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Abstract 

Integrating energy systems with information systems in smart grids offers a prom-
ising avenue for combating electricity theft by leveraging real-time data insights. 
Suspicious activity indicative of theft can be identified through anomalous con-
sumption patterns observed in smart networks. However, a smart model is required 
for capturing and analysing the data intelligently to accurately detect electricity 
theft. In the paper, electricity theft has been detected using an encoder-decoder-
based classifier that integrates two models of convolutional neural networks (CNN). 
The aim is to scan the strength of the data and built a smart model that analysed 
the connections in complex data and determine the pattern of theft. The model 
comprises three compartments: the auto-encoder, the wide convolutional neural 
network (1-D CNN model), and the deep convolutional neural network (2-D CNN 
model). The auto-encoder has been trained on the complex and in-depth linkage 
between the theft data and the normal data as it removes noise and unnecessary 
information. The 1-D CNN model gathers relevant connections and general features, 
while the 2-D CNN model determines the rate at which energy theft occurs and dif-
ferentiates between the energy-stealing consumers and normal consumers. The 
efficacy of the approach is underscored by its superiority over traditional deep learn-
ing and machine learning techniques. This paper elucidates the distinct advantages 
and applications of the proposed model in combating electricity theft within smart 
grid environments.

Keywords:  Convolutional neural networks, Deep learning, Power system, Electricity 
theft, Smart grid

Introduction
In the modern era, every technological innovation is linked to electricity. Contempo-
rary life would be incomplete without electricity. However, electricity losses remain a 
key problem for the utilities. Technical and non-technical losses are the two types of 
losses in the power system [1]. The technical losses have been compressed in signifi-
cant amounts in the restructured power system [2]. Meanwhile, non-technical loss as an 
electricity theft plays a major role. Therefore, this paper pivots around electricity theft, 
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accounting for significant global financial losses for power utilities. The utilities in devel-
oping and developed countries have experienced serious financial losses due to electric-
ity theft [3]. Manually inspecting bypassed meter connections, analyzing meter readings 
to identify normal and anomalous situations, and verifying malfunctioning meters are 
the traditional techniques for identifying electricity theft [4]. These techniques are inef-
ficient and slow. More research is needed to unravel novel technologies with high effi-
ciency for electricity theft detection [5].

Literature has conducted much research on electricity theft, but there is room for 
more improvement [6, 7]. Electricity theft can be detected in two ways, namely, the 
hardware-based approach and the data-driven approach. The hardware-based approach 
is a simple method that detects theft by smart meters and specific infrastructure designs 
without the use of the software. It makes use of advanced anti-tampering sensors and 
smart meters [8]. The disadvantages of the hardware-based approach are (i) require-
ment of specific smart meter devices manufactured for this purpose, (ii) the difficulty 
in maintaining these devices, (iii) high costs of implementation, and (iv) failure of the 
devices due to weather conditions [9]. The data-driven approach leverages extensive cus-
tomer electricity consumption data, employing advanced machine learning algorithms 
and data science techniques to extract intricate patterns and pertinent insights from the 
dataset [10]. The integration of smart grid technologies such as advanced metering infra-
structure (AMI), smart meters, and conventional power grids facilitates the acquisition 
of customers’ consumption data [11–13]. Moreover, smart grids facilitate two-way com-
munication between electricity consumers and utilities. This fosters the development of 
a network characterized by heightened reliability, security, and intelligence [14–16].

Electricity theft detection techniques explored in the literature use different machine 
learning and statistical approaches, such as the Naïve Bayes, KNN, Random Forest, Deci-
sion Tree, and Support Vector Machine [17–20]. These approaches have the advantage 
of low computational time for training and testing. However, their prediction accuracies 
have required more improvements. Therefore, deep learning methods, such as CNN-
GRU [21], CNN-LSTM [22], CNN [23], and MLP [24], are used to find hidden patterns 
and innate features in datasets [25, 26]. Supervised learning methods are impossible to 
deploy in instances of pseudonymous data; rather, unsupervised learning methods map 
the data’s natural cluster to different groups, and assign new data to the created groups 
[27, 28]. Consumers’ data of the existing electricity theft detection methods are highly 
imbalanced. A dataset is regarded as imbalanced when some class instances are scarce 
than the other classes. The classification algorithms focus on maximizing prediction 
accuracies and are thus susceptible to misclassification of minority classes as dominant 
classes since the fundamental principle of classification algorithms is finding the bound-
ary among the classes. At times, the minority classes do not possess sufficient data to 
find boundaries with other classes; this is referred to as an anomaly [29, 30].

