
Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Tao et al. 
Journal of Engineering and Applied Science          (2024) 71:126  
https://doi.org/10.1186/s44147-024-00458-y

Journal of Engineering
and Applied Science

Detection research of insulating gloves 
wearing status based on improved YOLOv8s 
algorithm
Caixia Tao1, Chaoting Wang1 and Taiguo Li1* 

Abstract 

The safety hazards may be caused by power grid operators not wearing insulat-
ing gloves according to regulations for live electrical working. Additionally, existing 
methods for detecting the wearing status of insulating gloves suffer from low rec-
ognition accuracy, slow detection speed, and large memory occupation by weight 
files. To address these issues, a Mixup-CA-Small-YOLOv8s (MCS-YOLOv8s) algorithm 
is proposed for detecting the wearing status of insulating gloves. Firstly, the mixup 
data augmentation technology using image mixing is introduced, increasing the data’s 
diversity and improving the model’s generalization ability. Secondly, the coordinate 
attention (CA) module is added to the original backbone network to strengthen 
the channel and positional information, suppressing the secondary feature informa-
tion. Finally, a small target detection structure is designed by removing the last bottom 
feature detection layer in the original neck network and adding a shallow feature. 
The ability of small targets’ feature extraction is enhanced without increasing too 
much computation. The experimental results indicate that the mean average preci-
sion of the MCS-YOLOv8s algorithm on the test set is 0.912, the detection speed is 87 
FPS, and the model’s weight memory occupies 15.7 MB. It is verified that the model 
has the advantages of high detection accuracy, fast speed, and small weight memory, 
which has great significance in ensuring the safe and stable operation of the power 
grid.

Keywords:  Data augmentation, CA module, Small target detection structure, YOLOv8s, 
Insulating gloves, Wearing status detection

Introduction
The safety hazards associated with the power grid involve various factors, such as per-
sonnel behavior and equipment failure [1]. Following the regulations, power grid opera-
tors are required to wear insulating gloves when conducting charged operations. Failure 
to comply with this requirement is considered unsafe behavior. Currently, within the 
power grid infrastructure, staff rely on monitoring videos to manually assess whether 
grid personnel are wearing insulating gloves. Depending on manual supervision alone 
can leave the grid with significant deficiencies in terms of operating costs, detec-
tion objectivity, and reliability [2, 3]. The intelligent detection of power grid personnel 
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insulating gloves whether wearing condition, based on deep learning algorithms, holds 
significant importance in enhancing the efficiency of monitoring and ensuring the safe 
and stable operation of the power grid. With the advancement of computer vision tech-
nology, accomplishing this task has become more feasible.

In prior studies on detecting the condition of power grid personnel wearing insulating 
gloves, literature [4] employs traditional computer vision methods to fuse global color 
features and SIFT features. They utilize the center of mass distance and intersection over 
union between insulating gloves and body parts, to identify the status of insulating glove 
wearing. However, their approach does not account for the situation where the wrong 
gloves are worn. Additionally, their dataset images for the target are clear and high 
resolution, and the model exhibits poor generalization ability and could not meet the 
requirements of practical engineering application. Reference [5] utilizes the RetinaNet 
network to recognize the state of wearing insulating gloves. While achieving high detec-
tion accuracy for correctly wearing insulating gloves, the recognition accuracy for incor-
rectly wearing insulating gloves is considerably low. This is mainly attributed to the small 
size of the hand target and the weak feature of the hand, causing the prediction frame to 
deviate from the positioning of the small target, leading to misdetection or even missed 
detection. Reference [6] introduces an algorithm for detecting the status of wearing insu-
lating gloves using an enhanced version of YOLOv3. The average accuracy improves by 
31% compared to the YOLOv3 base model. Nevertheless, the overall detection accuracy 
still requires improvement, and the model’s weight memory is 346.9 MB. According to 
the literature [7], the improved YOLOv3 model exhibits higher detection accuracy and 
speed compared to Faster R-CNN. However, the overall mean average precision is only 
79.25%, and the detection speed is merely 19.4 FPS. Reference [8] proposes YOLOv4-
based detection for insulating gloves wearing status, achieving high average accuracy. 
Nonetheless, targets not wearing insulating gloves correctly are not recognized. Further-
more, the detection speed and model’s weight file memory are not mentioned. There-
fore, it is difficult to ensure that engineering deployment is achieved. Both literature [9] 
and literature [10] utilize YOLOv5 for detecting insulating gloves. Despite their methods 
achieving high mean average precision, neither can detect the condition of incorrectly 
wearing insulating gloves.

