty Thieves (AFT) 
and Improved Manta-Ray Foraging Optimizer (IMRFO)) were used. Through compari-
son of KNN single modal performance with that of optimized versions, it is concluded 
that the KNIM (KNN model optimized with IMRFO) is an excellent possible applicant 
for the forecast of the UCS of rocks. This study’s results showed that the KNIM model 
is more suitable than the KNN single model and its counterpart KNAF in terms of accu-
racy as its correlation of determination (R2) values were 1.1% and 2% higher than KNN 
and KNAF and its root mean squared error (RMSE) values were 37.9% and 43.7% lower 
than KNN and KNAF. The improvement in R2 and RMSE values for the KNIM model com-
pared to KNN and KNAF is highly significant for the reliability and accuracy of the pre-
dictive model. R2, measuring the proportion of variance predictable in the dependent 
variable (UCS of rocks) from the independent variables (model predictions), signifies 
a better fit to observed data. The elevated R2 values for KNIM indicate a stronger 
correlation with actual UCS values, enhancing the model’s accuracy in representing 
underlying patterns. Additionally, the reduction in RMSE values for KNIM implies that its 
predictions are, on average, closer to actual UCS values, contributing to a more accu-
rate and reliable estimation of rock strength.
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Introduction
One of the most important metrics for determining a rock’s ability to support weight is 
its unconfined compressive strength (UCS) . Inaccurate UCS calculations can be hazard-
ous as they diminish the final bearing capacity. Rock strength is typically determined 
through unconfined compression tests in laboratories, following established procedures 
like those charted by the International Society for Rock Mechanics (ISRM) . However, 
various challenges exist in directly measuring UCS in the lab, notably in obtaining suit-
able rock core specimens, particularly for rocks that are severely fractured and have a lot 
of lamination and foliation [1, 2]. Determining UCS directly in the early design stages 
is costly and time-consuming [3]. Nevertheless, alternative methods, such as regres-
sion models and machine learning techniques, offer viable options for predicting rock 
strength.

Numerous researchers have attempted to establish standardized methods for assessing 
UCS. Various techniques for predicting UCS fall into categories such as simple regres-
sion, where UCS is correlated with parameters derived from basic index tests for rocks. 
These tests encompass the tests for the Schmidt hammer, ultrasonic velocity (Vp) , point-
load index, Brazilian tensile strength, and slake durability index [4–6]. Multiple regres-
sion analysis has also been successfully employed to predict rock strength. However, it 
has been noted in some reports that these relationships may not consistently yield highly 
reliable UCS values. The clarification is that the correlation is not directly with UCS but 
involves parameters derived from these tests, as exemplified by not correlating UCS with 
the slake durability test but rather with the slake durability index [7]. Commonly, it is 
recommended to use these equations for specific rock types. Furthermore, these analyti-
cal prediction techniques cannot adapt to changes in data. Consequently, the equations 
require updating if new data is introduced [8–10].

Geotechnical researchers now favor machine learning (ML), containing support vec-
tor machines, artificial neural networks, decision trees, and neuro-fuzzy systems, due to 
their effectiveness in addressing complex engineering problems [11–15]. ML reduces lab 
testing costs for UCS determination and has broad applications in science and engineer-
ing challenges [16–18].

Previous studies have applied machine learning (ML) techniques to predict UCS [19]. 
Meulenkamp and Grima used a backpropagation artificial neural network (ANN) on 
various rock samples and found it outperformed traditional statistical methods [20]. 
Sonmez et al. applied a fuzzy inference system (FIS) to agglomerate samples of Ankara, 
yielding highly reliable UCS predictions [21]. Gokceoglu and Zorlu used regression and 
fuzzy models on problematic rocks, with the fuzzy model performing desirable for UCS 
estimation [22]. Dehghan et al. compared feed-forward regression and neural network 
models, concluding that ANN is a more robust model for the estimation of UCS [23]. 
Mishra and Basu found FIS and multiple regression approaches more efficient than sim-
ple regression for UCS prediction [24]. Cevik et al. reported the efficiency of ANN for 
sedimentary rock samples [25]. Yesiloglu-Gultekin et  al. favored the adaptive neuro-
fuzzy inference system (ANFIS) over multiple regression and ANN [26]. Skentou et al. 
[27] explored the prediction of UCS in granite by employing three ANN-based models. 
The study used three non-destructive test indicators on a collected dataset consisting 
of 274 entries: pulse velocity, Schmidt-hammer rebound number, and effective porosity. 
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Three ANN models were trained and validated: ANN-LM (built using the Levenberg–
Marquardt method), ANN-PSO (ANN and particle swarm optimization), and ANN-ICA 
( ANN and imperialist competitive algorithm). The experimental findings revealed that 
the ANN-LM model exhibited the highest accuracy, achieving superior predictive per-
formance in the validation phase with an R value of 0.9607 and RMSE of 14.8272. Com-
parative analysis showed that the developed ANN-LM outperformed existing models 
found in the literature. Additionally, the study developed a graphical user interface (GUI) 
for estimating UCS in granite using the ANN-LM model, enhancing practical usability. 
Le et  al. [28] employed artificial neural networks to predict the UCS of rocks using a 
comprehensive database of 367 literature datasets. The study focused on input param-
eters such as Schmidt hammer number (Rn) , Vp , and effective porosity (ne) . Notably, the 
developed ANN effectively consolidated different Schmidt hammer numbers, exhibit-
ing a correlation with L-type Schmidt hammer numbers within ±20% deviation from 
experimental data for 97.27% of specimens. Among the soft computing models consid-
ered ( ANN-LM, ANN-PSO , and ANN-ICA ), the highest accuracy was achieved with 
the ANN-ICA model. This model demonstrated strong predictive performance for UCS 
across various rock types and formation methods, showcasing less than ±20% devia-
tion from experimental data for 86.36% of cases. Additionally, the study provided a user-
friendly graphical interface, incorporating the closed-form equation of the ANN-ICA 
model, as supplementary material. Koopialipoor et  al. [17] developed a novel system 
utilizing machine learning models such as k-nearest neighbors (KNN) , multi-layer per-
ceptron (MLP) , random forest (RF) , and tree. The optimal model, a stacking-tree-RF-
KNN-MLP structure, integrated diverse characteristics from these models to enhance 
the accuracy of predicting Young’s modulus. The refinement process involved optimiz-
ing influential parameters within each basic model, resulting in the development of the 
final model. Rock deformations were predicted using four index tests: porosity, Schmidt 
hammer, point load strength, and p-wave velocity. The stack-tree-RF-KNN-MLP model 
achieved the highest prediction accuracy (R2 = 0.8197 , MSE = 227.371 , RMSE = 15.079 , 
and MAE = 12.123).

