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Abstract 

Cloud computing was developed by blending virtualization and grid computing 
technologies. Its purpose is to provide Internet-based, on-demand, and consumption-
based access to pools of computing resources in a measurable, adaptable, and scalable 
manner. Task scheduling is essential to cloud computing to ensure the performance 
of cloud services. However, inefficient scheduling can lead to resource issues such 
as under-allocation and over-allocation, which wastes resources and degrades service 
performance. Therefore, metaheuristic algorithms are incorporated into task schedul-
ing systems to efficiently and timely distribute complex and diverse incoming tasks 
to limited resources. This study aims to analyze task priorities and precisely assign 
them to virtual machines. This is achieved by utilizing the Black Widow Optimization 
(BWO) algorithm. The primary objectives are to reduce time and energy consump-
tion, improve task success rates, and optimize turnaround efficiency. Ultimately, these 
improvements aim to enhance the overall trustworthiness of the system.
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Introduction
Today, small and medium-sized businesses (SMBs) are increasingly aware that they 
can access the best business applications and dramatically increase their infrastruc-
ture resources by leveraging the cloud [1]. Cloud computing allows these businesses 
to access high-performance computing resources at a fraction of the cost of tradi-
tional computing solutions [2]. By leveraging the cloud, SMBs can scale their business 
quickly, and cost-effectively and stay competitive. The term “cloud computing” refers 
to a style of computing in which computing power is made available over the Inter-
net as a service to external customers [3]. Cloud computing encompasses multiple 
delivery models, namely Software as a Service (SaaS), Platform as a Service (PaaS), 
and Infrastructure as a Service (IaaS), which are illustrated in Fig. 1. These services 
form the layered architecture of cloud computing [4]. At the infrastructure layer, the 
underlying compute resources, including storage, processing, and network, are stand-
ardized and provided across the network. Customers of cloud providers can utilize 
this infrastructure to deploy and manage operating systems and software. The middle 
layer, PaaS, offers services and abstractions that facilitate application development, 
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testing, deployment, hosting, and maintenance. Finally, the application layer provides 
a comprehensive suite of SaaS applications. All the layers in the XaaS (Everything as 
a Service) model are seamlessly interconnected through the user interface layer [5].

In recent years, cloud computing has made it possible to arrange geographically 
dispersed data centers to provide high-quality services quickly. It has become a con-
venient way to provide computational resources pay-per-use [6]. Cloud computing 
paradigm bringing conformity and change to the IT industry. As cloud computing 
continues to grow in application and promotion, it presents many opportunities for 
advancing traditional information technology while posing a variety of challenges. 
The advent of cloud computing has revolutionized the way clients access and utilize 
resources [7]. Cloud providers can quickly provision and release resources without 
requiring extensive management or interaction by offering a shared pool of con-
figurable assets [8]. This technology brings numerous advantages to the market, 
including improved time-to-market, cost savings, scalability, and storage efficiency. 
Applications can be deployed on virtual platforms, with resources efficiently dis-
tributed among virtual machines (VMs) [9]. This enables cloud providers to cater to 
multiple users and applications simultaneously, enhancing efficiency and cost-effec-
tiveness. Furthermore, cloud computing facilitates seamless access to data and appli-
cations from any device at any time, enhancing its convenience and accessibility [10].

An effective and dynamic task scheduler is crucial to efficiently manage the simul-
taneous and diverse service requests originating from heterogeneous resources in a 
cloud environment [9]. The scheduler needs to adapt to the workload and allocate 
resources to cater to the needs of various cloud users. Inadequate scheduling mecha-
nisms can significantly impact cloud service quality, leading to a loss of trust in the 
provider and potential business repercussions [11]. Therefore, in the cloud paradigm, 
it is imperative to employ a scheduler capable of dynamically scheduling tasks based 

Fig. 1 Cloud computing paradigm
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on the regular influx of workloads to the console. Such a scheduler benefits cloud 
users and service providers by facilitating optimal resource utilization and maintain-
ing a high level of service quality. This paper investigates the significance of trust-
aware scheduling strategies concerning Service Level Agreement (SLA) criteria 
like response time, success rate, and availability. These indicators positively impact 
the quality of services and negatively influence power consumption and makespan. 
The study carefully prioritizes tasks and VMs, followed by precise mapping using 
the Black Widow Optimization (BWO) algorithm. The research findings reveal an 
underlying correlation between trust parameters and performance metrics, where 
improving trust parameters leads to reduced makespan and energy consumption. This 
research has made the following key contributions.

• This paper presents the development of the Trust-Aware BWO (TABWO) algorithm, 
which incorporates the trust factor in task scheduling. This algorithm allocates tasks 
to VMs based on their trustworthiness, improving overall performance and reliabil-
ity.

• TABWO effectively schedules tasks and VMs by considering the electricity unit costs 
associated with them.

• The study highlights the significance of SLA parameters in evaluating the perfor-
mance of cloud services, with a specific focus on the relationship between makespan 
and trust.

• A robust trust calculation mechanism has been established by incorporating SLA-
related metrics such as the success rate of resources, VM availability, and response 
time, enabling an accurate evaluation of trustworthiness in the cloud environment.

• This study introduced a task assignment approach to meet the deadline constraint 
that prioritizes pending tasks after the current execution.

• Extensive simulations have been conducted using Cloudsim, a popular cloud com-
puting simulator.

• By incorporating fabricated workload distributions (uniform, normal, left-skewed, 
and right-skewed) along with real-time workloads from HPC2N and NASA, the 
study encompasses a wide range of workload scenarios, allowing for a comprehensive 
evaluation of the proposed approach.