The current model for detecting the wearing condition of insulating gloves, based 
on traditional computer vision and deep learning methods, suffers from low recogni-
tion accuracy, poor real-time performance, and a large memory occupation of weight 
files. The enhancement and attention to the recognition of small hand targets that are 
not properly wearing insulating gloves is urgently needed. The analysis indicates that the 
deep learning method surpasses the traditional computer vision method in all aspects 
of performance for recognizing insulating gloves. Furthermore, owing to the ongoing 
development of the deep learning method, the model’s recognition performance for the 
insulating gloves wearing condition continues to improve consistently.

Deep learning methods have become increasingly prevalent in tasks related to target 
detection [11]. In the 2014 IEEE International Conference on Computer Vision and Pat-
tern Recognition, the R-CNN for target detection was proposed by Girshick et al. [12]. 
In the following year, Fast R-CNN was proposed by Girshick et al. [13]. At the 2015 Con-
ference and Workshop on Neural Information Processing Systems, Kaiming He et  al. 
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introduced Faster R-CNN, which significantly improves average accuracy [14]. How-
ever, its detection speed is only 5 FPS. In 2016, Redmon et  al. introduced the YOLO 
one-stage target detection network, achieving a detection speed of 45 FPS [15]. How-
ever, its recognition accuracy is lower compared to the two-stage target detection net-
work. In 2017 and 2018, Redmon et al. proposed the YOLOv2 [16] and YOLOv3 [17] 
algorithms, respectively. These algorithms significantly improve recognition accuracy 
and detection speed. However, the detection of small targets remains unsatisfactory. In 
2020, the YOLOv4 algorithm was proposed by Bochkovskiy et al. [18], while YOLOv5 
was proposed by Glenn et al. [19] in the same year. Both algorithms employ a deeper 
network structure and the path aggregation network (PANet) to enhance the accuracy 
of small target detection. Following this, YOLOv6 [20], YOLOv7 [21], and YOLOv8 
[22] were introduced. YOLOv8 demonstrates higher mean average precision and faster 
detection rates. After considering all performance metrics of the above target detection 
algorithms, it is concluded that YOLOv8 is the most suitable base model for real-time 
wearing status detection of the insulating gloves of power grid personnel.

To achieve higher recognition accuracy, faster detection speed, and a smaller weight 
file memory for detecting the wearing condition of insulating gloves, this paper proposes 
the MCS-YOLOv8s algorithm, an enhancement of the YOLOv8s base model. Firstly, the 
Mixup data augmentation method is employed to enhance the model’s generalization. 
Secondly, the backbone network incorporates the CA mechanism to enhance the extrac-
tion of crucial features. Finally, a small target detection structure for detecting small tar-
gets is designed to enhance the identification of incorrectly wearing insulating gloves 
in complex backgrounds. This is crucial for detecting the wearing status of insulating 
gloves for power grid personnel.

Methods
YOLOv8s algorithm

The YOLOv8 algorithm comprises five different network structures with varying widths 
and depths, namely n, s, m, l, and x. When evaluating the performance of different 
YOLOv8 algorithm structures for the same task, such as detection accuracy and speed, it 
is found that the YOLOv8s algorithm is better suited for detecting the condition of insu-
lating gloves wearing. Figure 1 displays the structure of the YOLOv8s network, which 
comprises three parts: backbone network (backbone), neck network (neck), and output 
(output). The backbone network includes the convolution module (Conv), bottleneck 
layer (C2f), and spatial pyramid pooling-fast layer (SPPF). The C2f module enhances 
the model’s ability to extract gradient flow information while maintaining a lightweight 
design. It enhances the feature extraction of input images in the backbone network. The 
neck network utilizes a PANet structure that fuses strong semantic and localization fea-
ture information through top-down and bottom-up path aggregation. Finally, at the out-
put, multiple bounding boxes undergo non-maximum suppression (NMS) for filtering. 
The prediction category with the highest output confidence value is then selected, and 
the coordinates of the bounding boxes at the target location are returned.