Moreover, Table 1 shows the summary of some published articles.
This study addresses the imperative need for robust prediction models capable of 

effectively forecasting the UCS of rocks, considering the intricate relationships among 
various input variables. The choice of utilizing the K-nearest neighbor (KNN) algorithm 
stems from its intrinsic value as a versatile tool for UCS prediction, offering simplic-
ity and adaptability. The necessity for such models arises from the complex, non-linear 
relationships exhibited by rocks’ UCS concerning diverse geological parameters. KNN, 
with its instance-based approach, proves advantageous, requiring no extensive training 
and enabling real-time adaptability to dynamic geological conditions. Additionally, KNN 
provides a unique insight into feature importance, facilitating the identification of key 
parameters influencing rock strength. Acknowledging the complex spatial variations in 
rock properties, KNN’s capability to capture both local and global patterns in the data 
aligns with the study’s novel approach to modeling UCS. It serves as a crucial tool for 
understanding and predicting the spatial nuances of rock strength variations. However, 
the choice of KNN is underscored by the necessity to consider dataset characteristics and 
problem complexity, ensuring its suitability as a benchmark for UCS prediction in rock 
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mechanics. The novelty of this study lies in the enhancement of the presented models 
through the integration of two metaheuristic algorithms: Alibaba and the Forty Thieves 
(AFT) and Improved Manta-Ray Foraging Optimizer (IMRFO). This innovative approach 
aims to elevate the predictive performance of the models further, addressing the exigency 
for improved accuracy and reliability in predicting UCS in highly fractured, porous, and 
weak rock formations. The objective of the optimization algorithm selection in this study 
was to elevate the performance of the KNN model in its predictive capacity for the UCS 
of rocks. In pursuit of this goal, two algorithms, AFT and IMRFO, were deliberately cho-
sen due to their demonstrated efficiency in addressing complex problems.

AFT, known for its exploratory nature, was specifically selected to contribute to the 
refinement of the KNN model parameters. The algorithm’s inherent ability to explore the 
solution space was deemed advantageous in systematically adjusting the model’s config-
uration to better align with the intricacies of the dataset, thereby enhancing its predictive 
accuracy for UCS. On the other hand, IMRFO was chosen for its advanced exploration 
capabilities, with the primary aim of fine-tuning parameters and further improving the 
overall predictive performance of the KNN model. IMRFO’s capacity for comprehen-
sive exploration, considering multiple objectives, was considered a valuable asset in the 
quest for optimal parameter settings that could significantly elevate the model’s efficacy 
in capturing the underlying patterns governing rock strength.

By strategically combining the strengths of AFT and IMRFO, the study aimed to not 
only refine the KNN model but also harness the relation between these optimization 
algorithms to achieve a more robust and accurate predictive framework for UCS in rock 
mechanics. The thoughtful integration of these algorithms aimed to navigate the com-
plexities inherent in rock strength prediction and contribute to the advancement of reli-
able modeling techniques in geotechnical applications.

Five statistical indices, which included R2, RMSE, MSE, RSR , and FB , were utilized to 
assess the precision of the models. Finally, the optimal model is introduced to be used in 
geotechnical applications.

Laboratory tests and methodology
Rock sample data

In geotechnical analysis, critical rock properties encompass physical attributes and 
strength parameters. These include bulk density (BD), pivotal for UCS measurements by 
aiding in dry weight calculation; bulk tensile strength (BTS), indicating resistance to ten-
sile forces; dry density (DD) for assessing soil compaction quality; p-wave velocity test 
(Vp) for measuring seismic wave speed; Schmidt hammer rebound number (SRn) for 
surface hardness evaluations; and point load index test (Is(50)) , especially useful in core 
rock sample testing. Each of these variables has been widely recognized in the study as a 
significant contributor to the mechanical properties of rocks.

•	 BD: represents the mass per unit volume of the rock, offering insights into its overall 
density and compactness.

•	 BTS: reflects the rock’s ability to withstand tensile stresses, providing crucial infor-
mation on its structural integrity.
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•	 DD test: measures the density of the rock without considering water content, con-
tributing to a more accurate assessment of its composition.

•	 Vp: indicates the speed at which compressional waves travel through the rock, offer-
ing insights into its elastic properties.

•	 SRn: provides an estimate of the rock’s surface hardness, which correlates with its 
overall strength.

•	 Is(50): measures the rock’s strength under point loading conditions, offering valuable 
data on its resistance to applied forces.

In this study, 106 datasets are used from the published paper [32–34], of which 70% 
(74 samples) are related to training and 30% (32 samples) are related to the testing sec-
tion. The rock specimens were also subjected to measurements of their bulk densities. 
The test procedure recommended by the International Society for Rock Mechanics 
(ISRM) was implemented. The weathering grade categorization employed adheres to 
the methodology proposed by the ISRM. As indicated in this table, the samples vary in 
weathering degree, ranging from slightly weathered to extensively weathered. The BD 
values of the rock samples vary between 2089 and 3534 (kg/m3) . The rock samples in 
this investigation exhibit a range of indirect tensile strengths, or BTSs, from around 
0.7 to4.2(MPa) . The UCS measurements, however, vary between 5.5 and61.1(MPa) . As 
anticipated, the UCS falls proportionally with the increase in weathering intensity. As 
an example, the average UCS for grade IV is10.6(MPa) , whereas for gradeII , this number 
rises to60(MPa) . The results for Vp demonstrate that Vp values are elevated for shales 
that are denser and have lower porosity. However, the Vp values vary between 1247(m/s) 
for rock samples that are extensively weathered and 2910(m/s) for barely weathered rock 
samples. The results indicate that the maximum compressive strength of rock samples 
is 4.1(MPa) for gradeII . However, for extensively weathered shale rock samples (grade 
IV), this value reduces to0.1(MPa) . Moreover, 70% of the dataset belonged to the train-
ing set and 30% to the test set. To explore the influence of these input variables on UCS 
outcomes, experimental records are provided in Table 2. In addition, the dataset is men-
tioned in Appendix 1.

Scatter plots in Fig.  1 visually represent data points on a Cartesian plane, where 
the horizontal axes represent the input variables, and the vertical axes correspond to 
the output variable (UCS). The distribution of data points, their concentration, and 
any discernible patterns or trends within the plots can offer valuable insights into 
the relationship between these variables. Evidently, among the seven variables under 
consideration, there is a uniform dispersion of data points for three variables: sample 

Table 2  Statistical properties of input and UCS

Features Dataset components

Sample 
set

BD (kg/
m3)

BTS (MPa) DD (kg/
m3)

Vp (m/s) SRn (MPa) Is(50) 
(MPa)

UCS (MPa)

Min 1 0 0 0 1247 0 0.1 5.5

Max 106 3.535 4.2 3011 6440 45.4 6.07 108.68

Mean 53.5 0.970 0.827 1669.7 4092.1 23.754 2.508 47.930

St.Dev 30.744 1.276 1.227 1308.1 1722.2 18.847 1.568 26.849
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number, Vp, and Is(50). In contrast, the remaining four variables exhibit a notable 
concentration of approximately half of the data points at zero for each variable.

