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Abstract 

Background: Image denoising technology removes noise from the corrupted image 
by utilizing different features between image and noise. Convolutional neural network 
(CNN)-based algorithms have been the concern of the recent progress on diverse 
image restoration problems and become an efficient solution in image denoising.

Objective: Although a quite number of existing CNN-based image denoising meth-
ods perform well on the simplified additive white Gaussian noise (AWGN) model, their 
performance often degrades severely on the real-world noisy images which are cor-
rupted by more complicated noise.

Methods: In this paper, we utilized the multi-task learning (MTL) framework to inte-
grate multiple loss functions for collaborative training of CNN. This approach aims 
to improve the denoising performance of CNNs on real-world images with non-Gauss-
ian noise. Simultaneously, to automatically optimize the weights of individual sub-tasks 
within the MTL framework, we incorporated a self-learning weight layer into the CNN.

Results: Extensive experiments demonstrate that our approach effectively enhances 
the denoising performance of CNN-based image denoising algorithms on real-
world images. It reduces excessive image smoothing, improves quantitative metrics, 
and enhances visual quality in the restored images.

Conclusion: Our method shows the effectiveness of the improved performance 
of denoising CNNS for real-world image denoising processing.

Keywords: Self-learning weight, Multi-objective optimization, Non-Gaussian noise 
model, Image denoising, Multi-task learning, Convolutional neural network

Introduction
The digital image is an essential source of information in many fields, such as image sur-
veillance, target tracking, and magnetic resonance images (MRI) [1, 2]. However, the 
digital image is inevitable to be corrupted by various types of noise in the procedure of 
capture and transmission, which decreases image quality. A noisy image is usually for-
mulated as

where y denotes the noisy image, x the noise-free image, and v inductive noise. The noise 
v is often assumed to be subject to some kind of distribution.

y = x + v
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In past decades, numerous image denoising techniques have been proposed, 
such as non-local self-similarity methods, partial differential equations (PDEs) 
algorithms, threshold algorithms, sparse representation algorithms[3], and hybrid 
method [4]. With the development of deep learning, CNN-based image denoising 
method has become the focus of image denoising [5]. As proposed in [6], a feed-
forward denoising convolutional neural network (DnCNN) is introduced, consist-
ing of a cascaded structure that includes convolution layers, rectified linear unit 
(ReLU), batch normalization (BN) layers, and residual learning (RL) introduced at 
network output. Although most of these image denoisers mentioned above perform 
well for noisy images polluted by additive white Gaussian noise (AWGN), their per-
formance usually suffers degrading dramatically when removing noise in real-world 
noisy images captured by digital cameras which introduce more sophisticated noise. 
In view of this problem, Wei et  al. [7] aim to establish a more accurate simulation 
of image noise models in real-world scenarios, intending to generate target data for 
improving the denoising capabilities of algorithms on images captured in real scenes. 
Guo et al. [8] proposed a more realistic noise model that considers signal-dependent 
noise and the influence of the image signal processing (ISP) pipeline on noise. They 
also proposed a convolutional blind denoising network (CBDNet) to restore a clean 
image from a realistic noisy image. This is achieved by designing a noise estimation 
sub-network based on a more realistic noise model. Chen et  al. [9] contends that 
conventional training methods involve overfitting to the noise in the training set and 
has devised a masking training approach. It involves applying a random and substan-
tial masking to the input image, compelling the model to learn the reconstruction of 
the obscured image content, thus improving the model’s generalization capability. 
However, due to the influence of various factors on real camera noise, existing noise 
models still struggle to fully match the complexity of real-world noise. As a result, 
these methods have not significantly enhanced the generalization performance of 
denoising networks and still face challenges when dealing with mismatched noise 
distributions [10].

Moreover, the MSE loss used in the training of traditional denoising CNN is also 
designed based on the assumption of Gaussian noise and with the aim of enhanc-
ing the peak signal-to-noise ratio (PSNR) index. However, it has been indicated that 
the PSNR index does not effectively reflect human visual perception features, lead-
ing to evaluation results that often differ from human visual perception. In other 
words, even though the PSNR index of the image is improved, denoising results in 
excessive smoothing of image details. Therefore, for images with non-Gaussian noise, 
when CNN-based image denoisers are using only MSE loss, the denoised image actu-
ally contains additional information introduced by various denoising methods [11], 
resulting in artifacts. Simultaneously, the excessive smoothing of the image leads to 
the loss of texture details.

