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Abstract 

Metamaterial absorbers have sparked widespread interest due to their remarkable 
electromagnetic properties, which enable a wide range of applications in light absorp-
tion and manipulation. This study introduces a new three-layer nanomaterial absorber 
(NMA) unit cell composed of nickel (Ni), silicon dioxide (SiO2), and nickel (Ni) designed 
to operate across the entire visible spectrum (390–780 nm). We demonstrate the NMA’s 
exceptional absorption characteristics through rigorous numerical simulations using 
industry-standard software, achieving a mean absorption rate of 97.17% and a maxi-
mum absorption peak of 99.99% at 694.89 nm under standard angles. Furthermore, 
the NMA unit cell has good impedance matching, efficient coupling between capaci-
tors and inductors, and significant plasmonic resonance properties. Fabrication feasibil-
ity and potential applications in solar energy harvesting, optical sensing, and light 
detection.

Keywords:  Wide-band, Metamaterial absorber, Polarization-independent, Impedance 
match, Optical regions

Introduction
Metamaterials (MM) have attracted the interest of the scientific community in recent 
decades, owing to their dual properties of negative electric permittivity and magnetic 
permeability [1]. Because of their unique and unusual features, metamaterials (MM) 
have attracted a lot of interest in both the scientific and technical fields from its the-
oretical inception by V.G. Veselago in 1968 [2]. Rodger M. Walser examined the term 
“metamaterials” to designate artificially created composite materials distinguished 
by a periodic unit structure [3]. It is important to remember that metamaterials, also 
known as MM, are clearly man-made materials that were purposefully created and do 
not exist naturally in the environment [4, 5]. In this context, a metamaterial absorber 
(MMA) functions as a customized device created to absorb incident electromagnetic 
radiation at its chosen operating frequency [6]. Landy successfully showed the first 
metamaterial absorber’s (MMA) capability inside the microwave frequency range. This 
accomplishment resulted in an absorption efficiency of 88% and was made possible by 
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the independent modification of the metamaterials’ effective magnetic permeability and 
effective electric permittivity [7]. After Landy’s first introduction of the narrowband, sin-
gle-frequency absorber, other researchers have worked to improve broadband absorp-
tion technology. The effectiveness of absorption has significantly increased as a result 
of this group effort [8–10]. Numerous engineering applications have used metamateri-
als; this includes applications in areas such as antennas [11, 12], invisibility cloaks [13], 
optical imaging [14], absorption devices [15], filters [16], highly sensitive sensors [17], 
and photovoltaic cells [18]. While metamaterial absorbers (MMA) provide a number of 
advantages, it is important to note that once an absorber’s structural structure is identi-
fied, perfect absorption can only occur at a particular, predetermined frequency. This 
limitation may limit the device’s adaptability in real-world applications [19, 20]. In-depth 
research is also being done on metamaterials for a variety of applications including per-
fect absorbers across millimeter to nanometer wavelengths [7], flexible metamaterials 
[21], multiband metamaterials [22], polarization-insensitive absorbers [23], broadband 
absorbers [24], and single-band absorbers [7], multiband absorber [25], and detectors 
[26], polarization-insensitive [27, 28] to polarization-sensitive [29] and sensors [30]. Tao 
et al. introduced a metamaterial absorber designed for terahertz frequency utilization, 
employing both numerical modeling and experimental research. Their unit cell structure 
comprises two metallic layers, an electric ring resonator, and a cut wire, responsible for 
generating electric and magnetic responses. Through numerical simulations, their study 
demonstrated an absorption efficiency of 98% at 1.12 THz. Experimental validation fur-
ther confirmed a 70% absorption rate at 1.3 THz [31]. Zhang et al. obtained more than 
95% infrared absorption by sketching a dual-band metamaterial absorber with a five-
layered metal–insulator-metal [32]. Their absorber structure incorporates excellent flex-
ibility and accommodates a wide angle of incidence. Some studies have indicated that 
plasmonic absorbers employing rotationally symmetric structures have demonstrated 
the potential to achieve a peak absorption rate of up to 99%, retaining their insensitiv-
ity to applied polarization. The introduction as well as fabrication of an ultra-wideband 
metamaterial absorber with a wavelength range of 400 to 700 nm demonstrates a typical 
absorption efficiency of 92% and constructed using a Ni–Ni combined [33]. Additionally, 
a perfect based on tungsten-based (W) and the metal nickel (Ni) metamaterial absorber 
achieve a mean absorption of 90.98% spanning from 430 to 770 nm, accompanied by a 
99.42% near-unity absorption peak at 579.26 THz. It also exhibits angular stability up to 
45° [34]. Metamaterial absorbers tailored for solar energy applications, utilizing a struc-
ture composed of W, rexolite, and Ni in a metal–insulator-metal (MIM) configuration, 
achieve a standard absorption rate of over 80% within the range of 478–697  nm [35]. 
Furthermore, a W and SiO2-based perfect metamaterial absorber showcases an aver-
age absorption of 97%, with a peak absorption reaching 99.99% at the wavelength of 
521.83 nm [36]. A Si-based metamaterial absorber has been developed, exhibiting 98.2% 
maximum absorption in the visible light spectrum and 80% mean absorption within 
the range of 437.9–578.3 nm [37]. Gold-based NMAs exhibited a mean absorption of 
90% for each of the polarizations transverse electric (TE) as well as transverse magnetic 
(TM) have been developed, employing for numerical analysis and an algorithm based on 
genetics was employed. Additionally, these absorbers demonstrate beyond 40° of polari-
zation sensitivity [38]. Furthermore, meta-surface-based broadband solar absorbers, 
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composed of gold and SiO2, exhibit a mean absorption rate of 80.24% and a peck absorp-
tion of 96.40% [39].