Page 4 of 19Tao et al. Journal of Engineering and Applied Science          (2024) 71:126 

MCS‑YOLOv8s algorithm improvement methods

Figure  2 illustrates the network structure of the MCS-YOLOv8s algorithm, which is 
enhanced on the YOLOv8s model. The following outlines the overall improvement ideas:

1)	 Firstly, the data enhancement strategy has been enhanced by incorporating the 
Mixup data augmentation technique. This approach elevates the training images’ 
background complexity and enriches the training set’s diversity. Improve the model’s 
detection performance and robustness while retaining the current network structure 
and computational efficiency.

2)	 Next, the CA module is introduced in the backbone of YOLOv8s between the Conv 
module and C2f module and following the SPPF module. The intermediate feature 
map can efficiently integrate spatial positional information and accurately localize 
the position of small targets through the CA module, which strengthens the atten-
tion to channel and positional information by taking into account their positional 
relationship. This ensures a more objective and precise evaluation of the target’s posi-
tion.

3)	 Finally, the PANet structure in the neck network is enhanced by removing the bot-
tom feature detection layer and introducing a shallow feature, thereby designing 
a new small target detection structure. This approach can preserve more effective 
information about small targets. The utilization of shallow feature maps with small 
receptive fields can significantly enhance the detection of small targets. The small 

Fig. 1  YOLOv8s network structure
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target detection structure can more accurately detect hard-to-recognize small targets 
without significantly increasing computational effort.

Related work
Coordinate attention (CA) mechanism module

The CA module enables the network to gain information about a broader area without 
incurring significant computational overhead by embedding positional information 
into channel attention. The CA module considers both channel and direction-depend-
ent positional information. Additionally, it is flexible and lightweight enough to be eas-
ily integrated into the network architecture [23]. Figure 3 shows the CA module, which 
consists of the residual network module, X Avg Pool, and Y Avg Pool.

In Fig. 3, C, H, and W respectively represent the channel, height, and width of the input 
feature map. X Avg Pool and Y Avg Pool respectively refer to one-dimensional average 
pooling along the horizontal and vertical directions of the input feature map. Re-weight 
refers to the weighted aggregation of spatial features from input feature maps.

Fig. 2  MCS-YOLOv8s algorithm network structure
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The CA module comprises two parts: positional information generation and position 
attention aggregation. Initially, the positional information of the feature map is gener-
ated. Pooling kernels of dimensions (H, 1) and (1, W) are employed to respectively 
encode features along the horizontal and vertical directions of a given input feature map 
U. The outputs from encoding the c-th channel on the input feature map U, with a height 
of h and a width of w, can be expressed as follows.

where uc(h, i) represents the eigenvalue of the c-th channel on the input feature map U 
with height h and width i. uc(j, w) represents the eigenvalue of the c-th channel on the 
input feature map U with height j and width w.

Position attention aggregation is initiated using the horizontal and vertical positional 
information generated by the above encoding. The feature maps, which have encoded 
both spatial directions, undergo a channel splicing operation. The spliced feature maps 
are then transformed using the 1 × 1 convolutional transform function F1. This process 
can be expressed as follows.

where δ represents the nonlinear activation function. [ ·, ·] denotes the channel splicing 
operation along the spatial dimensions. The intermediate feature mapping of the posi-
tional information is denoted by f ∈ RC/r×(H+W ) , to minimize computation and model 
complexity, with r being the reduction rate set to 16.