The model proposed in this paper uses an auto-encoder neural network to address 
the anomaly. The auto-encoder neural network primarily creates a substantial gap 
between each class by transforming the dimensions of the dataset, thereby removing 
the redundancy and noise of the dataset. Auto-encoder neural networks have been 
widely used in detecting anomalies in fraud detection, industrial control systems, and 
intrusion detection [31]. About 5–10% of the entire consumption data is the portion 
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belonging to theft scenarios. So, extracting the information and features of minority 
class data for an unbiased classification is a big challenge. The autoencoder model 
is comprehensively explained in section III. Also, the existing electricity theft detec-
tion algorithms contain many non-malicious factors, like trends in customers’ con-
sumption data, stationarity, seasonality, and temporal dependency. Some factors are 
emphasized in the literature because of their importance in categorizing the char-
acteristics and patterns of the dataset [32]. Such factors include weekends, holidays, 
seasonal requirements, and weather conditions. These factors produce uncertainty in 
the simplification of electricity theft detection algorithms. To tackle these problems, 
a deep complex convolutional neural network classifier that can automatically recog-
nize the boundary between classes and learn the time-dependent features is proposed 
in this research.

The deep complex convolutional neural network is designed in two stages, the auto-
encoder neural networks and the two collaborative convolution neural networks with 
different feature extraction and configuration capabilities. In collaborative learning, 
the output’s generalization error is reduced, and overall performance is improved 
by combining the predictions of many independent models. Therefore, this research 
constructs a technique for detecting electricity theft by overcoming the problems 
described above. The auto-encoder-based collaborative model of 1-D and 2-D Con-
volutional Neural Networks (CNN), which identify electricity burglars more accu-
rately by learning complex patterns of electricity consumption data, are developed 
in this research. The data is encoded (or compressed) into a small code by the auto-
encoder and then decoded (or decompressed) to replicate the input. Thereby learn-
ing the non-linear and complex patterns of both the normal and abnormal electricity 
data and converts the input features to various nonlinear vector spaces [33]. Thus, 
it successfully filters inappropriate noise and redundant information in the dataset 
and differentiates between the normal and abnormal data. These pre-processed data-
sets are passed through two complex concatenated deep learning networks, which 
are the Wide (i.e., 1-D) CNN network and the Deep (i.e., 2-D) CNN Network [28]. 
Wide (1-D) component network is made up of a layer of neural networks trained on a 
one-dimensional dataset and a layer of the convolutional neural network, while Deep 
(2-D CNN) component network is made up of two-dimensional, deep dense, dropout, 
pooling, and convolutional layers [26].

The Wide 1-D component learns the inter-relationship and universal information of 
the data, while the Deep 2-D CNN component apprehends irregularities and explores 
periodicity in the electricity consumption data [33]. Hence, the proposed model com-
bines the benefits of an advanced anomaly detection system with that of collaborative 
deep learning models to present a high-performance electricity theft detector. Deep 
learning models (ANN and CNN) and machine learning models (SVM, KNN, and 
LDA), which are capable of learning complex patterns of data, were also implemented 
for comparison purposes. The following are the contributions of this research:

•	 The research paper proposes a combination of auto-encoder and collaborative 1-D 
and 2-D CNN models. The composition of proposed model is highly lucrative in 
that:
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	 i.	 The encoder-decoder arrangement effectively eliminates the noise and extra-
neous information, thereby enhanced the differentiation between theft data 
and normal data.

	 ii.	 The utilization of the wide component is facilitated the retention of pertinent 
relationships and global features.

	 iii.	 The deep component is accurately recognized the non-periodic patterns in 
electricity theft data and periodic patterns in normal data, showcasing its abil-
ity to learn non-linear and complex relationships. This capability significantly 
enhances the accuracy of the electricity theft detection system.

•	 An intensive experimentation is conducted in the paper, employed on a real-life elec-
tricity dataset to validate the superiority of the proposed model over existing ones.