Multi-task learning (MTL) is a learning paradigm that aims at taking advantage 
of knowledge contained in multiple related tasks to promote the generalization per-
formance for each task [12, 13]. It can effectively leverage information provided by 
different learning tasks more efficiently than single-task learning [14] and facilitate 
knowledge sharing between tasks, thereby reducing the risk of overfitting for each 
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individual task and improving overall performance [15]. However, the performance of 
a MTL model relies heavily on the weight selection among tasks, while searching for 
an optimal weight using manual adjustment is time-consuming and difficult [16, 17]. 
In this paper, we propose a method to enhance the existing image denoising convo-
lutional neural network (DCNN) within the framework of multi-task learning (MTL) 
for non-Gaussian noise image denoising and design a data-driven sub-task weight 
self-learning method.

(1) Through the MTL framework, different image quality assessment metrics and 
image features (including MSE, SSIM, statistical characteristics of image residu-
als) are utilized as sub-tasks to achieve collaborative training for the DCNN. This 
approach gradually transforms non-Gaussian image noise towards Gaussian noise, 
thereby enhancing denoising performance and improving the visual quality of 
denoised images.

(2) We designed a network layer that, in conjunction with the collaborative training 
of the aforementioned image convolutional neural network (DCNN), automatically 
and rapidly learns the weights for each subtask.

(3) Two training strategies are researched, one for optimal performance and the other 
for obtaining the most suitable shared features for multiple tasks.

The experiments demonstrate that our approach enhances the image denoising per-
formance of convolutional neural networks (DCNN) on two types of networks and four 
image datasets, under both Gaussian and non-Gaussian noise conditions. This improve-
ment is observed in terms of both quantitative metrics and visual perception of the 
images.

Related work
Image DCNN

The image DCNN has achieved great improvement in Gaussian noise denoising. To 
deal with more complex noises, a fast and flexible denoising convolutional neural 
network (FFDNet) [18] has been presented by introducing noise level graph as an 
additional input of the network based on DnCNN. In view of the difficulty to obtain 
noisy/noise-free images sample pairs, the Noise2Noise (N2N) [19] method uses 
samples pairs composed of independent noisy images from the same background to 
train DCNN and reach comparable performance of training with noisy/noise-free 
pairs. Its training strategy is derived from the statistical observation that the loss 
function only requires the target signal to be “clean” on some statistical values while 
not needing to be “clean” on every target signal. CBDNet [8] consists of two sub-net-
works. One is a noise estimation sub-network which has a symmetric structure and 
the total variation losses and outputs a noise level graph of the same size as the input 
image, and the other is a non-blind denoising sub-network to obtain the latent clean 
image with noise level graph and noisy image as input. The synthetic structure and 
real-world noisy images are merged for CBDNet training to achieve a more robust 
performance even though the noise model is slightly different from the real-world 
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noise. Experiments demonstrated the crucial role of the image noise model in real 
noisy images.

MTL

MTL aims at improving the performance of each task by inductive knowledge transfer to 
share domain information between tasks and has been successfully applied in machine 
learning and deep learning. Tang. et al. [20] designed a face recognition network with 
multi-task learning for better performance by jointing optimization on the face recog-
nition loss and the face classification loss. Gao et al. [21] applied the MTL framework 
to integrate target recognition and image noise reduction in the defect recognition of 
railway insulator images, which carried out coordinated training for CNN by alter-
nately freezing one task and optimizing the other. Considering that manual adjustment 
of the weight coefficient of each task is time-consuming and laborious, Kendall et  al. 
[17] adopted the homoscedastic uncertainty of each task to weigh each loss and showed 
their method superior to individual models trained respectively on each task in per-pixel 
depth regression and other problems. Ozan et al. [22] transformed the (MTL problem 
into a multi-objective optimization (MOO) problem to optimize a set of potentially 
conflicting multiple objectives. Thus, the objective of MTL is converted into finding 
the Pareto optimal solutions for the corresponding MOO problem. Ozan et al. use the 
multiple-gradient descent algorithm (MGDA) to solve the weight coefficients for poten-
tially conflicting targets. They demonstrated that their method produces a solution that 
is either a Pareto stationary point or provides a descent direction that can improve each 
task objective. This method has been successfully applied in scene understanding and 
multi-label classification.