Based on the related works, this article presents a nearly ideal metamaterial absorber 
that stands out for its resistance to mechanical stress. The components of the symmet-
rically balanced layout are durable materials that can tolerate rising temperatures, like 
SiO2 and Ni. In the visible wavelength range, it achieves a mean absorption of 97.17%, 
and in the UV to infrared (NIR) region, it achieves an average absorption of 96.27%. 
Particularly, it maintains absorption values above 99% from 579 to 780  nm and hits 
near-unity absorption of 99.99% at 694.89  nm. Furthermore, considering its excellent 
suitability for demands that involve solar energy gathering, and its mechanical resistance 
to stress.

Materials, method, and design of the structure
Methods

In this configuration, the central layer employs as a dielectric, silicon dioxide (SiO2) is 
used substrate [40], while nickel (Ni) [41] serves as both the patch material and ground 
layer on both sides of the SiO2 substrate. The basic reason for choosing nickel for both 
ground and the upper layer is due to its superior absorption efficiency in the visible spec-
trum and its suitability for high-temperature applications [41]. Similarly, SiO2 was cho-
sen as the dielectric substrate due to its non-lossy characteristics at optical wavelengths 
and its significant negative permittivity across the entire optical spectrum, rather than 
having a large imaginary component. These attributes of SiO2 facilitate effective imped-
ance matching and result in a broader and more comprehensive absorption bandwidth 
[42]. SiO2 assists the suggested structure effectively maintains coupling the capacitance 
and the inductance, resulting within the expansion of the bandwidth with maximum 
absorbance suitable for solar cells application. Furthermore, it is worth noting that both 
nickel (Ni) and silicon dioxide (SiO2) possess elevated melting points, ensuring excep-
tional thermal stability of the structure. In this particular case, the y-axis was selected 
as the position for the perfect magnetic boundary condition that occurs on a regular 
basis, and the perfect electric periodic boundary condition was x-axis. Once the operat-
ing optical frequency has incident parallel to the + z direction on the MMA’s top layer, 
the waveguide port is able for flow through the interior structure of it. To reduce scat-
tering, a layer which matches perfectly for open space is employed in conjunction with 
the z-axis. A linearly polarized planar wide-spectrum wave strikes the upper surface of 
the absorber. Both TE and TM modes, a floquet port was configured along the z-axis, 
using an x-axis master as well as a y-axis slave. The electric field and magnetic field are, 
respectively, asymmetrical for a conductor which is perfect-electric (PE) and symmetri-
cal for material is considered a conductor which is perfectly magnetic (PM) with mutu-
ally orthogonal x, y, and z planes.