Problem analysis
Power utilities nowadays are confronted with many problems, one of which is electric-
ity theft. A huge sum (between 5 and 10% of electricity) produced is being stolen daily. 
This act has excessive negative effects on the economy and impacts grid security, moni-
toring, and proper regulation. Electricity theft is performed in different malicious ways, 
like hacking digital meters, tempering the readings of energy meters, and bypassing the 
digital meter. Breakthroughs in technologies, such as deep learning and machine learn-
ing, and the availability of a large amount of power consumption data, have given rise to 
the popularity of data-driven electricity theft detection methods. Electricity theft can be 
detected using optimized tools and advanced data science algorithms. In this research, 
data were acquired from the State Grid Corporation of China (http://​www.​sgcc.​com.​cn) 
and analyzed. The data is made up of thirty-three thousand, eight hundred and forty-
one (33,841) electricity consumption data from customers between Jan 1, 2014, to Oct 
31, 2016 (i.e., 1035 days)  [34]. The data were first pre-processed for outlier and empty 
values and normalized for an independent analysis of individual consumers, as explained 
in “Methods”. Visualization of a sample of consumption data, randomly selected for both 
customer types (i.e., the normal usage and theft data), was performed after pre-process-
ing. The plot is shown in Fig. 1.

The plot shows a lot of fluctuations in both electricity theft and normal consumption 
data, and difficult to find critical differences between normal consumption and electric-
ity theft data but drawing the data approximate lines revealed that normal usage data has 
much less uncertainty and fluctuations than the theft data.

Similar observations were made in other randomly selected customer data samples as 
well. Figure 2 shows the plot of the scenario between the theft data and normal electric-
ity usage data of August 2016, selected randomly for some customers.

It could be observed in Fig. 2 the clear differences in patterns and fluctuations showing 
satisfactory results from deep and machine-learning classification models. Random cus-
tomer weekly datasets for both normal usage and electricity data were plotted for better 
insight, as reported in Figs. 3 and 4.

Figures  3 and 4 were plotted from a month’s randomly selected theft and normal 
data. It is discovered from the plots that the glance of periodicity is clearly observed 
in the patterns of the normal usage data. The consumption patterns for each day are 

http://www.sgcc.com.cn
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similar; for instance, the highest consumption is observed on days 4 or 5, while low 
consumptions are peculiar to days 7. The frequency variation, fluctuations, and noise 
trends are more in the theft data patterns. Hence, theft data patterns become less 
periodic. Random data were plotted from the entire dataset for easy visualization and 
simplicity; the findings for different customers were observed to be similar. Similar 
findings on elements of periodicity in fluctuations and noise were observed in other 
studies which used similar datasets [8].

The presence of non-periodic patterns in electricity theft data and periodic pat-
terns in normal usage data is also illustrated using the Pearson correlation coefficient 
(PCC), as shown by the PCC matrices in Table 1. It is observed that the PCC values 
of most of the normal usage weekly data are greater than 0.70, hence, indicating a 

Fig. 1  Electricity theft and normal usage electricity consumption data

Fig. 2  Visualization of 1-month electricity theft and normal usage electricity consumption data
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strong correlation. While the PCC values of most of the electricity theft weekly data 
are mostly between negative value and zero, hence, indicating a weak correlation [35].

The partial autocorrelation and the autocorrelation function of the normal usage 
and theft customers are plotted in Figs.  5 and 6, respectively. It was discovered that 
while normal usage data has clearly defined lag values, the theft data has no definite 

Fig. 3  Weekly plot of a normal usage customer

Fig. 4  Weekly plot of a customer having electricity theft

Table 1  Electricity theft and normal usage data’s Pearson correlation coefficient

Pearson correlation coefficient of normal usages Pearson correlation coefficient of electricity 
theft

Week1 1 0.70 0.82 0.71 Week1 1 0.50  − 0.35  − 0.45

Week2 0.70 1 0.74 0.90 Week2 0.50 1  − 0.12  − 0.45

Week3 0.82 0.74 1 0.85 Week3  − 0.35  − 0.12 1  − 0.36

Week4 0.71 0.90 0.85 1 Week4  − 0.45  − 0.45  − 0.36 1

Week1 Week2 Week3 Week4 Week1 Week2 Week3 Week4
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relationship with its historical values. Hence, the visual and statistical analysis of theft 
data revealed that they are non-periodic or less periodic as compared to normal usage 
data. This observation is consistent with the findings from other countries [05]. How-
ever, the 1-D dataset nature, huge noise, and massive size make it difficult to visualize 
the dependency and periodicity of previous day data.