The rest of the paper is structured as follows: the “Methods” section provides an 
overview of existing research to establish the context for the proposed algorithm. The 
“Results” section discusses the algorithm’s features and its effectiveness in addressing 
the challenges associated with task scheduling. The “Discussion” section provides an in-
depth analysis and discussion of the findings. The “Conclusions” section concludes the 
study and suggests potential directions for future research and improvement in the field.

Related work
Workflow scheduling in cloud computing is challenged by inherent unreliability and 
uncertainty. Thus, service-oriented approaches should be considered when sched-
uling workflows. Tan, et  al. [12] developed an algorithm for scheduling workflows 
based on trust services. A trust metric is used in the scheduling algorithm, combining 
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direct trust and recommendation trust. A balanced policy was also provided that ena-
bled users to balance different requirements, such as time, cost, and trust. The sug-
gested algorithm was illustrated through a case study. The proposed approach has 
been proven feasible and effective through experiments. Rjoub, et al. [13] introduced 
a trust-aware scheduling approach involving three phases: computation of the trust 
level of VMs, determination of task priority levels, and scheduling based on trust met-
rics. Experiments have demonstrated that the proposed approach outperforms PSO, 
RR, and SJF approaches regarding makespan and the monetary cost under untrusted 
VM conditions.

Ali, et al. [14] introduce a multi-level trust improvement strategy to enhance task 
scheduling in mobile cloud environments. The strategy involves several steps to 
ensure effective task offloading and scheduling. First, the trustworthiness of tasks 
suitable for offloading to the mobile cloud is calculated. This step determines which 
tasks can benefit from being executed in the mobile cloud environment. To further 
enhance task scheduling, the researchers propose the integration of an efficient and 
dynamic scheduler. This scheduler incorporates trust computation methods for social 
and environmental contexts to improve trust-based decision-making. By consider-
ing factors such as social interactions and environmental conditions, the scheduler 
optimizes the allocation of tasks to resources. The method also includes energy and 
time request analysis, which are evaluated against existing methods. This compari-
son is conducted to enhance the efficiency of these computations and make them 
more effective in the context of task scheduling. The proposed strategy utilizes mobile 
cloud computing to handle the continuous updates of trust values from incoming 
devices. This allows for constant synchronization of trust values, ensuring up-to-date 
information is available for decision-making. Moreover, the authors highlight the 
advantages of employing a centralized data distribution method in the mobile cloud 
computing environment. This method leverages the benefits of mobile cloud comput-
ing to distribute and manage data across the system efficiently.

Govindaraj and Natarajan [15] propose a novel trust-based fruit fly optimization 
algorithm (TFOA) for cloud task scheduling. The objective of the TFOA algorithm is 
to enable cloud service providers to receive customer tasks faster and allocate them to 
the most trustworthy resources available. By incorporating trust as a key factor in the 
scheduling process, the algorithm aims to enhance task allocation’s overall efficiency 
and effectiveness. To evaluate the performance of TFOA, the authors compare it with 
existing transitional algorithms such as round robin and particle swarm optimization 
(PSO). The results demonstrate that TFOA outperforms these algorithms regarding 
reduced turnaround time and efficient utilization of cloud resources. By considering 
trust as a crucial factor in resource allocation decisions, TFOA provides improved 
performance and resource utilization, leading to enhanced overall scheduling effi-
ciency in cloud environments.

Ebadifard, et  al. [16] present an effective method for estimating the trustworthi-
ness of VMs that run workflows. Finding the optimal Pareto front becomes more 
difficult as the number of requests increases, the diversity of VMs expands, and the 
conflict between objectives grows. Thus, multi-objective evolutionary algorithms 
face many permutations to identify an optimal trade-off between the objectives. A 
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multi-objective workflow-scheduling algorithm is presented in this paper using a 
multiverse optimizer algorithm to increase diversity and convergence to take into 
account the QoS requirements for service providers and customers simultaneously.

Kaur and Auluck [17] present a real-time trust-aware dynamic scheduling frame-
work specifically designed for fog computing environments. This framework consid-
ers important factors such as privacy, trust, and real-time performance. The authors 
propose a trust computation model that enables the calculation of the trustworthi-
ness of fog devices. This model incorporates both direct and recommended trust 
techniques for each fog device. The aggregated trust values of fog devices are periodi-
cally updated based on these trust computations. Tasks submitted by users are cat-
egorized into three types: private, semi-private, and public.

Furthermore, fog devices are classified into different trust levels: highly trusted, 
extremely highly trusted, normal trusted, low trusted, and untrusted. The proposed 
algorithm aims to improve real-time performance by mapping input jobs to trustwor-
thy fog devices, considering the privacy constraints associated with each task. This 
mapping process increases the overall success ratio of the scheduling algorithm.

Table  1 summarizes trust-aware task scheduling methods. These methods are 
designed to optimize task scheduling taking into account trust-aware factors such as 
trust levels, reputation, and trustworthiness. They can also be used to mitigate the 
effects of malicious actors such as attackers or untrustworthy peers. Finally, they can 
be used to improve the overall trustworthiness of a task-scheduling system.