Design of the structure

A wide bandwidth of strong absorption is required crucial for maintaining physical 
measurements of the back layer, dielectric, and resonator. Figure  1a–e represents the 
proposed unit cell progression development technique and on the other hand dimen-
sions are seeable in Fig. 1f–g where nickel is seeable in green and SiO2 in off-white. Here, 
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nickel (Ni) and silicon dioxide (SiO2) are used to create a three-layered sandwich the 
structure features SSR stands for symmetrical shape resonator, rendering the style polar-
ization-insensitive also nullifying the polarization conversion ratio (PCR). The ultimate 
style is selected for its outstanding qualities of absorption, as detailed in the “Methodol-
ogy” section. We begin the design process in this phase by incorporating the back layer 
and dielectric layer, which have a combined length and width of a = 400 nm.

Following that, in Fig. 1a, a square box with dimensions b and c of 360 nm and 300 nm, 
respectively, is introduced. The layer specifications in Fig. 1g are as follows: the thickness 
of the back layer (tm) is 150 nm, the thickness of the dielectric layer (td) is 30 nm, and 
the thickness of the upper layer (tr) is 14 nm. Moving on to the second step, shown in 
Fig. 1b, a square box cutout with dimensions pl = 40 nm and rw = 80 nm is performed. 

Fig. 1  Assessment regarding the designed unit cell structure: a step 1—incorporating the ground layer, b 
step 2—introduction of the dielectric layer, c step 3—addition of a single square box along with a plus, d 
step 4—incorporating one square box with two plus signs, e step 5—utilizing one square box and a plus 
sign, f step 6—final design with cutting portion details, g the concluding stage featuring slip gaps, h the 
length and width of unit cell design in front view along the y–z axis, and i the length and width of side view 
along the y–z axis
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Following that, in the third step, two symmetrical shapes with dimensions h = 200 nm 
and e = 80 nm are combined to form a plus shape, as shown in Fig. 1c. The fourth step, 
depicted in Fig.  1d, introduces another plus shape with dimensions g = 160  nm and 
r = 50 nm. This shape is then refined further to form a plus shape configuration. Follow-
ing that, the plus shape is cut with dimensions k = 20 nm and l = 30 nm, resulting in the 
final design shown in Fig. 1e. It is worth noting that the overall thickness of the unit cell 
design is 194 nm, indicating that it is an ultrathin structure. Nickel (Ni) is depicted in 
green in the visual representation, while silicon dioxide (SiO2) is depicted in an off-white 
color.

Results and discussion
Methodology

Two key factors, transmittance (T) and reflectance (R), form a clear theoretical frame-
work for the creation of the ideal metamaterial absorber. The Nicolson-Ross-Weir 
(NRW) equation was utilized; we calculated the absorptive characteristics of the envis-
aged configuration [43].

Here, R(ω) =|S11(ω)|2 is the reflection, and T(ω) =|S21(ω)|2 is the transmission. To 
obtain maximum absorption, S11(ω) and S21(ω) ought to be maintained at a minimum 
level. Negligible transmission can be obtained by utilizing a metallic plate with an elec-
tromagnetic skin depth sufficient to prevent light-wave permeation. The suggested 
model employs nickel (Ni) as a ground to block light, with S21 = 0 [44]. So, we can write 
Eq. (1) as:

The “coupled system” method, as it is also known, has been used in the current inves-
tigation. In this implementation, the suggested metamaterial perfect absorber (MPA)’s 
proposed skin depth is exceeded by the ground plane’s lossy nickel material, which oper-
ates in the visible frequency band [31].

The reflection coefficient S11(ω) under normal incidence can be computed using 
Eq. (3) as [45]:

Here, Z(ω) denotes the input impedance of the metamaterial absorber, as well as Zο 
represents the impedance of free space, which is typically expressed as 120π or 376.76Ω. 
To attain complete reflection cancelation, it is necessary for the impedance Z(ω) of the 
metamaterial absorber to match the free space impedance Zο. The impedance of the 
ratio of permittivity εr determines the value entered into Z(ω) and relative permeabil-
ity μr values. As a result, Z(ω) can be expressed as follows [46]. The absorption prop-
erties are determined by the structure’s impedance matching. Equation was used to 
calculate the relative impedance (Z) of the recommended sandwich design with three 
separate sections (Eq. 4) [47]. The nearly perfect genuine value portion and the nearly 

(1)A(ω) = 1− R(ω)− T(ω) = 1− |S11(ω)|
2 − |S21(ω)|

2

(2)A(ω) = 1− |S11(ω)|
2

(3)S11(ω) = [Z(ω)− Zo]/[Z(ω)+ Zo]
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insignificant unreal part’s value indicate that the structure’s reflecting impedance per-
fectly matches the impedance of empty space, resulting in high absorption.

