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Introduction
There is an increasing demand for high-strength low-alloy (HSLA) steels in the manu-
facturing of heavy-duty mechanical parts and structural applications. It meets specific 
mechanical properties such as strength, toughness, formability, ductility, weldability, 
and corrosion resistance together to be used in specific applications that require all 
these properties with optimum values [1]. G22NiMoCr5-6 and G18NiMoCr3-6 steels 
are a sub-category of HSLA steels that are widely used in heavy-duty mechanical and 
industrial applications for their high wear resistance and ultra-high tensile strength that 
ranges from 780 to 1200 MPa. These extraordinary mechanical characteristics of G22Ni-
MoCr5-6 and G18NiMoCr3-6 steels make them a very suitable choice for applications 
that are exposed to heavy loads and high stresses such as heavy crane components [2]. In 
addition, the development of such materials with these characteristics and mechanical 
properties made it possible to develop the capabilities of heavy cranes and other equip-
ment in the industry of heavy equipment over time.
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In this regard, A. Ryzhkov et al. investigated the influence of microstructure on the 
impact energy of Cr-Ni-Mo alloy that is used in heavily loaded applications. They 
found that manufacturing this grade of material using carbon content that ranges 
from 0.10 to 0.15 wt.% and slow cooling rate produces alloy with bainitic structure 
and high impact energy [3]. Also, V. G. Laz’ko et al. investigated the influence of car-
bon content on the strength and toughness of steel. They found that the increase of 
carbon content within the chemical composition increases the strength and decreases 
the toughness of steel [4, 5].

W. Garrison studied the influence of nickel and silicon content on the strength and 
impact energy of steels. The strength shows an increase with the increase of silicon, 
while it decreases with the increase of nickel. And the impact energy increases with 
the increase of Si and Ni [6]. Also, the influence of nickel on the mechanical proper-
ties of steel was studied by H. Y. Dong et al. They found that hardness and elongation 
increase with the addition of nickel [7]. The effect of molybdenum on the mechanical 
properties of high-strength steels was studied by Z. Chen et al. With the addition of 
Mo, the strength shows an increase while the ductility shows a reduction [8].

The effect of chromium content on the tensile properties of steel welds was stud-
ied by M. Gharavol et al. The researchers found that when Cr increases, the strength 
increases while ductility decreases [9]. Also, P. Machmeier et al. studied the effect of 
chromium content on the impact energy of ultra-high strength steel. They found that 
with the increase of Cr content, impact energy increases [10].

H. Fan et al. investigated the effect of tempering temperatures on the tensile prop-
erties of G18NiMoCr3-6. They found that strength and hardness decrease as the tem-
pering temperature increases. However, ductility and impact energy decrease as the 
temperature is below 400 ℃ and increase for temperatures that exceed 400 ℃ [11]. 
Also, Y. Zhu et al. studied the effect of tempering process parameters on and mechan-
ical properties of G18NiMoCr3-6. They found that with the increase of tempering 
temperature, strength and hardness decreases, while ductility and impact energy 
increases. Mechanical properties also were found to have the same trending results 
affected by the tempering time parameter [12]. C. Tang et al. studied the effect of the 
induction hardening process on G18NiMoCr3-6 steel. The researchers found that the 
hardening surface depth increases as the moving speed decreases. G18NiMoCr3-6 
shows a martensitic microstructure after the hardening process carried out using dif-
ferent moving speeds [13].

S. Nagel et al. investigated the fatigue behavior of G22NiMoCr5-6 steels with inter-
nal defects. They found that the number of cycles until fracture was plotted between 
1 • 10

4 and 1 • 107 cycles versus stress level that ranges from 150 to 570 MPa [14].
In manufacturing of crawler track plates, fatigue behavior is a very important fac-

tor to consider. Track plates are exposed to fluctuating tension/loose cyclic loading 
as shown in Fig. 1 with a magnitude between minimum and maximum values every 
cycle which is the total length of the chain track. In addition, another fatigue fluctua-
tion resulting from the rotation of the sprocket with an angle equal to the pitch angle 
exposes the track plates to fluctuating loads that range from the maximum tension 
and a little lower than the maximum value.
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This research aims to investigate the mechanical and fatigue behavior of G22Ni-
MoCr5-6 and G18NiMoCr3-6 steels to evaluate their performance in heavy equipment 
industry applications, especially in the manufacturing of heavy-duty crawler track plates.