Figure 2 indicates that the correlation matrix provides insights into the linear rela-
tionships between different variables in the dataset. Notably, strong positive correla-
tions, such as the 0.9250 correlation coefficient between BD and BTS, indicate that as 
one variable increases, the other tends to increase as well. Conversely, strong nega-
tive correlations, like the − 0.9792 correlation between BD and DD, suggest that as 
one variable increases, the other tends to decrease. The matrix also reveals interest-
ing patterns, such as the strong negative correlation (− 0.9669) between SRn and BD, 
indicating an inverse relationship between these two variables. Similarly, the strong 

Fig. 1  The scatter plot between input and output
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negative correlation (0.9830) between SRn and DD suggests a robust inverse connec-
tion. These findings can be valuable for understanding the interplay between geologi-
cal or engineering parameters represented by the variables. Additionally, moderate 
negative correlations, like the − 0.6226 correlation coefficient between UCS and BD, 
provide further insights into the relationships within the dataset.

K‑nearest neighbor (KNN)

The KNN technique is known for its simplicity, effectiveness, and ease of implementa-
tion [35]. Like artificial neural networks (ANN) and random forests (RF) , KNN can be 
applied for classification and regression tasks. Several advantages are associated with 
the utilization of this method:

1.	 It is straightforward and easily understandable, making it accessible for practical 
implementation.

2.	 When applied to regression and classification, it can train non-linear decision 
boundaries and offers flexibility in defining them by adjusting the K  value. These fea-
tures enhance its versatility.

3.	 Unlike some other architectures, KNN does not involve a specific training step.
4.	 The method involves only one hyperparameter, denoted as K  , simplifying the adjust-

ment of other hyperparameters.

The fundamental principle underlying KNN is identifying a set of K  samples, 
often determined using distance functions, that exhibit proximity to unknown sam-
ples within the calibration data. It is achieved by identifying sample groups that 
share similarities. Subsequently, KNN ascertains the category of unfamiliar samples 
by computing the mean of response variables and then contrasting these outcomes 

Fig. 2  Correlation between the input and output variables
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with those of the K -selected samples [36]. Consequently, the choice of the value for 
K  plays a pivotal role in the effectiveness of the KNN algorithm [37]. KNN operates 
on the fundamental principle of proximity, predicting a target variable by considering 
the majority class or average value of its k-nearest neighbors in a multi-dimensional 
feature space. In the context of this study, KNN leverages the similarity between rock 
samples in this feature space to estimate their UCS.

The methodology of KNN involves several key steps. Firstly, distance calculation 
is performed, computing the distance between the target rock sample and all other 
samples in the dataset using a specified distance metric, such as the commonly used 
Euclidean distance. Subsequently, neighbor selection identifies the k-nearest neigh-
bors of the target sample based on the calculated distances. For classification tasks, 
the algorithm employs majority voting among the neighbors to assign the class to the 
target sample. In regression tasks, it calculates the weighted average of the target var-
iable based on the distances to these neighbors.

Two crucial considerations in the KNN methodology are hyperparameter selection and 
feature scaling. The choice of the hyperparameter “k,” representing the number of neigh-
bors, significantly influences the model’s performance. A smaller “k” provides a more flexible 
model, whereas a larger “k” results in a smoother decision boundary. Additionally, proper 
scaling of features is essential as KNN is sensitive to the magnitude of input variables.

In the context of this study, KNN is specifically applied to predict the UCS of rocks. 
The algorithm utilizes a carefully selected subset of variables for this purpose. Its suit-
ability for the complex task of modeling UCS in highly fractured, porous, and weak 
rock formations is attributed to its simplicity, interpretability, and ability to capture 
non-linear relationships. This comprehensive introduction to KNN sets the stage for 
its role in predicting UCS in rocks, emphasizing its operational principles, methodol-
ogy, and key considerations in the study’s context.

In the context of regression tasks, 3 distance functions, which assess the distances 
among neighboring points and are represented by Eqs. (1) to (3), are employed for 
this purpose:

where F(e) represents the Euclidean distance function, F(ma) corresponds to the Man-
hattan distance function, and F(mi) represents the Minkowski distance function. Here, 
xi and yi refer to the ith dimension of the data points x and y , and q represents the order 
parameter governing the distance calculation between these points.

(1)F(e) =
f

i=0

(xi − yi)
2

(2)F(ma) =
f

∑

i=0

∣

∣xi − yi
∣

∣

(3)F(mi) =





f
�

i=0

(
�

�xi − yi
�

�)
q





1
q
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Optimization algorithms

Alibaba and the Forty Thieves (AFT)

The framework of AFT encompasses three discernible states, each of which can be ana-
lyzed and delineated as follows [38, 39]:

First state  The modeling of the pursuit of Ali Baba by the thieves, utilizing data 
acquired from an information source, can be effectively illustrated by employing Eq. (4). 
This equation serves as a means to represent the positions held by the individual thieves 
during the pursuit.

Where xt+1
i  indicates the location of the ith theft during the subsequent time step 

(t + 1) . mt
a(i) shows the degree of cunning Marjaneh employed to trick the burglar i , at 

time t . bestti symbolizes the optimal location attained by thief I till the current time step 
(t) . gbestt is the greatest worldwide rank attained by a thief as of the current t . r1 , r2 , 
rand , p , and q are values that are created at random and fall between [0,1] p ≥ 0.5 indi-
cates either a value of 0 or 1. yti shows Ali Baba’s location with respect to thief i at time 
t . The definition of a is given by using Eq.  (7). One of two values may be assigned to 
sgn(rand − 0.5) : −1or1 . Tdt stands for the thieves’ tracking distance, as determined by 
Eq. (4). Ppt reflects the thieves’ possible capacity for perceptual detection of Ali Baba, as 
determined by Eq. (6).

where τ0(τ0 = 1) serves as a preliminary tracking distance estimate. τ1(τ1 = 2) is used to 
control how much exploration and exploitation are combined. t and T  refer to the maxi-
mum and current iteration values, respectively. �0(�0 = 1) signifies the ultimate estima-
tion of the likelihood that the thieves will successfully achieve their objective after the 
search. �1(�1 = 1) represents a constant used to regulate the balance between explora-
tion and exploitation. rand(n, 1) is produced by generating a series of random numbers 
between 0 and 1.

Here, f (0) indicates the fitness function’s value or score.
Second state: The thieves have the potential to realize that they have been misled, 

which could prompt them to venture into previously unexplored and unforeseen areas.

(4)
xt+1
i = gbestt+

[

Tdt
(

bestti − yti
)

r1 + Tdt
(

yti −mt
a(i)

)

r2
]

sgn(rand − 0.5), p ≥ 0.5, q > Ppt

(5)Tdt = τ0e
−τ1(

t
T )

τ

1

(6)Ppt = �0log(�1(
t

T
)
�0

(7)a = [(n− 1).rand(n, 1)]

(8)mt
a(i) =

{

xti
mt

a(i)

if f (xti ) ≥ f (mt
a(i))

if f (xti ) < f (mt
a(i))

(9)xt+1
i = Tdt

[(

uj − lj
)

r + lj
]

; p ≥ 0.5, q ≤ Ppt
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In this case, the bounds of the dimension j search space are denoted by uj (the upper 
bound) and lj (the lower bound). A random variable in the interval [0, 1] is called r.