Proposed method
MTL framework and auxiliary tasks

To leverage the MTL framework for denoising convolutional neural network (DCNN) 
training, we contemplate introducing loss functions based on different principles for 
DCNN. The optimization of these loss functions is treated as sub-tasks within the MTL 
framework, thereby transforming MTL into the following MOO problem:

where x ∈ R
d denote input space, and y ∈ R

N denote a set of objective space. N  is the 
total number of objectives, θn are objective-specific parameters, θ s are shared param-
eters, and Ln x, y, θ s, θn : x→ yn is nth sub-tasks or loss function of DCNN.

As mentioned in Introduction, when the DCNN solely uses mean square error 
(MSE) as the loss function, although it suppresses the amplitude of image residu-
als, the distribution of image residuals is influenced by non-Gaussian noise and 
the denoising algorithm, leading to a reduction in the quality of visual perception 
[11]. Therefore, we introduce the distribution distance metric as an auxiliary task to 
make the image residuals ê  approximate Gaussian white noise. Simultaneously, the 
structural similarity index (SSIM) is introduced to enhance the structural similarity 

(1)MinL(x, y) =
{(

x, y, θ s, θ1
)
, · · · , Ln

(
x, y, θ s, θn

)}

n = 1, 2, · · · ,N
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between the denoised image and the target image. The integration of these tasks 
under a MTL framework aims to not only suppress the amplitude of image residu-
als but also reduce redundant information in order to remove noise and improve 
denoising effectiveness.

Distribution distance loss

If the image residuals ê are close to zero-mean Gaussian white noise, it indicates that the 
geometric structure or texture features have been effectively removed from the noisy image. 
Therefore, within the MTL framework of the DCNN, we introduce a sub-task aimed at 
making the image residuals in the denoised image approximate white Gaussian noise. This 
is intended to align with the traditional DCNN noise model, thereby improving the denois-
ing performance of the DCNN under non-Gaussian noise conditions. There are several 
methods to evaluate how closely image residuals ê approximate white Gaussian noise, with 
one of these being the auto-correlation coefficient of the residuals. This coefficient can be 
calculated using the following formula:

where µx , µy denote the mean of x and y , and σx and σy denote the standard deviation 
of x and y respectively. Then, the auto-correlation coefficient can be examined through 
a randomness test. Another method is the Kullback–Leibler divergence (KLD), which 
can be used directly to calculate the difference between two different distributions. The 
formula of KLD is

where x ∼ q(x) is the distribution of ê , and p(x) ∼ N (0, 1) is distribution of white 
Gaussian noise, and we calculate the KLD between ê and white noise as an auxiliary 
task.

SSIM loss

Denoised images reconstructed by DCNN-based methods that minimize MSE loss often 
lose important details, such as over-smoothing artifacts in texture-rich regions [12], leading 
to a degradation in image quality. In contrast, the SSIM measures the structural similarity 
between images by comparing image brightness, contrast, and structure. Its evaluation 
results are considered to be more consistent with how humans measure the differences 
between two images. In [23], training DCNN with the joint loss function of SSIM and L1 
indeed achieved better image denoising results. Therefore, we introduce the SSIM index as 
another subtask in the MTL framework. Therefore, we use SSIM index as another sub-task 
in the MTL framework. Let Cl

(
I , Î

)
 and Cc

(
I , Î

)
 denote respectively the difference 

between two images in luminance and contrast and µI and σI the mean and standard devia-
tion of image; then, the formula is

(2)ρ =
E
[
(X − µx)

(
Y − µy

)]

σxσy

(3)KL(p � q) = −

∫
p(x)ln

{
q(x)

p(x)

}
dx
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where C1 and C2 are constants for stability. Let Cs

(
I , Î

)
 denote the difference between 

two images in structure; then, the SSIM index is calculated as follows.

where α, β, and γ are adjustable parameters.