Methods
Samples extracted from crawler track plates made of G22NiMoCr5-6 and G18Ni-
MoCr3-6 were used to implement the experimental methodology within this research. 
Chemical composition was investigated by an optical emission spectrometer instru-
ment according to ASTM A751 [15]. Also, scanning electron microscopy (SEM) was 
used to examine the microstructure according to ASTM E3 [16]. Specimens were 
grinded and polished, then they were etched in 2% nital solution.

A tensile test was conducted according to ASTM E8/E8M standard [17]. The test 
was done using a 600-kN universal testing machine (model 602, Tinius-Olsen TMC, 
USA). Figure 2 shows the dimensions of specimens used to conduct the tensile test.

V-notch Charpy impact test at room temperature was implemented according to 
ASTM E23 standard [18] using a Zwick/Roell pendulum impact tester (model RKP 
450, Zwick/Roell Amsler, Germany). Figure  3 shows the dimensions of specimens 
used to conduct the V-notch charpy impact test.

Fig. 1  Loading on crawler tracks traveling a forward and b backward

Fig. 2  Geometry of tensile test specimens
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Rockwell hardness was measured as well according to ASTM E18 [19]. In addition, 
the rotating beam bending fatigue testing machine model RBF-200 HT (System Integra-
tor LLC, USA) was used to conduct fatigue test according to ASTM E606/E606M [20]. 
The geometry of the recommended hourglass round test specimen is shown in Fig.  4 
according to instructions illustrated in the operation manual of the bending fatigue test-
ing machine [21].

A fatigue test was done on 8 specimens of each material at a stress level of 625 MPa. 
For steels, the endurance limit (σe) can be estimated to be half of the ultimate tensile 
strength (UTS) according to the formula σe = 0.5*UTS [22], it is very important that 
the selected stress value for the implementation of the fatigue test to be higher than the 
endurance limit. Otherwise, the test will take a long time to be completed and the speci-
men may not fracture. On the other hand, the selected stress value shall be less than the 
value of yield stress to avoid static fracture as possible. So, the stress value of 625 MPa 
is selected for the implementation of the fatigue test as an approximate median value 
between the estimated endurance limit and yield strength.

Results and discussion
Chemical analysis

The results of the chemical composition of both G22NiMoCr5-6 and G18NiMoCr3-6 
are shown in Table 1, along with the specified chemical composition recommended by 
relevant standard. It shows an average of 48% excess in carbon content and a 29% reduc-
tion in molybdenum content for G22NiMoCr5-6 samples. Also, a relatively high content 
of nickel is found. Nickel improves the fracture toughness of the alloy. In addition, wear 
resistance, ductility, hardness, and fatigue resistance are expected to be enhanced by the 
contribution of chromium with nickel [23, 24].

Fig. 3  Geometry of Charpy-impact test specimens

Fig. 4  Geometry of fatigue test specimens
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On the other hand, G18NiMoCr3-6 results show a perfect alignment with the stand-
ard. G18NiMoCr3-6 steel samples maintain a reasonable carbon content while rely-
ing on the content of the molybdenum and manganese, which solutes harden ferrite to 
enhance the ultimate tensile strength while maintaining a good weldability and fracture 
toughness.

To obtain high-strength steel with good weldability and fracture toughness, the mini-
mum carbon content is used as possible, while enhancing the strength by the addition 
of a small amount of other alloying elements to the composition. For this reason, it is 
appropriate to use the concept of carbon equivalent (CE) when dealing with iron-car-
bon alloys to figure out the influence of alloying elements’ content on strength, fracture 
behavior, and weldability. Various formulas have been proposed to calculate the carbon 
content in steels. In this paper, carbon content is calculated and plotted in Fig. 5 using 
the results shown in Table 1 and the formula CE = C + Si/24 + Mn/6 + Ni/40 + Cr/4 + V
/14 [25].