Methods
Data pre‑processing

Outliers and missing values are usually contained in the electricity consumption data as 
a result of the maintenance schedules, storage issues, and failures in smart meters, sen-
sors, and transmit and receive systems [3]. It is, therefore, required to handle these miss-
ing values by using a well-accepted method. The outliers or missing values are handled 
in this research using a popular interpolation technique as expressed in the following 
equations.

where xi is a customer consumed electricity on an ith day (spanning between Jan 1, 2014, 
and Oct 31, 2016). NaN is the outlier value on that particular day.

(1)f (xi) =

xi−1+xi+1

2
, xi ∈ NaN , xi−1, xi+1 /∈ NaN

0, xi ∈ NaN , xi−1 or xi+1 ∈ NaN
xi, xi /∈ NaN

Fig. 5  ACF plots of electricity theft and normal usage data

Fig. 6  PACF plots of electricity theft and normal usage data
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The presence of many outlier values was observed in the data; these values should be 
subjected to an acceptable range to get a more accurate and better-generalized outcome. 
The “Three-sigma rule of thumb” [9] technique was used in this research to remove the 
missing data values. The original value is expressed as follows:

where x is a vector or list of the energy consumption record for the 35-month period. 
The ith element of the vector x is the ith day customers’ energy consumption (i.e., xi), the 
avg(x) is the total average energy consumption per customer per day, and std(x) is the 
standard deviation of the total energy consumption per customer.

After the necessary pre-processing, normalization of the datasets is essential because 
of the sensitivity of neural networks to different data. Normalization is done using the 
min–max scaling technique as:

where min(x) and max(x) are the respective minimum and maximum customer energy 
consumption values over the period of data acquisition.

Proposed machine learning model

The proposed classification model is made up of the (i) auto-encoder network and the 
(ii) ensemble of 1-D and 2-D convolutional neural networks, as shown in Fig. 7.

(i)	Auto-encoder network

Auto-encoder is made up of unsupervised artificial neural networks which encode and 
compress data efficiently and reconstruct it back to a depiction that is the original input’s 
feasible replica. Auto-encoder learns to avoid data noise, thereby reducing data dimension-
ality [36]. Auto-encoder neural networks receive wide acceptance for anomaly detection 
among unsupervised models [37, 38]. Several layers make up the model structure of the 
auto-encoder, with various arrangements of neurons in each layer, as depicted in Fig. 7. The 
neuron number in each encoder-decoder network’s layer decreases to a particular extent 

(2)f (xi) =

{

avg(x)+ 2.std(x), if xi > avg(x)+ 2.std(x),
xi otherwise

}

(3)f (xi) =
xi −min(x)

max(x)−min(x)

Fig. 7  Proposed ensemble auto-encoder dependent model
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and then increases to a particular extent, as could be seen in Fig. 7. Noise and redundant 
information are filtered in the auto-encoder network. The gap between theft data and nor-
mal usage data is also increased by converting the input (x) to linear independent vector 
space ( x ) using the latent space (z) in order to allow the proposed model to identify cus-
tomers easily. With a training set, given as: S = {xi|xi ∈ Rd} , 1 ≤ i ≤ n , the auto-encoder is 
modeled as:

where the neural networks implemented decoder and encoder functions are k(.) and h(.) 
respectively. The encoder parameters are we and be , while the decoder parameters are wd 
and bd . If h(.) and k(.) are neural networks, then bi and wi are the bias vectors and weight 
matrices with respect to encoder and decoder, h(.) and k(.) neural networks. Training an 
auto-encoder is by optimizing (i.e., minimizing) the loss function as:

where θ = (we, be;wd , bd) . The gradient descent algorithm is applied to solve Eq.  (5) 
optimization problem.

	(ii)	 Integration of wide and deep components of convolutional neural network

Classification problems have been widely addressed using deep learning algorithms 
such as convolution neural networks. Images can be analyzed using common feed-for-
ward neural networks like the convolutional neural network (CNN or ConvNet). A CNN 
is a multi-layer network with simple pattern detection and specialized feature extraction 
attributes. CNN has its respective input, hidden, and output layers, just like any deep 
learning model. Hidden layers work by taking input from the preceding layer, transform-
ing it into some form of output using the weights, and sending it to the next layer. Trans-
formation, here, is defined as the convolution of different kernels or filters in relation to 
the hidden layers. Hidden layers are referred to as convolution layers when they use con-
volution operations. Convolution layers have links with different filters and can detect 
objects, shapes, and patterns in images. The structure of a CNN model has different con-
volutional layers, filters, complex (non-linear) activation functions, Down-sampling lay-
ers, and MLP classification output layers, as shown in Fig. 8. The weights of MLP and 
convolution layer kernels are updated using efficient learning algorithms (stochastic and 
gradient descent momentum). CNN’s description and working principles are further 
explained in the literature [36].