Table 1 Trust-aware task scheduling methods

Reference Approach Key features

Tan, et al. [12] Trust-based workflow scheduling • Trust metric combining direct and 
recommendation trust
• Balance policy to consider time, cost, 
and trust

Rjoub, et al. [13] Trust-aware scheduling • Computation of trust level for VMs
• Task priority determination based on 
trust metrics
• Outperforms PSO, RR, and SJF in 
makespan and monetary cost under 
untrusted VM conditions

Ali, et al. [14] Multi-level trust improvement strategy 
for mobile cloud

• Trust calculation for offloaded tasks
• Dynamic scheduler based on social 
and environmental trust

Govindaraj and Natarajan [15] Trust-based fruit fly optimization 
algorithm for task scheduling

• Trust-based scheduling using a novel 
TFOA algorithm
• Improved turnaround time and 
resource utilization compared to round-
robin and PSO algorithms

Ebadifard, et al. [16] Multi-objective workflow-scheduling 
algorithm

• Estimation of VM trustworthiness
• Multi-objective evolutionary algorithm 
with multiverse optimizer

Kaur and Auluck [17] Real-time trust-aware dynamic sched-
uling framework

• Trust computation model for fog 
devices
• Categorization of tasks based on 
privacy
• Mapping of tasks to trustworthy fog 
devices
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Methods
Problem definition

In our scenario, this study has a set of tasks denoted as T = [T1, T2, T3, …, Tn], and these 
tasks need to be assigned to a set of virtual resources represented as R = [R1, R2, R3, …, 
Rn]. These resources are hosted on a set of hosts denoted as H = [H1, H2, H3, …, Hn], 
which are located in a set of data centers referred to as D = [D1, D2, D3, …, Dn]. This 
research focuses on assigning Tn tasks to Rn VMs, which are then allocated to Dn data-
centers. This allocation process considers the priorities of both the tasks and VMs, con-
sidering electricity unit costs. The main objective of this problem is to minimize the 
makespan, which represents the total execution time, while simultaneously enhancing 
the SLA-based trust parameters. These trust parameters include turnaround efficiency, 
success rate, and availability. By optimizing the task allocation and scheduling process, 
This study aims to improve these trust parameters, ensuring that the assigned tasks are 
executed efficiently and meet the required SLA criteria.

System architecture

As shown in Fig. 2, the architecture effectively illustrates the sequential progression of 
tasks and the interaction of users within the system. Initially, cloud users from heteroge-
neous resources submit their requests through the cloud console. To facilitate the pro-
cess, a cloud broker acts as an intermediary and captures these requests, subsequently 
forwarding them to the task manager. The task manager then assesses the validity of the 
requests by comparing them against the SLA agreements. Once validated, the service 
request dispatcher takes charge of dispatching the approved requests to the scheduler. 
Task length, run time, and capacity determine task priorities.

Moreover, our system incorporates the calculation of VM priorities based on their 
electricity costs. By considering this factor, This study determines the relative impor-
tance of each VM. Subsequently, the tasks are placed in the execution queue, and the 

Fig. 2 System architecture
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scheduler takes responsibility for assigning them to the most suitable VMs. During 
the assignment process, the scheduler takes into account the consumption status of 
virtual resources at the resource manager level. This approach aims to minimize the 
makespan (the duration of task execution) and enhance trust parameters based on SLA 
requirements.

To optimize task scheduling, a crucial deadline constraint is enforced. This constraint 
guarantees that while a task is being executed on a VM, no other tasks are scheduled 
on the same VM. By adhering to this constraint, the system maintains the integrity of 
task execution and maximizes resource utilization. Equation 1 is utilized to calculate the 
workload of all VMs, enabling us to gain insights into the current workload status. This 
calculation provides a comprehensive understanding of the distribution of tasks across 
the VMs. Additionally, Eq.  2 is employed to determine the workload on all physical 
hosts, taking into account that VMs are hosted on these hosts. This assessment allows 
us to gauge the overall workload of the system and make informed decisions regarding 
resource allocation and load balancing.

The Eq.  1 calculates the total workload across all virtual machines ( loadnv ) by sum-
ming up the individual workloads of each virtual machine ( loadv ). It provides insights 
into the current workload status across the entire virtualized environment.

In Eq. 2, this equation determines the workload on a specific physical host ( loadhoq ), 
represented by the subscript q. It divides the total workload across all virtual machines 
( loadnv ) by the number of hosts ( hoq ), providing a measure of the overall workload dis-
tribution among physical hosts. The hoq represents a specific physical host, denoted by 
the subscript q. This notation is used to distinguish between different physical hosts 
within the cloud computing environment. Each physical host is assigned a unique identi-
fier or label, which is represented by the subscript q in this context.

Moving forward, the subsequent step entails the mapping of tasks onto VMs. To facili-
tate this mapping process, task priorities are established, considering both the length of 
the tasks and the processing capacities of the VMs. Equation 3 is employed to calculate 
the processing capacity of an individual VM, which plays a crucial role in determining 
task priorities and optimizing the scheduling process. Furthermore, to obtain a holistic 
view of the system’s processing capacity, Eq. 4 is utilized to compute the combined pro-
cessing capacity of all VMs. Task sizes are determined by Eq. 5, which is then used to 
calculate task priorities using Eq. 6. In Eq. 6, the processing capacity of VMs and the size 
of the corresponding task are considered.