There is a strong near-field interaction between the ground plane and the array of 
nickel-based resonators. When considering this coupling effect, the theoretical findings 
from interference models closely match the outcomes of numerical simulations. The goal 
of this system’s working principle, which is linked to destructive interference in reflec-
tion, in order to achieve impedance alignment with open space. Additionally, because 
of the ground plane, there is zero transmission. The geometrically structured surface, 
meticulously distributed with charges caused by magnetic and electric fields, constitutes 
the next influential element contributing to perfect absorption.

Characteristics of absorption

Figure  2a illustrates the design’s absorption properties for different modes, especially 
TE and TM, throughout a wavelength range of 350–1500  nm. The absorption levels 
exhibit excellence in this spectral range, which covers the ultraviolet to the near-infra-
red domain, with a precisely adjusted mean absorption of 96.27%. Here, we found that 
the resonant wavelength is observed to be 694.89 nm with absorption 99.99% which is 
close to unity. This paper only focuses on the zone from 390 to 780 nm wavelength and 
this range is suitable for optical region. In this range, we get an average absorption of 
97.17% and more importantly the absorption level consistently remains above 92%. All 
of this done by analyzing the data. There is no doubt that the proposed unit cell process 
wideband absorption and it covers for all optical wavelengths application and make it a 
suitable for solar energy harvesting technology. In Fig. 2b, we see the process of steps 
of the designs range from 390 to 780 nm and best absorption is selected last. The mod-
els shown in Fig. 1c through f, which correspond to steps 3 through 6, are shown in a 
progression in Fig.  1. The last stage is represented by the simulation design shown in 
Fig. 1i. None of the designs, with the exception of those shown in Fig. 1c and g, achieves 

(4)Z = (1+ S11)2 −
S212

(1− S11)2
− S212 = µ/ε/Z0 = µ/εr

Fig. 2  a Plot displaying absorption, reflection, and transmission characteristics across the wavelength range 
of 350–1500 nm, b comprehensive assessment of the design progression from step 1 to the finalized design
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near-unity absorbance. A wide-band absorbance that is close to unity, as seen in the 
finalized design in Fig. 1g, especially highlights the device’s excellent efficiency.

Derivation of metamaterial characteristics for the NMA

The electromagnetic qualities of a NMA are completely dependent on elements such 
as resonator pattern, dimensional qualities, materials used, and associated parameters. 
The electromagnetic properties of the proposed NMA can be extracted and determined 
using the Nicolson-Ross-Weir equation [43], which includes factor parameters like the 
refractive index (RI), relative permeability, along with relative permittivity revealed 
in Fig. 3a to d. In this regard, it is significant to note that, as shown clearly in Fig. 3a, 
actual component of relative permeability for the proposed NMA demonstrates a posi-
tive value within the higher wavelength region covered by the desired wavelength range. 
Additionally, as seen in Fig. 3b, the suggested NMA real component of relative permit-
tivity assumes a good value within the visible wavelength domain. Additionally, Fig. 3c 
shows that within certain regions of the higher visible wavelength range, the real compo-
nent of the refractive index takes on a negative value. Figure 3d makes it clear that there 
is a noticeable increase in the level of absorption as the real component of impedance 
approaches unity and the imaginary components tend towards zero. As a result, the sug-
gested NMA design displays unique metamaterial properties, including positive perme-
ability as well as a low refractive index.

Fig. 3  a Graph depicting the relationship between relative permeability and wavelength for the NMA, b 
changing relative permittivity with respect to wavelength for the NMA, c refractive index as a function of 
wavelength for the NMA, and d relative impedance across various wavelengths for the NMA
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S‑polarization and P‑polarization with the calculated polarization conversion ratio (PCR)

It belongs to a well-established principle that a NMA should primarily absorb electro-
magnetic (EM) waves rather than converting them. While the proposed model demon-
strates excellent symmetry, as previously substantiated, it is essential to confirm that the 
particular cell as created fails alter the EM polarization. This verification is achieved by 
analyzing the s- and p-polarization components, as defined by Eqs. (5) and (6) and high-
lighted in Fig. 4a. In Fig. 4a, the p-polarization component closely approaches a magni-
tude of zero in decibels (dB), signifying that the structural geometry does not alter the 
characteristics of the incident EM waves.