G22NiMoCr5-6 shows an average carbon equivalent of 0.8 which is approximately 
40% higher than that of G18NiMoCr3-6 which records an average of 0.58. Increasing in 
carbon equivalent means that weldability and impact energy decrease [26, 27].

Microstructure

The microstructure was observed by SEM. The observation results reveal that the 
microstructure of G22NiMoCr5-6 is a tempered-martensitic structure as shown in 

Table 1  Results of chemical composition analysis of G22NiMoCr5-6 and G18NiMoCr3-6

Material Sample Element content (%)

C Si Mn Ni Mo Cr P

G22NiMoCr5-6 S-1 0.38 0.45 0.97 1.32 0.33 1.02 0.014

S-2 0.33 0.43 0.82 0.92 0.38 0.97 0.008

Specified 0.18–0.24  ≤ 0.6 0.8–1.2 0.8–1.3 0.5–0.7 0.5–1.0  ≤ 0.015

G18NiMoCr3-6 S-1 0.18 0.33 1.06 0.95 0.60 0.85 0.011

S-2 0.17 0.41 0.86 0.62 0.65 0.76 0.007

Specified 0.17–0.22  ≤ 0.6 0.8–1.2 0.6–1.0 0.4–0.7 0.4–0.9  ≤ 0.020

Fig. 5  Carbon equivalent of G22NiMoCr5-6 and G18NiMoCr3-6
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Fig.  6a. Martensite is found in the structure due to the presence of carbon element 
with high concentration in the chemical composition.

On the other hand, G18NiMoCr3-6 shows a bainitic structure, which is detected 
due to the formation of a high density of plate-like ferrite in the structure as shown 

Fig. 6  Microstructure result of a G22NiMoCr5-6 and b G18NiMoCr3-6
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in Fig. 6b. Bainite is formed at a higher temperature than martensite and the cooling 
rate is less rapid than that is required to form martensite. This allows for finer grains 
in the bainite than that of tempered martensite, consequently, producing steel that 
has better mechanical behavior for heavy-duty applications [28].

Mechanical properties

Tensile, hardness, and Charpy V-notch impact tests were conducted. The mechanical 
test results for G22NiMoCr5-6 and G18NiMoCr3-6 are presented in Table 2. The tensile 
test shows a ductile fracture mode which was detected by the presence of necking in 
the specimens due to applying a tension load beyond the elastic limit and absorption of 
more energy before fracture. The yield strength of G22NiMoCr5-6 is 8.24% lower than 
the value specified by the standard, while G18NiMoCr3-6 results show a perfect match 
to those values specified by the standard.

In addition, the Impact energy of G22NiMoCr5-6 shows a reduction of 40% less than 
the specified value. While impact energy of G18NiMoCr3-6 is approximately 2.4 times 
the value specified by the standard. As a comparison between both materials, G18Ni-
MoCr3-6 shows an increase in impact toughness by 223% more than that of G22Ni-
MoCr5-6. Impact energy results are presented in Table 3.

Table 2  Results of mechanical testing of G22NiMoCr5-6 and G18NiMoCr3-6

Sample Yield strength 
(MPa)

Ultimate 
strength (MPa)

Elongation (%) Rockwell 
hardness

G22NiMoCr5-6 T-1 853 949 12.5 35

T-2 749 896 14.3 30

T-3 670 893 15.7 25

Mean 757 913 14.2 30

Standard error 43.3 14.8 0.8 2.4

Specified  ≥ 825 930–1080  ≥ 10

G18NiMoCr3-6 T-1 868 919 15.5 25

T-2 781 881 8.6 20

T-3 755 920 12.8 35

Mean 801 907 12.3 27

Standard error 27.9 10.5 1.6 3.6

Specified  ≥ 630 780–930  ≥ 12

Table 3  Results of impact energy test of G22NiMoCr5-6 and G18NiMoCr3-6

Sample Impact energy 
(joules)

Mean (joules) Standard 
Deviation

Specified 
(joules)

G22NiMoCr5-6 I-1 28 30 1.9  ≥ 50

I-2 28

I-3 35

G18NiMoCr3-6 I-1 85 97 5.9  ≥ 40

I-2 95

I-3 110
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The reduced value of impact energy of G22NiMoCr5-6 steel is due to the excess 
amount of carbon content in the alloy more than the specified values. Which conse-
quently increases carbide precipitation and raises the equivalent carbon content in the 
alloy [4, 26]. Otherwise, the results show that the tensile properties are almost the same 
for both materials, and the tensile test results show a good alignment with hardness test 
results.