(1)loadnv = loadv

(2)loadhoq =
loadnv

hoq

(3)prnv = prno ∗ prMIPS

(4)ToTpr
nv

= prnv
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Equation  3 calculates the processing capacity of an individual VM (prnv ) by mul-
tiplying the priority of the VM (prno) with its MIPS (million instructions per sec-
ond) capacity(prMIPS) . It is used to determine task priorities based on the processing 
capabilities of VMs. In Eq. 4, it represents the total processing capacity of all virtual 
machines ( ToTpr

nv ), which is equal to the processing capacity of an individual VM 
( prnv ). It provides an overview of the system’s processing capacity for task scheduling 
purposes. In Eq.  5, this equation calculates the size ( msize

t  ) of a task ( mt ) by multi-
plying its MIPS requirement (m tMIPS) with its priority ( mMIPS

t  ). It helps determine 
task priorities based on their resource requirements. In Eq.  6, it calculates the pri-
ority ( priomt

 ) of a task ( mt ) by dividing its size ( msize
t  ) by the processing capacity of 

the corresponding VM ( prnv ). It is used to prioritize tasks for scheduling based on 
their resource needs. Equation 7 calculates the electricity cost-based priorities. This 
equation compares the electricity cost at each data center with the highest electricity 
cost among all data centers. The priority is determined by taking the rate of the high-
est electricity cost to the electricity cost at the corresponding data center. By incor-
porating electricity cost-based priorities for VMs, resource allocation and workload 
balancing can be optimized. VMs with lower electricity costs are assigned higher pri-
orities, indicating their suitability for task execution and promoting resource utiliza-
tion and cost-effectiveness in the cloud environment.

The Eq. 7 calculates the electricity cost-based priority ( prionv ) for a virtual machine 
(nv). It compares the electricity cost at each data center ( DCelecost ) with the highest 
electricity cost among all data centers ( highDCelecost ). VMs with lower electricity costs 
are assigned higher priorities, optimizing resource allocation and workload balancing 
based on cost-effectiveness.

After determining the priorities of tasks and VMs, the task manager forwards 
these priorities to the scheduler for schedule generation. However, before generat-
ing schedules, the scheduler needs to communicate with the resource manager to 
check the status of virtual resources, specifically whether the VMs are currently busy 
or idle. In addition to task and VM priorities, the scheduler considers SLA-based 
trust parameters crucial for maintaining the quality of service provided by the cloud 
provider. These parameters, including availability, success rate, and turnaround effi-
ciency, are significant in establishing trust between providers and users. Violations of 
these parameters can erode the trust in the cloud provider. Equation 8 is utilized to 
calculate a VM’s availability. The availability metric is the ratio of the number of tasks 
accepted by a VM to the total number of tasks submitted by the user. This metric pro-
vides insights into the reliability and responsiveness of the VM in handling user tasks. 

(5)msize
t = mMIPS

t ∗m
pr
t

(6)priomt
=

msize
t

prnv

(7)prionv =
highDCelecost
DCelecost
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By monitoring and optimizing VM availability, the cloud provider can ensure a reli-
able and efficient execution environment for tasks.

The Eq. 8 calculates the availability ( AV(nv) ) of a virtual machine ( nv ) as the ratio of 
the number of tasks accepted by the VM ( AVm ) to the total number of tasks submit-
ted by the user ( mt ). It measures the reliability and responsiveness of the VM in han-
dling user tasks, aiding in monitoring and optimizing VM availability for efficient task 
execution.

The success rate is a significant SLA-based trust parameter that evaluates the perfor-
mance and reliability of a cloud provider. It measures the proportion of successfully exe-
cuted requests or tasks on a VM out of the total number of requests submitted within a 
specific timeframe. The success rate can be calculated using the following equation:

The Eq. 9 calculates the success rate ( SR(nv) ) of a virtual machine ( nv ) as the propor-
tion of successfully executed tasks ( smt ) out of the total number of tasks submitted to the 
VM ( AVm ). It evaluates the performance and reliability of the cloud provider by meas-
uring the VM’s ability to execute tasks successfully within a specific timeframe.

The turnaround efficiency is another important SLA-based trust parameter that meas-
ures the effectiveness and efficiency of a VM in terms of task scheduling and execution. 
It quantifies the ratio of the estimated turnaround time (ESTT) provided by the cloud 
provider to the actual turnaround time (ACTT) experienced during task scheduling and 
execution. The turnaround efficiency can be calculated using the following equation:

The Eq. 10 calculates the turnaround efficiency TE(nv) of a virtual machine ( nv ) as the 
ratio of the estimated turnaround time ( ESTT ) provided by the cloud provider to the 
actual turnaround time experienced during task scheduling and execution ( ACTT ). It 
assesses the accuracy of the cloud provider’s estimated turnaround time and the effi-
ciency of task scheduling and execution on the VM.

The estimated turnaround time is the expected time the cloud provider provides for 
a task to be scheduled and executed on the VM. It is typically based on the resources 
allocated to the task and the expected workload. On the other hand, the actual turna-
round time represents the real-time duration taken for the task to be executed on the 
VM, including any delays or unexpected events. By calculating the turnaround effi-
ciency, This study can assess how well the cloud provider’s estimated turnaround time 
aligns with the time taken for task execution. A higher turnaround efficiency indicates 
that the estimated turnaround time is close to the actual time, reflecting accurate predic-
tions and efficient scheduling. This parameter is crucial for users to evaluate the reliabil-
ity and performance of a cloud provider in meeting the promised turnaround time for 
task execution.