Here, |SE, E (ω)|2 =|SM, M (ω)|2 = R12 = R32 = s-polarization component alongside 
|SE, M (ω)|2 =|SM, E (ω)|2 = R22 = R42 = p-polarization component.

Furthermore, in Eqs. (6) and (7), the PCR is computed, according to Fig. 4b. The 
fact is obvious that the PCR values for both TE and TM polarizations are nearly 
zero, indicating the absence PCR characteristics in the NMA.

Polarization insensitivity and stability under oblique incident angles

The recommended polarization insensitivity metamaterial absorber (MMA) was 
extensively studied to validate its absorption effectiveness. In the TE mode, the 
z-axis corresponds to the wave propagation guidance, with the magnitude of the 
field vector (Hz) aligned with the z-axis. Additionally, the electric field vector (Ex) 
and magnetic field vector (Hy) are orientated with the x- and y-axes, respectively. 

(5)|S11(ω)|
2 = |SE,E(ω)|

2 + |SE,M(ω)|2 = R12 + R22

(6)|S11(ω)|
2 = |SM,M(ω)|2 + |SM,E(ω)|

2 = R32 + R42

(7)PCRE = R22/(R12 + R22)

(8)PCRM = R42/(R32 + R42)

Fig. 4  Illustrations of a S-parameters both for TE and TM modes and b PCR both for TE and TM modes, 
respectively
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Conversely, in the TM mode, the electric field vector (Ez) aligns with the propa-
gation guidance of waves while the magnetic (Hz) and electric (Ey) field vectors 
align with the x and y axes, respectively. Notably, because to its intrinsic axial and 
rotational symmetry, the proposed MMA exhibits remarkable absorption capa-
bilities throughout a wide range of polarization incidence angles (φ) up to 90°. It 
is important to note that all the aforementioned conclusions were generated from 
simulations assuming a normal incident angle (θ = 0°). However, practical applica-
tions generally entail electromagnetic (EM) waves entering at an oblique incidence 
angle relative to the MMA structure. Therefore, the analysis of absorption behavior 
for oblique incident angles (θ) is equally significant. Figure  5a and b illustrate the 
absorption curves for both TE and TM modes at oblique incidence angles (θ) rang-
ing from 60 to 70°, respectively.

Fig. 5  a TE mode for oblique incidence angles (θ) from 0 to 70°, b TM mode for oblique incidence angles (θ) 
from 0 to 70°

Table 1  List of the proposed unit cell’s parameters

Parameters a b c h g e rw k r l tm tr td pl

Values (nm) 400 360 300 200 160 80 80 20 50 30 150 14 30 40

Fig. 6  a Substrate thickness td and b upper layer thickness tr
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Geometric parameter sweep

According to Table 1, our “Methodology” section analysis focuses primarily on two 
essential parameters, namely “tr” and “td.” The “ts” parameter, which represents the 
thickness of the front-layer metal, has a significant influencing absorption charac-
teristic of our suggested structure, as shown in Fig.  6a. The “tr” parameter is sys-
tematically adjusted from 10 to 15  nm in 1-nm increments in this investigation. 
Surprisingly, when “tr” = 14  nm, the average absorption peaks. Furthermore, when 
the width of each segment of the metal resonator grows, we see a red-shift phenom-
enon within the absorption band. This behavior can be explained by the increased 
total equivalent permittivity associated with the metamaterial’s rising thickness. 
Since the outcome of this, both the resonance wavelength and the absorption band 
redshift, in accordance with the concept of the equivalent medium [48] and the λ/4 
resonance model [49]. Figure 6b also shows the effect of altering the dielectric thick-
ness parameter “td,” which ranges from 30 to 60 nm with a 10-nm increment. Nota-
bly, when “td” is set to 30 nm, the structure reaches its maximum mean absorption. 
As with the “tr” parameter, increasing “td” causes a red shift in the peak absorption. 
The inverse connection within the region among the ground layer and the resonator, 
there is a correlation between dielectric strength and capacitance, causes this behav-
ior. As “td” expands, the capacitance reduces, changing the impedance matching and 
causing the red shifting shown in the MMA layout. Variations within the variable 
dielectric dimension “td” and the resonator dimension parameter “tr” can be used 
to create resonances at different wavelengths, resulting in a considerable spectrum 
gap, which holds promise for sensing applications. Because of its spectral tweak-
ing capabilities, the suggested structure is appropriate for a wide range of sensing 
applications.