(1)zhc (h) =
1
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Fig. 3  Schematic diagram of the CA module
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For the intermediate feature mapping f, it is decomposed into tensors f h ∈ RC/r×h 
and f w ∈ RC/r×w in horizontal and vertical directions, which are along the spatial 
dimension. The 1 × 1 convolutional transform functions F2 and F3 are then used to 
transform f h and f w into tensors with the same number of channels C. The computa-
tional process can be expressed as follows.

where gh and gw are transformed tensors output. σ is a sigmoid activation function.
Finally, the feature information of each position on the input feature map U is 

weighted and aggregated using gh and gw as the attention weights in the horizontal 
and vertical directions, respectively. The final feature map V after feature aggrega-
tion is then output. The procedure for weighted aggregation in computation can be 
expressed as follows.

where vc(j, i) represents the eigenvalue of the c-th channel on the output feature map V, 
with position coordinates (j, i). uc(j, i) represents the eigenvalue of the c-th channel on 
the input feature map U, with position coordinates (j, i). ghc

(

j
)

 and gwc (i) are the horizon-
tal attentional weights for the height j and the vertical attentional weights for the width i 
of the c-th channel on the input feature map U, respectively.

The backbone network feature extraction process in YOLOv8s involves the con-
volutional layer, which calculates the feature information of neighboring positions 
for each feature map. It is effective in extracting local features but struggles to cap-
ture global features. The convolutional layer neglects the inter-mapping between the 
information of each channel because each channel in the feature map contains dis-
tinct feature information [23]. Power grid personnel frequently wear insulating gloves 
when working with electricity outdoors. However, this practice can give rise to issues 
such as difficulty in detecting the target due to the distance between the hand tar-
get and detection equipment, as well as low pixel value. Therefore, the addition of 
the CA module enhances the learning of feature relationships between channels and 
captures long-range dependencies within a channel, enabling the retention of precise 
positional information for small targets. Literature [24] has demonstrated that the 
CA module can optimize the learning of various types of target feature information 
in feed-forward neural networks and efficiently integrate spatial coordinate informa-
tion. This enhancement improves the network’s ability to accurately locate the target 
position and effectively enhances target detection performance. Therefore, this paper 
proposes adding the CA module between each Conv module and C2f module in the 
backbone network, as well as at the last layer of the backbone. The introduction of 
the CA module is illustrated in Fig. 4. The enhanced backbone network can extract 
more precise information about small targets by enhancing attention to channel and 
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positional information through the CA mechanism module while reducing attention 
to secondary information. The network model has been improved to enhance the 

Fig. 4  Introduction of the CA module
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detection of power grid personnel wearing insulating gloves status, making it more 
robust.

Small target detection structure

The YOLOv8s network requires the input image to undergo feature extraction in the back-
bone network, followed by processing in the neck network, before finally outputting to 
the detection layer. Figure 5 shows the backbone feature extraction and neck structure of 
YOLOv8s. The input feature map is denoted by Ci (i = 0, 1, 2, 3, 4, 5), where i is the feature 
extraction level. The output feature map is denoted by Pn (n = 3, 4, 5), where n is the feature 
output level. The neck network of YOLOv8s adopts the PANet structure, a feature fusion of 
strong semantic information from the top layer and robust localization information from 
the bottom layer, better retaining features and information related to small targets.

Addressing challenges such as the weak target features and the small size of insulating 
gloves wearing detection for power grid personnel, this paper enhances the PANet struc-
ture and proposes a small target detection structure specifically designed for small target 
detection. In the backbone network, the feature information of small targets is consistently 
lost as the network deepens due to multiple downsampling operations. Therefore, a sizing 
mechanism is introduced at the level of larger feature maps, serving as shallow features for 
small target detection. Shallow feature maps with smaller spatial receptive fields, which 
contain more edge information and have a stronger ability to represent geometric details, 
can significantly enhance the detection of small targets [25]. To reduce network complexity 
and computation while obtaining more effective information about small targets, this struc-
ture initiates channel fusion at the top feature extraction layer and removes the last bottom 
feature detection layer. The structure of the MCS-YOLOv8’s backbone network for feature 
extraction and small target detection is illustrated in Fig. 6.