The common deep neural networks (DNN), which are multi-layered neural networks, 
are simply made up of the input layers, hidden layers, and output layers, but CNN has an 
additional convolutional layer, which serves as the key operation in the discrete convolu-
tion. In each grid, the input I has a value, while the output S of the convolution is:

(4)
{

z = h(we, be; x)

r = k(wd , bd; z)

(5)J (θ) =
1

n

n
∑

i=1

�xi − ri�
2

(6)S
(

i, j
)

=

1
∑

ki=0

1
∑

kj=0

I(i + ki, j + kj)K (ki, kj)
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The abovementioned wide and deep convolutional neural networks contain differ-
ent configurations of parameters and layers. As earlier observed, theft data are less 
stable and thereby fluctuate more than normal usage data, and its nature is less peri-
odic. Hence, electricity consumers’ datasets can be treated as 1-D time series data. 
The handling of normal usage data’s periodic nature is done using a deep CNN model 
whereby 1-D power usage data is transformed into 2-D information as indicated by 
11 days (done by a trial-and-error method which produces the best accuracy). The 2-D 
CNN model is made up of several layers, poolings, neurons, and filters. The network 
structure is produced using trial-and-error methods vis-à-vis the knowledge of the 
domain. The use of the grid search method is also explored in this research, combining 
the hypermeters, and returning those producing the best result.

Each neuron in the fully connected layer produces its probability score using the follow-
ing equations:

where yi is the output of the fully connected layer. wi,j is the weight of the jth neuron and 
ith input value. n is the length of input data, and b1 is the bias term. The wide model 
controls the extent at which this prediction influences further step prediction using the 
activation function. The activation function used in this research is the rectified linear 
unit (ReLU), as expressed in the equation below:

where uj and f are the output and the activation function, respectively. The main reason 
to use ReLU is used mainly because of its good learning abilities and effective prevention 
of over-fitting in forwarding propagation.

Experimental setting
Power consumption data

Real-life electricity consumption data acquired from the State Grid Corporation of 
China (SGCC) was used in carrying out the experiment. Table  2 shows the metadata 
information of this dataset.

(7)yi =

n
∑

i=1

wi,jxi + b1

(8)uj = f (yj) = max(0, yj)

Fig. 8  The architecture of a CNN model
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Electricity consumption data of 32,841 consumers, spanning 1035  days (from Janu-
ary 1, 2014, to October 31, 2016), were acquired for this research. Outliers and miss-
ing values in the data were pre-processed, as explained earlier. SGCC confirmed that 
3615 customers’ data were discovered to be involved in electricity theft, while the rest 
data are normal electricity usage data. The proposed model was also evaluated using this 
theft data as ground truth. The proposed algorithm has been implemented on PARAM 
Shavak with 2.2 GHz Dual socket Intel Xeon E5-2600.

Performance matrix

The proposed model’s performance was evaluated in this research using some standard 
parameters, such as F1 score, recall, precision, and area under the curve (AUC) Accu-
racy [39, 40]. AUC is particularly used to authenticate the classification model, which is 
the possibility that positive sample ranks selected randomly are greater than a randomly 
selected negative sample. AUC is expressed as:

where P, N, and Ranki are the number of positive samples, negative samples, and the 
rank of ith. The samples were arranged in ascending order depending on the probability 
score before feeding them into Eq. (9). The indices used for performance evaluation are 
defined as follows:

Accuracy: stands for the number of classes that were correctly predicted over the 
overall classes.
Precision: stands for the number of positively predicted classes that are truly positive.
Recall: stands for the ratio of positive class predictions to that of all-positive 
classes.
F1 Score: stands for the harmonic mean of recall and precision. This can be 
expressed as:

(9)
AUC =

∑

i∈+ve class

Ranki −
P(1+P)

2

P ∗ N

(10)F1score =
2PrRc

Pr + Rc

Table 2  Meta data information of dataset

Description Value

Time duration of data collection Jan 1, 2014–Oct 31, 2016

Total no of customers 33,841

Total no of thieves 3615

Total number of normal usage customers 30,226
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where Pr and Rc are the value of Precision and Recall, respectively.