Third state: To enhance both the exploration and exploitation aspects of the AFT 
algorithm, the thieves may extend their exploration to additional search positions 
beyond those determined by Eq.  (4). This scenario can be formally represented by 
Eq. (10):

The basic AFT algorithm’s iterative pseudo-code steps can be precisely presented as 
follows:

Improved Manta‑Ray Foraging Optimization (IMRFO)

In the original Manta Ray Foraging Optimizer (MRFO) [40], the exploitation phase 
involves individuals updating their positions based on the best fitness individual. This can 
lead to reduced stagnation in local optima and population diversity. Additionally, MRFO 
exhibits weak solution stability due to its limited fine-tuning capacity. An improved ver-
sion called IMRFO is introduced to address these limitations. IMRFO introduces a con-
trolling factor of exploring to enhance search, employs a coefficient of adaptive weight 
with Levy flight to maximize diversity and maintain population balance, and incorporates 
Morlet wavelet mutation with the fine-tuning capability to prevent premature conver-
gence to local optima and ensure solution stability.

Factor of exploring control

(10)xt+1
i = gbestt −

[

Tdt
(

bestti − yti
)

r1 + Tdt
(

yti −mt
a(i)

)

r2
]

sgn(rand − 0.5)



Page 12 of 32Niu et al. Journal of Engineering and Applied Science          (2024) 71:137 

In MRFO, exploration is limited due to a low exploration probability, especially in the 
first half of the optimization process, governed by the value of t/T  . In contrast, the IMRFO 
algorithm employs a factor of exploring control ( ps ), to enhance exploration. This factor 
increases the likelihood of exploration in the latter optimization stages, offering improved 
search capabilities.

where r represents a random number within the interval [0, 1] . When the value of ps 
exceeds 0.5, the IMRFO algorithm engages in exploration; conversely, it prioritizes 
exploitation when ps falls below 0.5. The factor of exploring control exhibits a reducing 
trend coupled with random oscillations, compelling the algorithm to emphasize explora-
tion during later iterations [41].

By defining θ as θ = 1− t
T  , the expression for ps(t) becomes ps(t) =

√

5
r .θ . To deter-

mine the probability of ps being greater than 0.5, it can be calculated as follows:

Consequently, the exploration probability within the IMRFO amounts to 0.8509× 0.5 , 
yielding a value of 0.4254 over the optimization process.

Coefficient of adaptive weight with Levy flight
Inspired initially by natural foraging behaviors, Levy flight has become a valuable tool 
for efficient exploration in unknown spaces, widely used in various metaheuristic algo-
rithms. It enhances search behavior by incorporating Levy flight’s characteristic of short 
and occasional long steps into the MRFO’s cyclone foraging strategy. This adaptation 
fosters diversity among exploration single and guards against premature convergence to 
local optima.

The length of the random step in the Levy flight is determined via the Levy distribu-
tion, which is expressed as follows [42]:

Here, � represents the tail index or stability, while s denotes the length of the step. Fol-
lowing the algorithm of Mantegna, the length of step for the Levy flight is defined in the 
following:

The variables u and v follow normal distributions, and specifically:

(11)ps(t) =
(

1−
t

T

)

√

5

r

(12)

P{A(t) > 0.5} = 1−

1

∫

2
√
5

0

∫

1
5 drdθ

(

0.5

θ

)2

1× 1
≈ 0.8509

(13)L(s) ∼ t−�(1 ≤ � ≤ 3)

(14)s = u/|v|
1
β
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Ŵ is employed in the computation, with a default value assigned to parameter β set at 
1.5. Thus, the formulation of a coefficient of adaptive weight, integrating the Levy flight 
into the cyclone foraging techniques, is as follows:

Observing Eq. (14) can discern two critical effects. Firstly, the frequent generation 
of multiple short steps by the Levy flight enhances the exploitation capacity of the 
algorithm. In contrast, occasional long steps bolster exploration, effectively ensur-
ing local optima avoidance. Secondly, the function e2(T−t+1)/T  exhibits a reducing 
trend by iterations, thus offering a larger exploration scope during early iterations and 
gradually narrowing it in later iterations. This characteristic enhances the algorithm’s 
search efficiency and ensures that step lengths remain within the variable boundaries.

The cyclone foraging strategy employed in the IMRFO algorithm is defined as 
follows:

Wavelet mutation strategy
The MRFO algorithm may encounter challenges in getting stuck in local optima, lead-
ing to an inefficient exploration of the instability of solutions and the global optimum. 
IMRFO incorporates Morlet wavelet mutation to enhance the algorithm’s ability to 
break free from stagnation, improve convergence rates, and ensure solution stability. 
This wavelet mutation involves dynamically adjusting the mutation process by integrat-
ing wavelet function translations and dilations [42, 43]. In pursuit of fine-tuning objec-
tives, control over the wavelet function’s dilation parameters is exercised to reduce its 
amplitude, consequently constraining the mutation space as iterations progress.

Given that pm represents the mutation probability and r4 presented a random number 
within the [0, 1] range, the integration of wavelet mutation enhances the somersault for-
aging techniques as follows:

(15)u ∼ N
(

0, σ 2
u

)

, v ∼ N (0,1)

(16)σu =





Ŵ(1+ β).sin
�

πβ
2

�

Ŵ

�

1+β
2

�

.β .2
β−2
2





1/β

(17)βL = e2(T−t+1)/T .s

(18)

Xd
i (t + 1) =

{

xbest + r.(xbest(t)− xi(t))+ βL.(xbest(t)− xi(t))i = 1
xbest + r.(xi−1(t)− xi(t))+ βL.(xbest(t)− xi(t))i = 2, . . . ,N

ps < 0.5

(19)

Xd
i (t + 1) =

{

xrand + r.(xrand(t)− xi(t))+ βL.(xrand(t)− xi(t))i = 1
xrand + r.(xi−1(t)− xi(t))+ βL.(xrand(t)− xi(t))i = 2, . . . ,N

ps ≥ 0.5
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where pm represents the mutation probability, set to a value of 0.1, and σw denotes the 
wavelet function’s dilation parameters, which can be defined in the following:

where ψ(x) corresponds to the wavelet function of Morlet, determined in the following:

Over 90% of the overall energy of the wavelet function is concentrated within the 
range of [−2.5, 2.5] . Consequently, σw can be stochastically generated from the interval 
[−2.5a, 2.5a] , with “a” representing the dilation parameter. This parameter scales pro-
gressively from 1 to “s” as the iterations’ number grows. To prevent overlooking the 
global optimum, a monotonically growing function is defined in the following:

Here, g is a fixed constant, with a value set to 100,000.
The fundamental steps of the IMRFO algorithm can be accurately represented through 

the following iterative pseudo-code [41]:

(20)xi(t + 1) =







�

xi(t)+ σw .(xi(t)− Low)σw < 0
xi(t)+ σw .