The MCS-YOLOv8s network modifies the original YOLOv8s network by removing the 
P5 feature detection layer. It initiates feature layer channel fusion starting from the C2 fea-
ture extraction layer, and the specific fusion operation can be expressed as follows.

(7)P2 = C2 + [C3 + (C4 + C5 ↑2×) ↑2×] ↑2×

Fig. 5  The backbone and neck structure of YOLOv8s
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where + denotes the superposition of feature map channels with the same length and 
width dimensions. ↑2× represents the double upsampling operation, and ↓2× represents 
the double downsampling operation. P2, P3, and P4 are the output feature maps obtained 
from the enhanced PANet network. The algorithm presented in this paper conducts 
wearing state recognition of the insulating gloves based on the P2, P3, and P4 feature 
maps.

Differing from the PANet structure used in the neck network of the YOLOv8s algo-
rithm, the MCS-YOLOv8s algorithm removes the last bottom small-scale feature map 
detection layer (P5), introduces a shallow large-scale feature map detection layer (P2), 
and conducts target detection on three scales of feature maps (P2, P3, and P4). P2, P3, and 
P4 feature maps are obtained by aggregating spatial features from the C2, C3, C4, and C5 
feature maps. Combined multichannel detection information is utilized to recognize the 
wearing condition of insulating gloves. Figure  7 illustrates the improvements made to 
the neck network.

Data augmentation strategy

The image samples of grid personnel wearing insulating gloves are limited. To 
address this limitation and enhance the diversity of input images, data augmentation 
techniques can be employed. This helps avoid the overfitting phenomenon in the 
convolutional network, ensuring that the trained model exhibits improved robust-
ness and generalization ability [26, 27]. The original YOLOv8s algorithm employs 
seven data augmentation methods: random hue, saturation, value, translation, rota-
tion, scale, and mosaic data enhancement. Mosaic data augmentation is a technique 
that entails randomly selecting four images from a training batch and then applying 
random cropping, scaling, and rotating operations to them. The resulting images are 
subsequently stitched together into a single image, thereby expanding the dataset 
and increasing the number of small targets in the sample. The six remaining data 
augmentation methods are traditional data augmentation techniques that apply 

(8)P3 = P2 ↓2× +C3 + (C4 + C5 ↑2×) ↑2×

(9)P4 = P3 ↓2× +C4 + C5 ↑2×

Fig. 6  The backbone and neck structure of MCS-YOLOv8s
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geometric and color transformations to the images. These methods exhibit limited 
effectiveness in enhancing the performance of detecting the wearing status of insu-
lating gloves for power grid personnel. In this paper, Mixup is employed, a data aug-
mentation technique based on image mixing, to enhance the generalization ability 
of the network. This is achieved by augmenting the background complexity of the 
image. Mixup data enhancement is a regularization technique that randomly mixes 
two training image pixels to create a single image with two input labels.

The Mixup data enhancement method is randomly selecting two images from a 
training batch and obtaining their corresponding time series data, denoted as 

(

xi, yi
)

 
and 

(

xj , yj
)

 , where i ≠ j. Here, xi and xj represent the two images, while yi and yj repre-
sent their respective label information. Finally, the mixed image is obtained through 
a calculation process. The resulting image and label are represented as X and Y, 
respectively, and the calculation process is described in (10) and (11).

where λ falls within the range of [0, 1] and follows the beta (α, α) distribution. α is the 
hyper-parameter utilized to control the interpolation strength between feature targets. 
As α → 0, the Mixup data enhancement effect is close to failing.

The MCS-YOLOv8s algorithm employs eight data enhancement methods to 
enhance the mixing of contextual information, increase dataset diversity and com-
plexity, and improve overall performance.

(10)X = �xi + (1− �)xj

(11)Y = �yi + (1− �)yj

Fig. 7  Comparison of neck network improvement



Page 12 of 19Tao et al. Journal of Engineering and Applied Science          (2024) 71:126 

Results and discussion
Experimental dataset

To verify the effectiveness of the proposed network model for insulating gloves 
detection, we conduct experiments using images taken at a power grid maintenance 
site. The dataset comprises 4947 images, randomly divided into training, validation, 
and test sets with a ratio of 8:1:2. Table 1 provides the number of images in each set.