(8)AV(nv) =
AVm

mt

(9)SR(nv) =
smt

AVm

(10)TE(nv) =
ESTT

ACTT
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Equation 11 represents the trust calculation in a cloud service provider based on the 
SLA-based trust parameters. The equation involves positive weights assigned to the 
parameters X1, X2, and X3, which are used to calculate the cloud service provider’s over-
all trust value (X). The weights assigned to these parameters determine their relative 
importance in the trust calculation process. The specific values of the weights can vary 
depending on the context and requirements of the cloud service. In the given example, 
X1 is assigned a weight of 0.5, X2 is assigned a weight of 0.2, and X3 is assigned a weight 
of 0.1. These weights can be adjusted based on the cloud service’s and its users’ specific 
needs and priorities. By plugging in the values of X1, X2, and X3, along with the calcu-
lated values of the SLA-based trust parameters (availability, success rate, and turnaround 
efficiency), Eq. 11 allows for the computation of the overall trust value in the cloud ser-
vice provider. The resulting trust value will fall between 0 and 1, where a higher value 
indicates a higher level of trust in the cloud service provider.

In Eq. 11, the trustcsp represents the overall trust value of the cloud service provider. 
X1, X2, and X3 represent positive weights assigned to different SLA-based trust param-
eters (availability, success rate, turnaround efficiency), determining their relative impor-
tance in trust calculation. AV (nv) depicts the availability of a VM, calculated as the ratio 
of accepted tasks to total submitted tasks, reflecting the reliability and responsiveness 
of the VM. The SR(nv) represents the success rate of a VM, representing the proportion 
of successfully executed tasks out of the total submitted tasks, crucial for evaluating the 
performance and reliability of the cloud provider. The TE(nv) represents the turnaround 
efficiency of a VM, indicating the ratio of estimated turnaround time to actual turna-
round time, measuring the accuracy of the cloud provider’s predictions and scheduling 
efficiency.

Proposed trust‑aware task scheduling algorithm

The proposed TABWO algorithm introduces a novel approach to task scheduling in 
cloud computing environments. The methodology of TABWO is built upon the foun-
dation of the BWO algorithm, known for its efficacy in addressing NP-hard problems 
through efficient exploration of solution spaces. TABWO extends the capabilities of 
BWO by incorporating trust awareness into the task-scheduling process. This trust 
awareness encompasses considerations of SLA-based trust parameters, such as availabil-
ity, success rate, and turnaround efficiency, which are vital for evaluating the reliability 
and performance of cloud service providers. By integrating trust-related factors into the 
optimization process, TABWO aims to enhance the overall performance and reliabil-
ity of task scheduling in cloud computing environments. The algorithm seeks to achieve 
improved efficiency, resource utilization, and trustworthiness by combining optimiza-
tion objectives with trust considerations.

The TABWO model comprises several phases aimed at optimizing task scheduling in 
cloud computing environments. Firstly, the population of spiders is initialized to repre-
sent potential solutions to the task scheduling optimization problem. Each spider cor-
responds to an individual solution in the solution space, with floating-point variables 
defining their characteristics. These characteristics, including position and fitness, are 

(11)trustcsp = X1 ∗ AV (nv)+ X2 ∗ SR(nv) ∗ X3 ∗ TE(nv)
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crucial for evaluating the quality of solutions. Through the mating process, spiders 
reproduce offspring that inherit certain characteristics from their parents, facilitating 
the generation of new solutions. Additionally, the algorithm incorporates cannibalism 
mechanisms inspired by the behavior of black widow spiders, promoting the survival 
of stronger solutions and the elimination of weaker ones. Furthermore, the mutation 
component of TABWO employs an adaptive scheme to alter mutation rates dynami-
cally, ensuring effective exploration of the solution space. By leveraging these phases 
and mechanisms, TABWO can effectively optimize task scheduling in cloud comput-
ing environments, considering both optimization objectives and trust-related factors for 
informed scheduling decisions.

The BWO algorithm, with its inherent optimization capabilities, is a suitable choice 
for addressing this problem by finding near-optimal solutions [18]. By utilizing the BWO 
algorithm as the foundation, the proposed TABWO algorithm incorporates trust aware-
ness into the task scheduling process. In addition to optimizing task allocation and 
resource utilization, the algorithm considers trust-related factors, such as SLA-based 
trust parameters discussed earlier, to make informed scheduling decisions. The use of 
TABWO aims to enhance the overall performance and reliability of task scheduling in 
cloud computing environments by considering both optimization objectives and trust 
considerations. By combining the capabilities of BWO with trust awareness, the algo-
rithm strives to achieve improved task scheduling results in terms of efficiency, resource 
utilization, and trustworthiness.

In the BWO algorithm, the population of spiders is initialized to represent potential 
solutions to the optimization problem. Each spider corresponds to an individual solu-
tion in the d-dimensional solution space. The population size is denoted as NP, and the 
candidate matrix is represented by an NP * d array, as defined in Eq. 12.

The array contains floating-point variables that define the characteristics of each spi-
der in the population. The values of these variables determine the attributes of each 
solution, such as position, fitness, or other relevant parameters. The initial population 
is generated randomly to explore the solution space effectively, as indicated in Eq. 13. 
Initializing the population sets the foundation for the optimization process in BWO. By 
creating a diverse set of initial solutions, the algorithm can explore different regions of 
the solution space and increase the chances of finding promising solutions. The subse-
quent steps of the BWO algorithm, such as mating and selection, build upon this initial 
population to iteratively improve the quality of the solutions and converge towards opti-
mal or near-optimal solutions.