Comparative analysis of absorption phenomenon using different metals and dielectric 

layers

The absorbance properties of several metals and dielectric materials are dem-
onstrated in Fig.  7a. SiO2, a dielectric substance, and nickel, a metal, both show a 
significantly high average absorption; however, it is crucial to note that different 
metal and dielectric combinations have the potential to serve in a variety of opti-
cal applications. GaAs, Si3N4, AiN, amorphous Si, and SiO2 are among the dielectric 

Fig. 7  a Dielectric substrates and b metal
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materials compared in this inquiry. SiO2 becomes an effective absorber when the 
insulator film’s refractive index drops, and thus lead it to be the material of choice 
within the absorber layout suggested. The suggested model’s absorption characteris-
tics for several metals, notably nickel, tungsten, silver, copper, and gold, are depicted 
in Fig. 7b. Because of its good impedance matching within the suggested unit cell, 
especially within the visible also near-infrared spectrum, nickel demonstrates the 
maximum absorption.

Mechanism of absorption with electric field and magnetic field

Here, we mainly seen the electric field and magnetic field of the absorber for the peck 
and minimum absorption frequency of 694.89 nm and 456.88 nm, respectively, shown in 
Figs. 8 and 9. In Fig. 8, we mainly seen the electric field for two modes and they are TE 
and TM both are highlighted for peck and low absorption. Here, in the peck absorption, 
we seen that the absorption high both for TE and TM modes in Fig. 8a and b but for low 
absorption TE and TM indicates low amount of absorption that are seen in Fig. 8c and d. 
Again, for magnetic field, the peck absorption was seen in Fig. 9a and b both for TE and 
TM modes.

But we saw the low absorption for magnetic field in Fig. 9c and d both for TE and TM 
modes.

Fig. 8  E-field peck absorption at a TE—694.89 nm, b TM—694.89 nm. Again, low absorption at c 
TE—456.88 nm and d TM—456.88 nm
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Comparative study

Table 2 shows a comparison of the suggested MMA with recent research carried out 
in the same wavelength range. The suggested design has an exceptionally high average 
absorption of 97.17% and a peak absorption of 99.99%. The suggested design displays 
70° of angular stability, sustaining over 70% absorbing capacity within the defined range, 
which is superior to conventional broadband absorbers. As a result, the suggested 
NMA has the potential to be utilized in energy-harvesting technology. The proposed 
model separates from other comparable models in that it uses high-temperature-resist-
ant materials, like nickel and SiO2, to offer thermal stability and prevent overheating. 
Furthermore, the use of nickel as a ground layer reduces the need for quartz in the 
base structures, resulting in cost savings. The suggested structure stands out compared 
to other similar NMAs due to its versatility and features such as inexpensive material 
prices, wide-angle stability, polarization independence, structural compactness, ther-
mal stability, and favorable mean absorption rates within the visible regime.

Conclusions
In summary, this study investigates the radiative properties of a nickel and SiO2-based 
ultrathin (194  nm), mechanically flexible, wide-angle incident, and polarization-
insensitive metamaterial absorber (NMA). Nickel is used as the metallic component, 

Fig. 9  H-field peck absorption at a TE—694.89 nm, b TM—694.89 nm. Again, low absorption at c 
TE—456.88 nm and d TM—456.88 nm
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providing an excellent impedance match, and is combined with the SiO2 dielectric 
with a low refractive index in a sandwiched metal-dielectric-metal setup. Based on 
the results of our numerical calculations, the proposed NMA has an average broad-
band absorption spectrum of 97.17% within the wavelength range of 390–780 nm and 
a minimum absorption rate of 92.22%. Furthermore, the model’s capability allows it 
to be used to the UV, optical, and NI spectral areas, where it achieves an outstanding 
mean rate of absorption greater than 96.27% spanning the wavelength range of 350 
to 1500 nm. This design is ideal for a variety of applications, including solar energy 
harvesting and solar-thermal photovoltaic (STPV) systems. Furthermore, the shift 
in resonance wavelength offers up possibilities for using the device as a solar sen-
sor or refractive index sensor. Furthermore, the linear increase in absorbance when 
the dielectric layer transitions to Si3N4 highlights its potential as a light detector. This 
design’s combination of mechanical flexibility and temperature stability, together with 
its symmetrical shape, makes it an excellent pick for a variety of demands throughout 
the visible-wavelength range.
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