�

Up − xi(t)
�

σw ≥ 0
r4 < pm

xi(t)+ S.(r2.xbest − r3.xi(t))r4 ≥ pm

(21)σw =
1
√
a
ψ(

ϕi

a
)

(22)ψ(x) = e−
x2

2 cos(5x)

(23)a = e−ln(g).
(

1− t
T

)

+ln(g)
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Results assessment criteria

In this study, the effectiveness of prediction algorithms was rigorously evaluated using a 
comprehensive set of nine key metrics. These metrics served as performance indicators and 
included:

where Ti and Pi are actual and predicted values, respectively. T  is the average of all the 
tested results, while n represents the number of samples in the analyzed dataset. P shows 
the mean of predicted value. ntest and ntrain indicate the sample number of test and train, 
respectively.

(24)R2 =









�n
i=1(Ti − T )(Pi − P)

�

�

�n
i=1(Ti − P)

2
��

�n
i=1(Pi − P)

2
�









2

(25)RMSE =

√

∑n
i=1(Ti − Pi)

2

n

(26)MSE =
1

n

∑n

i=1
(Ti − Pi)

2

(27)RSR =
RMSE

√

1
n

∑n
i=1(Ti − T )

2

(28)FB =
1

n

n
∑

i=1

2× (Pi − Ti)

Pi + Ti

(29)SI =
RMSE

mean(Ti)

(30)NSE = 1−
∑N

i=1(Ti − Pi)
2

∑N
i=1(Pi − P)

2

(31)n20− index =
n20

n

(32)

OBJ =
(

ntrain − ntest

ntrain + ntest

)

MAEtest + RMSEtrain

1+ R2
train

+
(

2ntrain

ntest + ntrain

)

RMSEtest −MAEtest

1+ R2
test
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Hybridization

The hybridization procedure integrates the KNN model with two distinct metaheuris-
tic optimization algorithms: IMRFO for KNIM and AFT for KNAF. The detailed dis-
cussion of the hybridization process unfolds as follows:

➢ KNIM (KNN optimized with IMRFO):

•	 Initialization: The process begins by initializing the KNN model with a prede-
fined set of hyperparameters, representing the starting configuration before 
optimization.

•	 Optimization with IMRFO: IMRFO is applied to the initialized KNN model, 
orchestrating an iterative optimization process. This involves refining the 
hyperparameters to augment the model’s performance over successive itera-
tions.

•	 Final KNIM model: The outcome of the IMRFO optimization process yields the 
optimized KNN model, denoted as KNIM. This refined version incorporates 
improved parameter configurations, enhancing its predictive capabilities for UCS 
prediction in rocks.

➢ KNAF (KNN optimized with AFT):

•	 Initialization: KNAF commences with the initialization of the KNN model, ini-
tially set with default hyperparameters, providing a baseline for subsequent opti-
mization.

•	 Optimization with AFT: The AFT algorithm is employed to optimize the hyperpa-
rameters of the KNN model. AFT, with its exploratory nature, iteratively explores 
the solution space to pinpoint optimal hyperparameter configurations.

•	 Final KNAF model: The conclusion of the AFT optimization process results in the 
finalized KNN model, identified as KNAF. This optimized version reflects superior 
hyperparameter settings, enhancing the KNN model’s effectiveness in predicting 
UCS in challenging geological conditions.

Metaheuristic optimization hyperparameters

➢ IMRFO:
•	 Parameters: IMRFO involves configuring parameters such as population size, max-

imum iterations, and the exploration–exploitation trade-off. The specific values are 
contingent upon the study’s implementation details.

➢ AFT:
•	 Parameters: AFT encompasses parameters like population size, maximum itera-

tions, and potential exploration–exploitation parameters. The actual values utilized 
in the study are explicitly defined during the AFT optimization process.

This meticulous consideration of metaheuristic optimization algorithms and their 
associated hyperparameters ensures a systematic and effective approach to enhancing 
the KNN models (KNIM and KNAF) for precise UCS prediction in the domain of rock 
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mechanics. The hyperparameters for the KNN models, including the default and opti-
mized versions, are reported in Table 3.

These hyperparameters represent the key configurations of the KNN models within 
the study, both before and after optimization using IMRFO and AFT.

Convergence

In the study, convergence is assessed based on the RMSE, a key metric for evaluating the 
accuracy of regression models. The metaheuristic optimization algorithms, IMRFO and 
AFT, iteratively refine the hyperparameters of the KNN model. Convergence is observed 
through the RMSE, which ideally decreases over iterations, signifying improved align-
ment between predicted and actual UCS values. The process stabilizes when further iter-
ations cease to enhance model performance significantly. The final RMSE at convergence 
serves as a crucial indicator of optimized model accuracy in predicting UCS in rocks, 
aligning with the study’s goal of improving predictive capabilities. Figure  3 shows the 
convergence of developed hybrid models.

System configuration

The system configuration for model development involved a hardware setup with an Intel 
Core i7-3770K CPU running at 3.50 GHz, complemented by 16.0 GB of RAM and a 1-ter-
abyte hard drive. The operating system used was Windows 11 Pro, designed for a 64-bit 

Table 3  Hyperparameters of developed models

Model Hyperparameter

n_neighbors leaf_size p

KNN 5 30 2

KNIM 1 1 2

KNAF 31 306 958

Fig. 3  Convergence of developed hybrid models
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architecture. An NVIDIA GeForce GT 640 GPU facilitated graphics processing. In terms of 
software, Python served as the primary programming language for conducting experiments 
and developing models. The scikit-learn machine learning framework played a central role 
in implementing various machine learning algorithms and models. Additionally, for data 
analysis and visualization tasks, the study leveraged popular Python libraries, including 
Pandas, NumPy, and Matplotlib.

Run time

Table 4 displays the run time of the developed models, showcasing the computational effi-
ciency of each model. The results indicate that KNN has the shortest run time at 0.1629 
s, followed by KNIM with a run time of 148.73 s, and KNAF with the longest run time at 
354.57 s.

Results and discussion
In the current study, the research aims to select the optimal UCS estimation model by 
examining the performance of KNN-based models. These models, including single KNN 
and hybrid models optimized with AFT and IMRFO, are organized into training, valida-
tion, and testing sets. The evaluation employs nine metrics to assess their performance, 
with results presented in Table 5 and visualized in various graphs to facilitate compara-
tive analysis and model selection.