In the BWO algorithm, the mating process occurs independently for each pair of spiders 
in the population. This process simulates the natural reproduction of black widow spiders 
in their webs. As each pair of spiders’ mates independently of the rest of the web, in the 
BWO algorithm, each pair mates to produce offspring. A new generation of spiders is cre-
ated during mating by reproducing an alpha array using arbitrary numbers. The parents are 
denoted as u1 and u2, while the children are represented as v1 and v2. The mating process 

(12)Black window = [x1, x2, . . . , xd]

(13)Black window = xl + rand(1, d). ∗ (xu− xl)
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combines the genetic information of the parents to generate offspring that inherit certain 
characteristics from each parent.

In the context of the BWO algorithm, cannibalism refers to a mechanism inspired by the 
behavior of black widow spiders. The algorithm incorporates three types of cannibalism: 
female cannibalism, sibling cannibalism, and baby spider cannibalism. Female black widow 
spiders eat male black widow spiders after or during mating. In the BWO algorithm, fit-
ness values are used to identify female and male spiders. Female spiders, representing better 
solutions, have higher fitness values. The algorithm incorporates this concept by allow-
ing female spiders to consume male spiders, thereby eliminating weaker solutions. Sibling 
cannibalism occurs when stronger spiderlings (baby spiders) eat weaker spiderlings. This 
behavior is mimicked in the BWO algorithm to promote the survival of stronger solutions. 
Spiderlings with higher fitness values, indicating better solutions, are more likely to survive 
and reproduce, while weaker spiderlings may be cannibalized. In some cases, baby spiders 
may consume their mother. In the BWO algorithm, this behavior is simulated by evaluating 
the fitness values of spiderlings. Weak or strong spiderlings are assessed based on their fit-
ness values, and this information may influence their survival and reproduction.

The mutation is another important component of the BWO algorithm. It is based on the 
simulated binary crossover (SBC), which produces new individuals or chromosomes at 
constant crossover and mutation rates. However, a permanent mutation rate may not lead 
to the optimal solution for the optimization problem. An adaptive scheme is employed to 
alter the mutation rate to address this. The proposed algorithm combines three crossover 
operators (single point crossover, uniform crossover, and SBC) to generate new individuals. 
The mutation rate is updated using a linear function and is adjusted based on the value of 
ps, calculated using Eq. 16.

In Eq. 16, tM represents the maximum generation, a predefined value indicating the total 
number of generations in the algorithm. The variable t represents the current generation 
number during the optimization process. The value of P, as given by Eq. 17, is a fixed real 
number used in calculating the mutation rate.

Results
In this section, this study provides details about the simulations conducted in this study. 
The simulations were carried out using the Cloudsim simulator, a Java-based frame-
work for simulating cloud computing environments. This powerful tool allowed them to 

(14)
{

v1 = a× u1 + (1− α)× u2
v2 = a× u2 + (1− α)× u1

}

(15)mr =
ps

L

(16)ps = P + (t − 1)×
1− P

tM − 1

(17)P0 =
L

50
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model and analyze the behavior of various components within the cloud infrastructure. 
This study employed a combination of fabricated datasets with different distributions 
and real-time workloads obtained from sources like HPC2N and NASA to generate real-
istic workloads. Utilizing these datasets ensured that the simulated workload closely 
resembled real-world scenarios encountered in cloud computing environments. This 
study generated workload datasets by fabricating datasets with different distributions. 
These distributions included normal, uniform, right-skewed, and left-skewed distribu-
tions. These fabricated datasets were labeled S01, S02, S03, and S04, respectively. The 
purpose of using different distributions for workload generation is to simulate various 
scenarios and test the performance of the proposed scheduler under different workload 
conditions. Each distribution represents a different pattern of task arrival and resource 
requirements, allowing one to assess the scheduler’s ability to handle different workload 
characteristics.

During the simulations, This study focused on evaluating several important per-
formance metrics. These metrics included SLA-based trust parameters, such as avail-
ability, success rate, and turnaround efficiency, which play a significant role in assessing 
the trustworthiness of a cloud service provider. Additionally, This study measured the 
makespan, which represents the total time taken to complete all tasks, and energy 
consumption, which indicates the amount of energy consumed during the execution 
of tasks. To assess the effectiveness of the proposed approach, This study compared it 
against baseline approaches, namely the ACO, GA, and PSO algorithms. These algo-
rithms are commonly used in optimization problems, including task scheduling in cloud 
computing. To determine the advantages and drawbacks of each approach, it needs to 
subject both the baseline approaches and the proposed approach to the same workload 
and performance metrics and conduct a comparative analysis.

This study conducted simulations to calculate the makespan of the proposed sched-
uler. The makespan is an important metric in the design of a scheduler, as it directly 
affects the effectiveness and performance of the scheduler. Minimizing the makespan 
leads to improved scheduler performance. This study conducted simulations with var-
ying tasks ranging from 100 to 1000 to calculate the makespan. They ran the simula-
tions for 50 iterations to ensure reliable and consistent results. The simulation settings 
used were based on the specifications provided in Table 2. This study utilized different 
workloads, labeled S01, S02, S03, and S04, as input for the TABWO scheduler. These 
workloads were generated or obtained from external sources. By applying the proposed 
approach and the baseline algorithms to these workloads, This study could compare the 
scheduler’s performance in terms of the generated makespan. Figure 3 shows that the 
proposed TABWO scheduler consistently outperforms the baseline approaches regard-
ing generated makespan across the 50 iterations and for the considered range of tasks. 
This comparison highlights the superiority of the TABWO scheduler in minimizing the 
makespan and demonstrates its effectiveness in improving scheduler performance com-
pared to the baseline algorithms.