The dataset comprises real-time images from a power grid maintenance site, 
captured under complex shooting conditions. The targets are small in scale and 
frequently occluded. This dataset is representative and useful for training mod-
els and enhancing detection performance. Labelimg is employed for labeling the 
images, with categories divided into “glove” for correctly wearing insulating gloves 
and “wrongglove” for wearing wrong gloves or not wearing gloves. Figure 8 displays 
typical images for each category. Figure  8a and b depicts grid personnel correctly 
wearing insulating gloves. In contrast, Fig.  8c shows grid personnel wearing non-
insulating gloves, and Fig. 8d shows grid personnel without gloves.

Experimental environment

To ensure efficient training and testing of the improved YOLOv8s model, we utilize 
the hardware environment configuration presented in Table 2. A deep learning envi-
ronment is established using PyCharm 2022, PyTorch 1.7, and Python 3.8 on a Win-
dows 10 operating system. The batch size is set to 16, and the number of training 
epochs is 200, with both the initial and termination learning rates set to 0.01.

Table 1  The number of experimental datasets

Dataset name Glove Wrongglove Total

Training set 1760 1763 3523

Validation set 225 226 451

Test set 486 487 973

Total 2471 2476 4947

Fig. 8  Typical images of various categories
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Evaluation metrics

To compare the detection performance of the MCS-YOLOv8s algorithm with other 
models, this paper employs four evaluation metrics: F1 score, mean average precision 
(mAP), detection speed (V), and weight size (Ws). V represents the number of images 
processed per second, measured in frames per second (FPS).

The F1 score is calculated as the weighted harmonic mean of the precision (P) and the 
recall (R).

The value of mAP is typically calculated at an intersection over union (IoU) of 0.5 
between the prediction frame and the true frame.

Ablation experiments results and discussion

The ablation experiments involve analyzing the performance of each model by compar-
ing the original and improved models using the same dataset. Three improvements are 
made to the YOLOv8s model: Mixup data enhancement, the addition of a CA module 
to the backbone network, and the implementation of a designed small target detection 
structure for the neck network. YOLOv8s is the original model, and YOLOv8s + Small, 
YOLOv8s + CA, and YOLOv8s + Mixup are the three improved models. Performance 
comparison experiments are conducted among these models.

Tables 3 and 4 respectively display the F1 score and mAP performance of the model 
for each detection category. The table includes the following information: “glove” 
indicates the proper wearing of insulating gloves by grid workers, and “wrongglove” 

(12)F1− score = 2×
P × R

P + R

(13)mAP =
1

m

∑

∫ 1

0

P(R)dR

Table 2  Hardware environment

Hardware Type

CPU Intel Core i5-12400F

GPU NVIDIA GeForce GTX 3060 (12G)

Mainboard PRIME B660M-K

Memory 6G (DDR4 3200 MHz) × 2

Solid-state drives Kingston M.2 250G

Table 3  F1 score of different models

Model Glove Wrongglove F1 score

YOLOv8s 0.931 0.814 0.874

YOLOv8s + Mixup 0.935 0.814 0.876

YOLOv8s + CA 0.941 0.822 0.879

YOLOv8s + Small 0.936 0.850 0.894
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indicates improper wearing of insulating gloves or lack of use of gloves by grid workers. 
mAP represents the mean average precision of all categories, and the F1 score is com-
puted based on the P and R values of all categories. Upon comparing the data in the two 
tables, it is evident that the improved models YOLOv8s + Small, YOLOv8s + CA, and 
YOLOv8s + Mixup exhibit higher F1 score and mAP than the original model YOLOv8s. 
Notably, the most significant performance improvement is in detecting the incorrect 
wearing of insulating gloves. The effectiveness of the three improved methods proposed 
for recognizing the wearing status of insulating gloves is verified.