Table 4  Run time of developed models

Model Run time (second)

KNN 0.1629

KNIM 148.73

KNAF 354.57

Table 5  The result of developed KNN-based models

Model Phase Index values

RMSE (MPa) R2 MSE (MPa) RSR FB (MPa) SI NSE n20-index OBJ

KNN Train 4.221 0.974 17.823 0.048 0.0011 0.095 0.973 0.750 4.910

Validation 6.445 0.953 41.543 0.052 0.0059 0.101 0.930 0.792

Test 5.234 0.970 27.392 0.053 0.0055 0.106 0.967 0.757

All 4.778 0.971 22.829 0.050 0.0008 0.100 0.968 1.000

KNIM Train 1.899 0.995 3.602 0.021 0.0005 0.043 0.994 0.932 2.792

Validation 3.457 0.986 11.950 0.027 0.0026 0.054 0.980 1.000

Test 4.387 0.986 19.245 0.045 0.0041 0.089 0.977 1.000

All 2.688 0.991 7.223 0.028 0.0004 0.056 0.990 0.953

KNAF Train 3.297 0.985 10.871 0.037 0.0007 0.075 0.983 1.000 4.267

Validation 6.358 0.970 40.425 0.050 0.0048 0.100 0.932 1.000

Test 5.766 0.980 33.248 0.059 0.0049 0.117 0.959 1.000

All 4.326 0.980 18.710 0.045 0.0006 0.090 0.974 1.000
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Table 5 provides a comprehensive overview of the performance metrics, including R2, 
RMSE, MSE, FB, SI, NSE, n20-index, OBJ, and RSR, for all prediction models within 
the training, validation, and testing sets. A detailed examination of the model’s predic-
tive capabilities in estimating the UCS of rock samples is presented in the subsequent 
analysis:

•	 The KNIM hybrid model demonstrated remarkable performance with maximum R2 
values of 0.995 during the training phase and 0.986 each for both the validation and 
testing phases. These high R2 values signify that this model effectively explains a sub-
stantial portion of the variance in the UCS through the incorporated input variables. 
In essence, this shows that the model and the data fit together well, highlighting the 
validity of the selected input variables as reliable indicators of the anticipated result.

•	 Regarding error values, the KNIM model is the most accurate among the developed 
models, exhibiting approximately twofold and threefold lower RMSE values than 
the KNAF and KNN models. This suggests that KNIM provides superior predictive 
accuracy and is associated with significantly more minor discrepancies between pre-
dicted and actual values than the other models, emphasizing its effectiveness in UCS 
estimation.

•	 A minimum RSR value of 0.021, observed in the KNIM model, indicates an excellent 
fit where the model’s predictions closely match actual data. This suggests that the 
model effectively captures the variability in UCS while keeping standardized residu-
als relatively small, signifying its accuracy and reliability.

•	 The minimum FB value of 0.0005 (MPa) observed in the KNIM model during the 
training phase indicates minimal bias in its predictions. This suggests that the model 
offers highly accurate and unbiased estimates, aligning closely with the data.

•	 The KNIM model’s ability to consistently achieve the highest NSE and n20-index val-
ues further reinforces its superior performance in capturing the underlying patterns 
and variability in the data.

•	 The lower OBJ and SI values for KNIM reinforce its superior overall performance 
and robustness in handling extreme values compared to the other KNN-based mod-
els (KNN and KNAF).

In the assessment of the models, it is evident that overfitting did not occur. Overfitting 
manifests when there is a substantial disparity between the training and test outputs, a 
phenomenon conspicuously absent in the outcomes of these models.

Figure  4 provides graphical representations illustrating the relationships between 
experimentally determined UCS values and their corresponding predictions. This study 
employs advanced quantitative data analysis techniques, focusing on two key evalua-
tion metrics: RMSE and R2. RMSE helps govern data dispersion, with reduced values 
indicating denser and more concentrated findings. The R2 evaluation brings data points 
closer to the central axis, enhancing alignment. The diagram features critical elements 
such as the central line at Y = X, a linear regression model, and four boundary lines at 
Y = 0.9X and Y = 1.1X, denoting 10% underestimation and overestimation, respectively. 
The KNIM model exhibits an optimal concentration of predicted UCS values around the 
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central line, outperforming the single KNN model and another hybrid model (KNAF), 
which show scattered data dispersion beyond an acceptable range.

Figure 5 highlights the excellent alignment between observed and predicted UCS val-
ues across all three models, with the KNIM model excelling. In this figure, the dashed 
line shown in the figure connects the prediction points to each other. At the same time, 
the maximum prediction-measurement difference is attributed to the KNAF model. All 
three models experienced maximum variation between measured and estimated values 
in their testing phase.

Figures 6 and 7 demonstrate the error percentage in histogram density and half-box 
plots. According to Fig. 5, for KNIM and KNAF, the percentage of errors near zero per-
cent is almost twice the KNN model, indicating that optimizing the KNN model with 
two selected optimizers decreased error values. When comparing the range of error val-
ues of the models provided in Fig. 6, it can be observed that KNN in the training phase 
and KNN in the validation phase have the most and most minor broad range of error 
values. The KNIM hybrid model performs better in all three phases, while KNAF with 
marginal variation ranks second.

Furthermore, the best model (KNIM) and measured values are mentioned in 
Appendix 2.

Fig. 4  The scatter plot for developed hybrid models
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Fig. 5  The comparison of predicted and measured values

Fig. 6  Error percentage for the hybrid models based on a histogram density plot
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Discussion
Main limitations

Despite the promising outcomes of this study, certain limitations need consideration. 
Firstly, the predictive models developed, while effective in the context of UCS prediction 
for specific rock types, may exhibit variability in performance across diverse geological 
formations. The models’ reliance on selected variables might limit their generalizability 
to rock types not represented in the current dataset. Additionally, the reliance on labora-
tory test data for model training raises questions about the applicability of the models to 
real-world field conditions.

Wider applicability of methods

The methods employed in this study, particularly the use of K-nearest neighbors (KNN) 
and optimization algorithms (Alibaba and the Forty Thieves, Improved Manta-Ray For-
aging Optimizer), offer a robust framework for UCS prediction. However, the wider 
applicability of these methods extends beyond rock mechanics. Similar methodologies 
could find utility in diverse fields such as geotechnical engineering, materials science, 
and environmental studies, where predicting material strength properties is paramount. 
The simplicity and interpretability of KNN, coupled with the optimization algorithms, 
contribute to the versatility of the proposed approach.

Findings and implications

The findings indicate that the optimized KNN model, particularly KNIM, outperforms 
the baseline KNN and KNAF models in terms of accuracy and predictive capabilities 
for UCS prediction in certain rock types. The marginal differences observed in the Wil-
coxon test between KNAF and KNIM warrant attention, signaling potential avenues for 
model refinement. The efficient run time of KNN makes it a favorable choice for real-
time applications, while the optimization algorithms enhance its performance.

Fig. 7  The half box of errors among the developed models
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Comparison

Table 6 provides a comprehensive comparison between the presented study and previ-
ously published articles in terms of the model used, evaluation metrics (R2 and RMSE), 
and their respective performance. The inclusion of diverse models and evaluators high-
lights the broader context of UCS prediction methodologies in the literature. The pre-
sent study, utilizing the KNIM model, demonstrates competitive results with a high R2 of 
0.991 and an RMSE of 2.688.

Wilcoxon test

The Wilcoxon test was employed to assess the comparative performance of three mod-
els: KNN, KNIM, and KNAF. The test results, considering p values and statistics for 
each pair of models, provide insights into their statistical significance. Table 7 shows the 
result of the Wilcoxon test.