Impact fracture may be brittle or ductile failure mode depending on the temperature 
environment of the test. This can be detected using a scanning electron microscope to 
measure the percentage of brittle fracture surface area to the total fracture surface area. 
Generally, the fracture mode tends to be more brittle failure at lower test temperatures.

Fatigue test

All fatigue specimens of both G22NiMoCr5-6 and G18NiMoCr3-6 steels are subjected 
to a rotating bending fatigue test at the same stress value equal to 625 MPa rather than 
to be tested at the same percent of ultimate tensile strength. to give a comparison of 
performance between the two grades of steel in the same particular application. Fatigue 
failure is brittle failure mode; this failure can be detected by the presence of striations in 
the fractography using a scanning electron microscope.

Fatigue test results are presented in Table  4. G18NiMoCr3-6 shows a mean value 
approximately 2.55 times greater than that of G22NiMoCr5-6 at the same stress value 
of 625 MPa. As the fatigue life of G18NiMoCr3-6 is longer than that of G22NiMoCr5-6, 
this makes it more suitable for use in the application of crawler track plate manufactur-
ing because fatigue behavior is a critical factor in this particular application.

Table 4  Results of fatigue test of G22NiMoCr5-6 and G18NiMoCr3-6

Material Sample No Stress level 
(MPa)

No. of cycles (N) 
(×10

4)
Mean value 
( ×10

4)
Standard 
deviation

G22NiMoCr5-6 F-1 625 1.47 1.07 0.1

F-2 0.74

F-3 1.45

F-4 0.75

F-5 1.04

F-6 0.98

F-7 0.95

F-8 1.21

G18NiMoCr3-6 F-1 625 1.68 2.73 0.3

F-2 2.39

F-3 4.59

F-4 3.72

F-5 2.04

F-6 2.76

F-7 1.81

F-8 2.86
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Figure 7 shows a logarithmic scale plot for the fatigue test results for both materials in 
means of stress versus the number of cycles until failure.

G18NiMoCr3-6 exhibits a longer fatigue life than G22NiMoCr5-6 due to its bai-
nitic structure. During the tempering process of martensite, carbide films are formed, 
these films raise the concentration effect which results in a poor fatigue performance of 
G22NiMoCr5-6 tempered-martensitic steel [29].

Conclusions
In this paper, the mechanical and fatigue behavior of G22NiMoCr5-6 and G18Ni-
MoCr3-6 were studied. This research aims to evaluate the performance of these grades 
of material in the manufacturing of heavy-duty crawler track plate applications. Based 
on the experimental analysis results, the following conclusions are presented:

1.	 G18NiMoCr3-6 steel is more suitable for manufacturing of heavy-duty crawler track 
plates than G22NiMoCr5-6 steel; G18NiMoCr3-6 steel has a bainitic structure while 
the structure of G22NiMoCr5-6 is tempered martensitic structure.

2.	 G18NiMoCr3-6 shows a higher impact toughness of 97 J with an increase of 3.2 
times that of G22NiMoCr5-6 which shows only 30 J.

3.	 Fatigue life at 0.69 of ultimate tensile strength shows 27,300 cycles for G18Ni-
MoCr3-6 with an increase of 2.55  times that of G22NiMoCr5-6 which results in 
10,700 cycles while the other tensile properties for both steels are almost the same; 
this recommends that the bainitic structure has longer fatigue life and higher tough-
ness than the tempered martensite structure under heavy loading.

Abbreviations
HSLA	� High-strength low-alloy
SEM	� Scanning electron microscope
σe	� Endurance limit
UTS	� Ultimate tensile strength
CE	� Carbon equivalent

Fig. 7  Logarithmic scale plot of fatigue test results
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