In ablation experiments, the following three models YOLOv8s + Small + CA, 
YOLOv8s + Small + Mixup, and YOLOv8s + CA + Mixup are obtained by fusing the 
above three improved methods two by two. Tables 5 and 6 demonstrate that the same 
experiments are conducted using the same dataset to test the model’s performance, with 
the YOLOv8s + Small + CA model exhibiting the best performance. The model’s detec-
tion performance has significantly improved with the utilization of the small and CA 
modules. In addition, the other two models outperform the original model.

The MCS-YOLOv8s algorithm is derived from the YOLOv8s base model by integrat-
ing three improvement points: Mixup data enhancement, CA module, and small target 
detection structure. To evaluate the performance of the MCS-YOLOv8s algorithm, it is 
compared with the original YOLOv8s model. Table 7 shows the performance of the two 
models in terms of F1 score, mAP, Ws, and detection speed V.

The results display that the MCS-YOLOv8s model achieved a maximum mAP of 
0.912, which is 2.8% higher than the original YOLOv8s model’s mAP of 0.884. The F1 
score also improved by 1.6%, from the original 0.874 to 0.89. At this point, the model 

Table 4  mAP of different models

Model Glove Wrongglove mAP

YOLOv8s 0.952 0.816 0.884

YOLOv8s + Mixup 0.955 0.823 0.889

YOLOv8s + CA 0.960 0.831 0.895

YOLOv8s + Small 0.953 0.858 0.906

Table 5  F1 score of different models

Model Glove Wrongglove F1 score

YOLOv8s 0.931 0.814 0.874

YOLOv8s + Mixup + CA 0.948 0.823 0.887

YOLOv8s + Mixup + Small 0.936 0.849 0.894

YOLOv8s + Small + CA 0.938 0.852 0.896

Table 6  mAP of different models

Model Glove Wrongglove mAP

YOLOv8s 0.952 0.816 0.884

YOLOv8s + Mixup + CA 0.957 0.841 0.899

YOLOv8s + Mixup + Small 0.956 0.856 0.906

YOLOv8s + Small + CA 0.956 0.859 0.908
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recognition performance is at its highest level, and the weight file size is reduced to 15.7 
MB. Although the detection speed of the MCS-YOLOv8s model is reduced, achieving 
a speed of 87 FPS is still a high value for fast detection. It can be seen that the MCS-
YOLOv8s model is better than the original YOLOv8s model in all other performances 
under the guarantee of real-time detection, which is more conducive to the realization 
of the deployment of the mobile terminal, and accurately detects the status of insulating 
gloves worn by power grid workers in the actual engineering to ensure the safe and sta-
ble operation of the power grid.

Comparison with other algorithms

To further verify the detection performance of the MCS-YOLOv8s model, we compare 
the MCS-YOLOv8s model with six mainstream target detection models using the same 
dataset, hardware, software, and experimental parameters. The results of the compari-
son experiments are shown in Table 8.

Table 8 shows that the Mobilenet-SSD algorithm has the lowest detection speed and 
mAP value, with the model weights file memory being 91.1 MB. The YOLOv3-tiny 
and YOLOv4-tiny models, lightweight models in the traditional YOLO series, respec-
tively exhibit mAP values of 0.742 and 0.753. The latest lightweight model in the YOLO 
series is YOLOv7-tiny, boasting an impressive image processing speed of 112 FPS and 
a weight file memory of only 12.3 MB. However, its recognition accuracy remains rela-
tively low. The s model of YOLOv5 has demonstrated a significant improvement in mAP 
value, reaching 0.873, compared to YOLO’s tiny series of models. The YOLOX-S model 
achieves a mAP value of 0.875, slightly lower than the 0.884 achieved by the YOLOv8s 
algorithm in the YOLO series. However, unlike the tiny series and YOLOv5s, the weight 
file of the YOLOX-S model has a larger memory of 44.3 MB. The algorithm presented 
in this paper, MCS-YOLOv8s, improves recognition accuracy by 3.9% compared to 
YOLOv5s and 3.7% compared to YOLOX-S. Additionally, it has a weight memory of 
only 15.7 MB and processes images at a speed of 87 FPS, surpassing YOLOX-S.