Baseline models

Other conventional methods were also implemented for analyzing the performance of the 
proposed model, and their outcomes are reported in Table 4.

Some classifiers, which are support vector machine (SVM), linear decrement analysis 
(LDA), and K-Nearest Neighbours (KNN) were implemented on Python’s machine learning 
library, Scikit-learn. An open-source Deep Learning Framework, Keras, was used to imple-
ment the proposed model, convolutional neural network (CNN), and the Multi-Layer Per-
ceptron Model (MLP). Table 3 shows the optimization parameters for each model and their 
range.

Results and discussion
Performance comparison of the implemented model

The entire dataset is divided into two for model training and testing. The training ratio was 
chosen on two groups of the dataset, 60 and 80%, so as to generalize the conclusion of the 
machine-learning model’s performances. The training and testing samples were randomly 
selected for each group of experiments. The training ratio is selected as:

The electricity consumption data of 20,304 customers were used for training, while 
that of 13,537 customers was used for testing in the first group of experiments. Also, 

(11)Training Ratio =
Number of samples used for training

Total number of samples
× 100

Table 3  Optimization parameters and input features for the model

Methods Features Parameters

SVM [19] Raw(1-D) C = 100, Degree = 10, Kernel = ‘rbf’

MLP [27] Raw(1-D) Neurons = 500, Hidden Layer = 5, Epochs = 200, Batch size = 5

CNN [34] Raw(2-D) Filters = 64, Dropout = 0.2, Hidden Layer = 7, Epochs = 180, Batch 
size = 10

KNN [20] Raw (1-D) Leaf size = 30, neighbours = 3, weight = ‘uniform’

LDA [25] Raw(1-D) n_components = 3, solver = ’svd’

Proposed method Raw (1-D and 2-D) Filters = 32 & 64, Hidden Layer = (1 for wide component and 6 for deep 
Component), Lag = 11 day, Epochs = 100, Batch size = 5

Table 4  Performance comparison with other models

Methods Training ratio = 60% Training ratio = 80%

AUC​ ACC​ Precision Recall F1 Score AUC​ ACC​ Precision Recall F1 Score

SVM [19] 0. 716 0.897 87 90 88.47 0.729 0.897 87 90 88.47

KNN [20] 0.640 0.892 86 89 87.47 0.630 0.887 85 89 86.95

MLP [27] 0.797 0.907 89 91 89.99 0.818 0.909 90 91 90.49

CNN [34] 0.880 0.938 93 94 93.49 0.910 0.944 94 94 94.00

LDA [25] 0.664 0.883 86 89 87.47 0.682 0.896 87 90 88.47

PM 0.891 0.956 95 96 95.49 0.956 0.974 97 97 97.00



Page 13 of 18Kumawat et al. Journal of Engineering and Applied Science           (2024) 71:94 	

the electricity consumption data of 27,072 customers were used for training the clas-
sification model, while that of 6769 customers was used for testing the performance 
in the second group of experiments. The outcomes of the performance evaluation 
parameters for different classification models are shown in Table  4. Several factors 
contribute to the consistency of the model as the complexity of the model architec-
ture utilized enables it to capture intricate patterns within the dataset efficiently, 
potentially reaching a performance plateau with additional training data. The data-
set characteristics: exhibiting moderate complexity and sufficient variability facilitate 
the model’s generalization across various training data sizes. Additionally, the model’s 
strong generalization ability suggests it has learned robust features representative 
of the underlying data distribution, ensuring stable performance regardless of train-
ing data size. The possibility that evaluation metrics used are not highly sensitive to 
minor changes in model performance could explain minimal observed differences 
between different training data percentages.

(i)	The performance at the train-test ratio of 60%

The results in Table 4 show the outstanding performance of the proposed methods, an 
ensemble of wide and deep convolutional neural networks. It has an accuracy of 95.59%, 
which is far better than that of the conventional models. The proposed model’s F1 score 
is 95.49%, which surpasses that of all the conventional classifiers. The values of the pro-
posed model for all other indices (such as recalls, precision, and AUC) are also better 
than that of the conventional methods.