The Wilcoxon test results reveal that there is no statistically significant difference in 
performance between KNN and KNIM (p value = 0.9585, statistic = 2819) as well as 
between KNN and KNAF (p value = 0.7135, statistic = 2719). These findings suggest 
comparable performance between these model pairs. However, the comparison between 
KNAF and KNIM indicates a marginally significant difference (p value = 0.0902, statis-
tic = 2298). While not reaching conventional levels of significance, this result suggests 
a potential difference that may warrant further investigation or consideration. In sum-
mary, the Wilcoxon test suggests comparable performance between KNN and KNIM 
and between KNN and KNAF. The KNAF and KNIM pair shows a marginally signifi-
cant difference, indicating the need for cautious interpretation and potential further 
exploration.

Table 6  Comparison between the presented and published articles

Article Model Evaluator

R2 RMSE

Narendra et al. [29] GP 0.9881 135

Ceryan et al. [30] REG 0.8837 1.108

Majdi and Rezaei [31] ANN 0.9725 1.113

Rezaei et al. [10] Mamdani fuzzy 0.9437 3.2

Mohamad et al. [32] ANN-PSO 0.982 0.077

Present study KNIM 0.991 2.688

Table 7  Result of Wilcoxon test

Difference of models Parameter

p value Statistic

Def. between KNN and KNIM 0.9585 2819

Dif. between KNN and KNAF 0.7135 2719

Dif. between KNAF and KNIM 0.0902 2298
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Sensitivity analyses

SHAP value

The analysis utilizing SHAP (SHapley Additive exPlanations) values offers a comprehensive 
understanding of how various variables influence the model’s output. Illustrated in Fig. 8, 
the SHAP values elucidate the nuanced impact of inputs on the model’s predictions. The 
findings underscore the significant influence of Vp, DD, and Is on the model’s UCS predic-
tions, aligning closely with geological principles. Conversely, BD exhibits a comparatively 
lesser impact on UCS. Such insights not only enhance the interpretability of the model but 
also furnish invaluable guidance for researchers and practitioners in the field, facilitating 
informed decision-making and furthering understanding of geological processes.

Conclusions
In summary, this research used hybrid machine learning models to predict unconfined 
compressive strength (UCS) in rock samples. The study addresses the challenges of sam-
ple preparation by developing and evaluating these hybrid models, which incorporate 
the K-nearest neighbor (KNN) model optimized with Alibaba and the Forty Thieves 
(AFT), as well as Improved Manta-Ray Foraging Optimizer (IMRFO). Based on the 
assessment findings, the KNIM model emerges as the most optimal choice, boasting the 
following advantages:

•	 Improvements over KNN single model: KNIM demonstrates substantial enhance-
ments over the KNN single model, featuring a 2% higher R2 value, a notable 43.7% 
reduction in RMSE, and a substantial 68.4% decrease in MSE values. These results 
underscore KNIM’s superior predictive accuracy and ability to reduce prediction 
errors significantly.

Fig. 8  Impact of inputs on model’s output
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•	 Enhancements over KNAF hybrid model: Compared to another hybrid model, 
KNAF, KNIM exhibits noteworthy enhancements, including a 1.1% higher R2 value, 
indicative of a better data fit. Additionally, KNIM achieves a considerable 37.8% 
reduction in RMSE and a substantial 61.4% decrease in MSE values, underscoring its 
superiority in predictive accuracy and error reduction.

These findings collectively establish KNIM as a highly effective and promising model 
for UCS prediction in rock samples, offering valuable insights for applications in civil 
engineering. The study’s findings apply primarily to the specific dataset and context of 
predicting UCS in rocks. The transferability of the proposed optimization algorithms, 
AFT and IMRFO, requires validation across diverse datasets and applications. The study’s 
relevance to different rock types and engineering scenarios needs careful consideration. 
Limitations include the reliance on a specific dataset, the sensitivity of optimization algo-
rithms to conditions and hyperparameters, assumptions of data stationarity, and the 
exclusion of potentially relevant variables. Robustness testing, external validation, and 
consideration of real-world variability are suggested for future research to address these 
limitations. The study’s findings suggest several potential directions for future research 
to enhance predictive models for UCS. The recommendations include exploring addi-
tional variables (geological, geophysical, or mineralogical), conducting temporal vari-
ability analysis, assessing regional specificity, exploring ensemble models, incorporating 
advanced machine learning techniques, validating models on diverse datasets, perform-
ing real-world testing and field validation, exploring alternative optimization algorithms, 
and integrating remote sensing data. These avenues aim to advance the accuracy and reli-
ability of predictive models for UCS in rocks beyond the current study.

Appendix 1

Full dataset

BD (kg/m3) BTS (MPa) DD (kg/m3) Vp (m/s) SRn (MPa) Is(50) (MPa) UCS (MPa)

2.28 3.5 0 2576 0 2.7 36.5

0.00 0 2628 5193 38.4 1.02 42.79

0.00 0 2612 3863 42.8 4.27 64.91

0.00 0 2693 6103 39 2.49 58.99

2.09 1.3 0 1776 0 0.5 6.7

0.00 0 2589 5163 41 2.37 40.9

0.00 0 2572 4423 41 3.56 50.32

2.52 1.6 0 1852 0 0.5 14.4

0.00 0 2679 6000 36.8 2.29 73.38

0.00 0 2708 5550 35.3 3.42 39.53

0.00 0 2702 6083 35.6 3.92 69.14

2.71 2.2 0 2167 0 1.7 21.5

0.00 0 2728 6080 36 1.37 59.73

2.16 1.7 0 1967 0 0.2 12.4

0.00 0 2637 5190 40.2 1.46 52.2

0.00 0 2663 4813 38.9 3.35 71.5
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Full dataset

BD (kg/m3) BTS (MPa) DD (kg/m3) Vp (m/s) SRn (MPa) Is(50) (MPa) UCS (MPa)