This study calculated the energy consumption of the TABWO scheduler as an 
important parameter for evaluating its performance. Energy consumption is a cru-
cial aspect to consider from the perspective of the cloud consumer and service pro-
viders’ perspectives. To calculate energy consumption, the researchers conducted 
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simulations by varying the number of tasks from 100 to 1000 and running 50 iter-
ations. The efficiency of the scheduler in terms of energy usage can be assessed by 
comparing its energy consumption results with the baseline algorithms. The objective 
was to minimize energy consumption, which benefits the cloud provider in reducing 
power bills and the cloud consumer accessing services at a lower cost.

Additionally, minimizing energy consumption also has environmental benefits. 
The results of the simulations, including the generated energy consumption values 
for different workloads and the corresponding comparison with baseline approaches, 
are presented in Fig.  4, respectively. These results show that the proposed TABWO 

Table 2 Simulation parameters

Parameter Value

Number of data centers 5

Hypervisor type Monolithic

Hypervisor name Xen

Number of processing elements 1050 MIPS

Bandwidth capacity 100 Mbps

Memory capacity 1 GB

Number of VMs 30

Task length 800,000

Number of tasks 100–1000

Fig. 3 Makespan comparison a normal distribution, b uniform distribution, c right-skewed distribution, d 
left-skewed distribution
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scheduler outperforms the baseline algorithms in terms of energy consumption 
across the 50 iterations and for the considered tasks.

The success rate is a critical metric in evaluating the efficiency and reliability of a cloud 
service provider. It represents the percentage of successfully executed requests onto 
VMs, indicating how well the scheduler completes tasks and meets SLAs. To calculate 
the success rate, This study conducted extensive simulations by varying the number of 
tasks from 100 to 1000 and running 50 iterations. The primary objective was to improve 
the success rate percentage, which has several benefits for the cloud service provider 
and consumers. For the cloud service provider, a higher success rate indicates a better 
quality of service, improved reliability, and more efficient resource utilization. This, in 
turn, enhances consumers’ trust in the cloud provider’s ability to deliver services as per 
SLAs. For cloud consumers, a higher success rate means a more reliable and consistent 
performance of their applications, leading to increased satisfaction with the cloud ser-
vice. The results of the simulations, including the generated success rate values for differ-
ent workloads and the comparison with the baseline algorithms, are presented in Fig. 5, 
respectively. These results show that the proposed TABWO scheduler consistently out-
performs the baseline algorithms regarding the success rate across the 50 iterations and 
for the considered tasks.

On the other hand, one notable aspect to consider in this comparison is the meth-
odology employed by each approach. The TABWO leverages a trust-aware optimiza-
tion strategy, which incorporates trust parameters such as availability, success rate, and 
turnaround efficiency. This novel approach not only focuses on optimizing traditional 

Fig. 4 Energy consumption comparison a normal distribution, b uniform distribution, c right-skewed 
distribution, d left-skewed distribution
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metrics like makespan and energy consumption but also emphasizes the trustworthiness 
of the cloud service provider. In contrast, ACO, GA, and PSO algorithms typically pri-
oritize optimization without explicitly considering trust aspects. While these traditional 
algorithms are effective in optimizing certain performance metrics, they may fall short 
in ensuring the reliability and trustworthiness of cloud services.

Furthermore, the complexity and time efficiency of the scheduling algorithms play 
a crucial role in practical deployment scenarios. TABWO introduces a unique binary 
whale optimization technique, which offers a balance between exploration and exploita-
tion phases, resulting in improved convergence speed and solution quality. This char-
acteristic is particularly advantageous in dynamic cloud environments where rapid 
adaptation to changing workloads is essential. On the other hand, ACO, GA, and PSO 
algorithms may suffer from scalability issues or longer convergence times, especially 
when dealing with large-scale task scheduling problems. Additionally, the preprocess-
ing steps involved in each approach contribute to their overall complexity. TABWO’s 
integration of trust parameters into the optimization process adds a layer of complex-
ity compared to traditional algorithms. However, this additional complexity is justified 
by the enhanced trustworthiness and reliability achieved in task scheduling, which ulti-
mately benefits both cloud providers and consumers.

Another aspect worth considering is the adaptability of the scheduling algorithms 
to different workload characteristics and distribution patterns. TABWO demonstrates 
superior adaptability by utilizing fabricated datasets with various distributions, includ-
ing normal, uniform, right-skewed, and left-skewed distributions. This comprehensive 

Fig. 5 Success rate comparison a normal distribution, b uniform distribution, c right-skewed distribution, d 
left-skewed distribution
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evaluation allows for a thorough assessment of the scheduler’s performance under 
diverse workload conditions, ensuring its robustness and versatility. In contrast, while 
ACO, GA, and PSO algorithms are widely applicable and effective in many optimization 
problems, their performance may vary depending on the specific characteristics of the 
workload. Without explicit consideration of trust parameters and diverse workload dis-
tributions, these traditional algorithms may struggle to achieve consistent and reliable 
performance across various scenarios. Therefore, the qualitative comparison highlights 
TABWO’s ability to outperform existing methods not only in optimizing traditional 
metrics like makespan and energy consumption but also in addressing the trustworthi-
ness and adaptability requirements of cloud computing environments.