Table 7  Comprehensive performance of different models

Model F1 score mAP Ws/MB V/FPS

YOLOv8s 0.874 0.884 22.5 127

MCS-YOLOv8s 0.890 0.912 15.7 87

Table 8  Performance comparison with other algorithms

Model mAP Ws/MB V/FPS

Mobilenet-SSD 0.709 91.1 49

YOLOv3-tiny 0.742 27.3 53

YOLOv4-tiny 0.753 24.2 57

YOLOv7-tiny 0.767 12.3 112

YOLOv5s 0.873 14.4 114

YOLOX-S 0.875 44.3 63

MCS-YOLOv8s 0.912 15.7 87
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Visualization of model detection results and discussion

The MCS-YOLOv8s model is employed to detect images in the test set, and the detec-
tion results are displayed in Fig. 9. Figure 9a displays an image with severe target occlu-
sion, where incomplete target feature information in these images causes significant 
interference with recognition. Many images suffer from this issue, and resolving it is 
crucial to enhancing the effectiveness of model detection. The model accurately detects 
heavily occluded targets, as demonstrated by the results. Figure  9b displays an image 
of fuzzy targets with inadequate texture features, which may lead to missed detection. 
However, as shown in the actual detection results graph, this type of target can still 
be effectively detected. Figure 9c displays the image for detecting small targets. As the 
number of feature layers increases, the feature information for small targets is lost. To 
enhance the accuracy of small target detection, the neck network is improved, and the 
small target detection structure is utilized. Figure 9d shows an image taken on a cloudy 
day with poor outdoor lighting. In low-light environments, the quality of captured 
images decreases, making detection more difficult. However, the improved model with 
the added CA module can still accurately recognize such targets due to its powerful fea-
ture extraction network. Figure 9e and f displays class activation maps of power plant 
personnel wearing insulating gloves, while Fig.  9g and h shows class activation maps 
without wearing insulating gloves. From the four class activation maps, it can be seen 

Fig. 9  Visualization of detection effect
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that the detection targets of the MCS-YOLOv8s model are more focused on the hand 
region, and the highly responsive regions are concentrated in the parts that are most 
helpful in making category judgments for correct classification. The experimental results 
show that the MCS-YOLOv8s model can effectively detect the insulating gloves wearing 
condition of power grid workers, which is of great significance in ensuring the safety of 
power grid workers and the safe and stable operation of the power grid.

Conclusion
The proposed MCS-YOLOv8s model is implemented to recognize the wearing status of 
insulating gloves for power grid personnel working with electricity in this paper. The 
Mixup data enhancement method enhances the dataset diversity without increasing 
computational effort, improving the model’s detection performance and generaliza-
tion. Introducing the CA module in backbone enhances the attention and extraction of 
effective feature information. The design of a new structure for detecting small targets 
in the neck improves the acquisition of small target feature information, resulting in bet-
ter classification and localization of targets. The experimental results indicate that the 
MCS-YOLOv8s model achieves a mAP value of 91.2% on the test set, showcasing a 2.8% 
improvement in detection performance compared to the YOLOv8s base model.

The MCS-YOLOv8s model has a final weight file memory occupation of only 15.7MB 
and can process images at a speed of up to 87 FPS. Despite this decrease in speed, it still 
maintains a high value, making it suitable for real-time detection requirements. Addi-
tionally, the model has low hardware requirements, such as CPU, which renders it feasi-
ble for deployment on embedded devices.

The MCS-YOLOv8s algorithm model is horizontally compared with mainstream tar-
get detection algorithms such as YOLOv8s, YOLOX-S, YOLOv7-tiny, and YOLOv5s. 
The experimental results indicate that the MCS-YOLOv8s model exhibits faster detec-
tion speed, higher detection accuracy, and a smaller memory occupation of weight files. 
These findings confirm the advancement of the MCS-YOLOv8s algorithm.

In future work, the model will be trained using a more diverse and extensive dataset. 
Furthermore, we will explore additional optimizations for the current model, enhancing 
its lightweight and detection performance.
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