0.00 0 2662 5267 40.6 5.39 95.03

2.47 1.7 0 1634 0 0.7 12.2

0.00 0 2606 3707 42.8 2.22 42.31

2.24 2.4 0 1912 0 0.2 14.2

0.00 0 2826 5073 31.8 1.81 62.68

2.21 2 0 1901 0 0.2 10.8

2.68 2.5 0 2489 0 2.7 38.9

0.00 0 2660 5430 42.3 3.57 103.93

0.00 0 2691 5530 36.5 1.38 61.42

2.18 1.4 0 2030 0 0.1 9.1

0.00 0 2641 5380 45.4 2.41 76.97

2.20 1.4 0 1947 0 0.2 9.2

2.31 0.9 0 1596 0 0.4 10.3

2.66 3.6 0 2717 0 2.7 41.4

2.23 1 0 1871 0 0.2 10.7

0.00 0 2654 5737 42.6 3.2 48.43

2.61 1.6 0 1406 0 0.6 8.8

0.00 0 2645 5430 41.6 2.57 57.85

0.00 0 2706 5867 38.4 1.94 64.91

0.00 0 2644 4930 39.6 2.02 76.67

2.70 1.7 0 2134 0 1 16.4

3.54 4.2 0 2847 0 4.1 61.1

2.26 0.7 0 1928 0 0.1 8.4

0.00 0 2682 5173 30.8 1.94 32.95

2.46 1.7 0 1820 0 0.4 8.4

0.00 0 2672 5933 31.9 2.06 60.35

2.39 1.7 0 1820 0 1 19.7

2.75 2.1 0 2194 0 2 25.6

0.00 0 2628 5233 42.8 3.62 70.56

2.18 0.8 0 1297 0 0.3 5.5

3.52 3.8 0 2897 0 3.9 55.9

0.00 0 2641 5257 42.8 5.47 60.2

0.00 0 2664 5740 34.5 5.28 51.73

2.65 2.3 0 2356 0 1.9 28.5

2.51 2 0 2417 0 1.5 28.6

2.83 2.6 0 2378 0 2.9 32.1

2.22 1.9 0 1988 0 0.2 10

2.50 1.5 0 1754 0 0.5 9.1

0.00 0 2622 5390 38.8 3.97 53.14

0.00 0 2769 5987 38 5.57 78.09

2.24 2.7 0 1909 0 0.2 14.5

0.00 0 2641 5073 41.8 4.43 72.44

0.00 0 2718 6013 35.5 2.9 61.3

2.53 3.8 0 2857 0 3.4 52.4

0.00 0 3011 6440 38.8 4.87 101.7

0.00 0 2697 5670 36.2 4.07 55.67

0.00 0 2636 5420 42.2 4.63 80.44

2.16 0.8 0 1247 0 0.3 9.5

3.47 3.5 0 2832 0 3.9 56.7
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Full dataset

BD (kg/m3) BTS (MPa) DD (kg/m3) Vp (m/s) SRn (MPa) Is(50) (MPa) UCS (MPa)

0.00 0 2750 6180 33 2.7 73.84

0.00 0 2671 6093 37.2 2.55 47.02

0.00 0 2677 5910 38 2.65 55.49

2.81 3.5 0 2320 0 2.3 34.5

0.00 0 2607 5083 41.2 2.34 72.91

2.80 2.1 0 2344 0 2.4 36.8

3.44 3.7 0 2857 0 3.7 47.3

0.00 0 2786 6337 32.4 5.88 58.47

0.00 0 2592 3143 31.4 3.99 53.45

0.00 0 2922 5757 31.6 4.14 83

0.00 0 2696 5843 36.3 2.54 66.74

0.00 0 2846 6070 38.7 5.23 100.68

0.00 0 2682 6013 37.4 2.1 58.51

0.00 0 2620 4650 44.7 2.56 58.2

0.00 0 2620 3923 43.6 5.61 85.15

3.42 4.1 0 2910 0 3.6 51.4

0.00 0 2573 2797 31.8 2.17 56.91

2.65 1.6 0 1417 0 0.6 9.9

0.00 0 2518 3543 33.8 0.69 30.59

0.00 0 2573 3420 35.9 2.11 58.32

0.00 0 2664 5923 37.2 3.68 35.72

0.00 0 2701 6003 38.8 3.68 57.85

0.00 0 2887 5630 34.9 3.27 84.62

0.00 0 2952 6070 44.3 4.87 102.99

0.00 0 2669 5393 43.1 3.15 78.56

0.00 0 2703 5720 36.5 2.41 41.8

2.33 1.3 0 1330 0 0.5 9.9

0.00 0 2825 6363 40 2.66 108.68

0.00 0 2637 3790 44.2 3.21 102.99

0.00 0 2719 5590 34.7 2.33 54.24

0.00 0 2516 3643 28.2 0.58 24

0.00 0 2737 5870 38.6 2.09 35.25

0.00 0 2622 5857 35.8 3.62 50.32

2.72 2.9 0 2275 0 2.3 34.7

0.00 0 2670 5430 40.2 3.57 32.01

0.00 0 2620 5263 43.6 4.57 68.67

0.00 0 2688 5073 34.2 2.2 26.83

0.00 0 2606 4333 42.6 2.75 56.14

0.00 0 2600 4813 38.9 6.07 82.79

2.23 1.9 0 1928 0 0.1 8.5

0.00 0 2715 6200 34.4 2.36 53.14
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Appendix 2

Obtained value based on measured and predicted UCS

UCS106_Measured UCS106_
Predicted (KNIM)

36.5 35.618

42.79 46.0905

64.91 63.5905

58.99 59.5185

6.7 6.85E + 00

40.9 41.698

50.32 53.2985

14.4 17.5815

73.38 76.8065

39.53 39.1485

69.14 67.152

21.5 23.187

59.73 57.182

12.4 12.806

52.2 53.9115

71.5 6.88E + 01

95.03 95.7335

12.2 9.071

42.31 39.7445

14.2 1.12E + 01

62.68 63.359

10.8 11.8185

38.9 35.7255

103.93 104.462

61.42 64.0415

9.1 9.92E + 00

76.97 77.2535

9.2 8.6295

10.3 11.742

41.4 41.757

10.7 1.33E + 01

48.43 49.018

8.8 1.05E + 01

57.85 57.4335

64.91 65.6765

76.67 78.126

16.4 1.69E + 01

61.1 58.4645

8.4 6.475

32.95 30.507

8.4 8.0955

60.35 62.1945

19.7 18.7375

25.6 26.531

70.56 69.4785
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Obtained value based on measured and predicted UCS

UCS106_Measured UCS106_
Predicted (KNIM)

5.5 4.25E + 00

55.9 56.1135

60.2 62.377

51.73 5.32E + 01

28.5 26.792

28.6 30.973

32.1 35.194

10 11.5015

9.1 11.2945

53.14 50.711

78.09 7.86E + 01

14.5 15.4835

72.44 70.2455

61.3 63.708

52.4 55.0425

101.7 102.309

55.67 56.2965

80.44 78.5815

9.5 12.1425

56.7 53.2

73.84 76.087

47.02 46.6665

55.49 55.133

34.5 33.6845

72.91 69.557

36.8 35.3195

47.3 48.553

58.47 61.2945

53.45 51.798

83 77.5968

66.74 66.7774

100.68 97.5208

58.51 60.611

58.2 60.807

85.15 81.0558

51.4 54.183

56.91 56.4282

9.9 8.294

30.59 31.371

58.32 56.461

35.72 40.5512

57.85 57.8742

84.62 76.1126

102.99 99.2918

78.56 78.3818

41.8 44.2552

9.9 8.5514

108.68 97.6316
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Obtained value based on measured and predicted UCS

UCS106_Measured UCS106_
Predicted (KNIM)

102.99 96.4054

54.24 52.4734

24 27.1262

35.25 43.5572

50.32 51.442

34.7 35.9276

32.01 34.2694

68.67 68.7514

26.83 28.7308

56.14 56.4766

82.79 79.7298

8.5 10.4272

53.14 58.4376
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