	(ii)	 Performance when the train-test ratio is 80%

Here, the train data are more than the 60% train-test ratio scenario. The model learn-
ing is observed to have improved, hence, an improvement in the results of all param-
eters. It has an accuracy of 97.44%, which is far better than that of the conventional 
models. For every performance evaluation index, there is an improvement in our pro-
posed model than other existing models. Hence, there is greater accuracy and better 
feature generalization in the proposed model’s learning of patterns and electricity con-
sumption data behaviors.

The ROC-AUC curves were also plotted for the two groups of experiments (i.e., at 60 
and 80% training ratios, respectively) for the models’ outcomes and for visualizing the 
analysis of the AUC, as reported in Figs. 9, 10 and 11. The areas covered by the red and 

Fig. 9  The Framework of a wide and deep convolution neural networks (CNN)
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blue curves in Figs. 9, 10 and 11 are the AUC values. AUC value is directly proportional 
to the classification model’s performance. The higher the AUC value, the higher the 
accuracy of the model, and vice versa. The AUC value results for the KNN model and 
other existing models in Figs. 9 and 10 are far lower than that of the proposed model 
(which is 89.07%), ditto for the AUC value results for the KNN model and other existing 
models in Figs. 9 and 10 are far lower than that of the proposed model (which is 95.55%).

It could also be observed from Figs. 9, 10 and 11 that the performance of the machine 
learning algorithms is better at the training data scenario of 80% than at the training data 
scenario of 60%. There is also an improvement in the ROC plot of the proposed model 
compared to that of the existing models. Thus, all the performance indices for the pro-
posed model (i.e., auto-encoder-based wide and deep CNN) are better than that of the 
conventional models.

The confusion matrix was also plotted for all the models, as shown in Fig. 12. A confu-
sion matrix is a convergence of accurately forecasted classes as well as falsely forecasted 
classes in a classification method.

Fig. 10  ROC-AUC plot of all the implemented models when training ratio is 60%
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Fig. 11  ROC-AUC Plot of all the implemented models when the training ratio is 80%

Fig. 12  Confusion matrix of proposed models when the training ratio is 60 and 80%
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In Fig. 12, it can be observed that when the training ratio is 60%, 983 theft and 11,957 
normal customers were classified accurately by the proposed model, while only 462 theft 
and 135 normal customers were classified inaccurately. Meanwhile, when the training 
ratio is 80%, a reduction in the percentage of inaccurate predictions is observed; there 
were only 65 inaccurate classifications out of 6025 normal customers, while only 108 
inaccurate classifications out of 744 theft customers. Hence, the superior performance 
and significant generalization and accuracy of the proposed model (irrespective of the 
training ratio) as compared to the conventional models have been demonstrated.

Convergence analysis of the proposed methods and the effects of hyper‑parameter

The ensemble of two convolutional networks makes up the proposed methods. Hence, 
the system results are impacted greatly by the hyper-parameters, such as the number of 
dense layers, pooling layers, filters, and neurons. The hyper-parameter is first selected 
by the trial-and-error method and in accordance with the best domain knowledge. 
Then, the exact hyper-parameters of models are found using the grid search method. 
The performance of the model improved during training when the number of epochs 
is increased up to 100, but when the number of epochs is increased beyond 100, the 
model’s performance degraded. Also, the performance of the model improved when 
the batch size decreases and vice versa, as the batch size is calculated using grid search 
techniques.

Conclusions
This paper is applied a data-driven electricity theft detection approach using data that 
were encoded and decoded and passed through an ensemble of wide and deep CNN 
models. The dataset was projected on a less noisy vector space by the auto-encoder and 
informatively compared to the raw data. The global features learning of the electricity 
theft dataset of wide convolutional neural networks is another benefited of the pro-
posed model. Therefore, the model has the ability to learn the periodic and non-periodic 
natures of theft and normal usage data, which is typical of deep convolutional neural 
networks. Moreover, the ensemble of two convolutional neural networks has delivered 
the benefits of conjecture and consciousness. In the paper, the dataset acquired from the 
State Grid Corporation of China was utilized to validate the accuracy and efficiency of 
the model. The results demonstrate the generalization and accuracy of classification of 
the theft and normal customers by the proposed auto-encoder-based ensemble model 
of wide and deep CNN. Anomaly detection ability of proposed approach is much higher 
than that of conventional models, such as CNN, MLP, SVM, LDA, and KNN. The pro-
posed ensemble-based wide and deep CNN model has undergone rigorous testing and 
validation, demonstrating its robustness and suitability for a wide range of industrial 
applications.
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