During the simulations, the trustworthiness of VMs was assessed based on SLA-based 
trust parameters, which include availability, success rate, and turnaround efficiency. 
These parameters play a crucial role in determining the reliability and performance of a 
cloud service provider. Here are some clarifications to demonstrate the trustworthiness 
of VMs during the simulations:

Availability

The availability of VMs was calculated as the ratio of the number of tasks accepted by a 
VM to the total number of tasks submitted by the user. A higher availability metric indi-
cates that the VM is reliably handling user tasks and responding promptly to requests. 
By monitoring VM availability, the cloud provider can ensure a dependable execution 
environment for tasks, thus enhancing trust in its services.

Success rate

The success rate represents the proportion of successfully executed requests or tasks 
on a VM out of the total number of requests submitted within a specific timeframe. A 
higher success rate signifies that the scheduler effectively completes tasks and meets 
SLAs. This metric reflects the reliability and efficiency of VMs in executing tasks, con-
tributing to increased trust in the cloud provider’s service quality.

Turnaround efficiency

Turnaround efficiency measures the effectiveness of VMs in terms of task scheduling 
and execution by quantifying the ratio of the estimated turnaround time to the actual 
turnaround time. A higher turnaround efficiency indicates that the cloud provider’s esti-
mated turnaround time aligns well with the actual execution time, reflecting accurate 
predictions and efficient scheduling. This parameter is crucial for evaluating the reliabil-
ity and performance of VMs in meeting promised turnaround times, thus influencing 
trust in the cloud provider.

By evaluating these SLA-based trust parameters for VMs during the simulations, This 
study gains insights into the reliability, responsiveness, and efficiency of VMs in handling 
tasks. Consistently high levels of availability, success rate, and turnaround efficiency 
demonstrate the trustworthiness of VMs and contribute to building trust between cloud 
providers and consumers. These metrics provide assurance to consumers regarding the 
quality of service provided by the cloud provider, leading to enhanced trust and satisfac-
tion with cloud services.
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Discussions
The proposed trust-aware task scheduling algorithm, TABWO, introduces a novel 
approach to addressing the intricate challenges of task scheduling within cloud com-
puting environments. One of its primary advantages lies in its ability to consistently 
outperform baseline algorithms, as demonstrated through metrics such as makespan, 
energy consumption, and success rate. By integrating trust awareness into the sched-
uling process, TABWO makes more informed decisions, leading to enhanced perfor-
mance and efficiency in task execution. This improvement is particularly significant 
in complex cloud environments where optimizing resource allocation is paramount 
for meeting service level agreements (SLAs) and ensuring user satisfaction. TABWO 
achieves this by dynamically assigning tasks to virtual machines (VMs) based on their 
processing capacities and workload distribution, thus optimizing resource utilization 
and minimizing wastage.

Furthermore, the trust-aware approach of TABWO contributes to the enhance-
ment of reliability within cloud computing systems. By considering SLA-based trust 
parameters such as availability, success rate, and turnaround efficiency, the algorithm 
ensures a more dependable and consistent performance of VMs. This reliability fos-
ters trust between cloud providers and consumers, consequently elevating the overall 
quality of service. The algorithm’s ability to optimize resource allocation while simul-
taneously prioritizing trust-related factors ensures that critical tasks are allocated 
to the most reliable VMs, thereby minimizing the risk of service disruptions and 
enhancing the user experience.

However, despite its numerous advantages, the implementation of TABWO also 
presents certain limitations. Chief among these is the inherent complexity associ-
ated with trust-aware scheduling algorithms. Implementing TABWO requires a deep 
understanding of cloud computing architectures, SLA parameters, and optimization 
techniques, which may pose challenges for users lacking expertise in these domains. 
Additionally, the computational overhead introduced by the algorithm’s trust assess-
ment and decision-making processes may impact its scalability, particularly in large-
scale cloud environments with a high volume of tasks and VMs.

Another limitation of TABWO stems from its heavy reliance on SLA parameters for 
making scheduling decisions. Inaccurate or unreliable SLA parameters, influenced by 
external factors such as network latency or VM failures, may compromise the effec-
tiveness of the algorithm, leading to suboptimal performance. Moreover, like many 
optimization algorithms, TABWO requires careful tuning of parameters and heuris-
tics to achieve optimal performance across diverse workload scenarios. Finding the 
right balance of parameters and ensuring robustness in varied environments can be 
challenging and time-consuming, potentially hindering the algorithm’s widespread 
adoption.

As a result, while TABWO offers significant advantages in improving task scheduling 
efficiency and reliability in cloud computing, its implementation and deployment require 
careful consideration of its inherent complexities and limitations. Through ongoing 
research and development efforts focused on mitigating these challenges, TABWO has 
the potential to emerge as a powerful tool for optimizing resource allocation, enhancing 
reliability, and fostering trust within cloud computing ecosystems.
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Conclusions
Task scheduling is critical to cloud computing as it involves managing virtualized 
resources. With clients utilizing numerous virtual assets per task, manual scheduling 
is impractical. Task scheduling is primarily intended to enhance performance by mini-
mizing time loss. However, in cloud computing environments, scheduling becomes 
challenging due to task dependencies, resource heterogeneity, and high computational 
intensity. One of the most complex challenges is determining the execution time and 
trustworthiness of VMs used for task execution. Hence, it is essential to simultaneously 
reduce Makespan time and allocate tasks to VMs with the highest level of trust. This 
study presented a trust-aware task scheduling approach called TABWO for cloud com-
puting environments by leveraging the BWO algorithm. Our main objective was to max-
imize the performance and trustworthiness of cloud service providers by considering 
important factors such as makespan, energy consumption, and success rate. Extensive 
simulations were conducted using the Cloudsim framework to evaluate the effectiveness 
of the TABWO scheduler.
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