Non‑Gaussian noise model

As acquiring noisy/noise-free image pairs is not easy, DCNNs usually have to utilize 
simulated noise image data to perform training, and the proper noise model has great 
influence on the training effect and denoising performance of DCNN. Existing CNN 
denoisers [24], BM3D-Net [25] or DnCNN, generally occur performance degradation on 
real-world noisy images, which is owing to that they adopt a simple AWGN model while 
the real noise is usually non-Gaussian. In this section, Poisson-Gaussian model [26] 
is introduced as the real noise distribution model. The Poisson-Gaussian model has 0 
mean value, and its variance varies with the actual pixel value, which is signal-dependent 
and changes with different cameras and camera settings. The Poisson-Gaussian noise 
model can be further simplified to be the heterogeneous Gaussian noise model that is 
made up of a stationary noise and a signal-dependent noise. It has been proved that het-
erogeneous Gaussian noise model is more suitable than AWGN for noise modeling in 
real-world image. In the heterogeneous Gaussian (HG) noise model, each observed sam-
ple y is regarded as a random variable with a signal-depended variance which is formu-
lated as follows.

where x is the signal, and �r and �s are parameters which depend on sensor’s gains. 
Moreover, other image processing procedures (such as color correction, and tone map-
ping) are also considered in generating the simulated noisy images, which are synthe-
sized by adding noise to raw sensor measurements and used as training data.

Network structure

Depending on the optimization process, we propose two strategies for the training of 
DCNN with MSE loss, SSIM loss and distribution distance loss as tasks in the MTL 
framework. Network structure of the first strategy is illustrated in Fig.  1, where the 
DCNN contains all the shared parameters, and each loss is computed as an objectives-
specific task. Then, we convert the MOO problem to the following SOO problem by 
weighting all these losses.

(4)
Cl(I , I) =

2µIµÎ
+C1

µI
2+µ

Î
2+C1

Cc

(
I , Î

)
=

2σIσÎ+C2

σI 2+σ
Î
2+C2

(5)
Cs

(
I , Î

)
=

σ
I Î
+C3

σIσ Î
+C3

SSIM
(
I , Î

)
= [Cl

(
I , Î

)
]
α

[Cc

(
I , Î

)
]
β

[Cs

(
I , Î

)
]
γ

(6)y ∼ N
(
µ = x, σ 2 = �r + �sx

)
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The weight α in the optimization problem (7) can be considered as a group of hyper-
parameters. For a small number of hyper-parameters, Bayesian optimization [27] can be 
employed for parameter search. In this paper, we designed a linear layer output to per-
form a weighted sum for different tasks, and the weights α are automatically optimized 
through network training. The shared parameters contained in the DCNN are also opti-
mized according to the gradient descent algorithm. The algorithm based on this image 
DCNN training strategy is formulated in Algorithm 1.
Algorithm 1. Training according to the first strategy.

The second strategy employs a task-switching multi-task learning (MTL) framework 
for training the DCNN. The network structure of this strategy is illustrated in Fig.  2, 
where each output corresponds to the DCNN utilizing a different loss. In this strategy, 
an alternate optimization method is used to optimize the network in turn according to 

(7)Argmin
α1,··· ,αT ,θ s

T∑

t=1

αt∇θ
sLt(θ

s, θ t)

Fig. 1 Network architecture of the first strategy
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all sub-tasks. Through this training strategy, the DCNN can acquire shared features that 
are most suitable for multiple sub-tasks.
Algorithm 2. Training according to the second strategy.

Results and discussion
Experiments data preparation

To evaluate our method, we selected two denoising convolutional neural network 
(DCNN) models: denoising autoencoder (DAE) and CBDNet. We applied the training 

Fig. 2 Network architecture of the second strategy based on feature transformation MTL framework
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methods described in the “Network structure” section to study the improvement in 
denoising performance of the DCNN. Evaluation was conducted using the PSNR and 
SSIM metrics. The algorithm was implemented in Python.

For the DAE, we clip images from STL dataset [28] to patches with size 96 × 96. Vari-
ous levels of Gaussian or non-Gaussian noise were added to these patches to create sam-
ple pairs. Images from PolyU [29] and RENOIR [30] are used for testing. The testing data 
pair are generated on PolyU and RENOIR by the same way with the training data pair.

For the CBDNet, we kept its network architecture and training parameters unchanged. 
We extracted 1200 images from the DND dataset [31] and synthesized training noisy 
images using the heterogeneous Gaussian noise model and image processing pipeline 
(ISP) proposed in literature [8]. Testing was conducted using images from the PolyU 
dataset, BSDS500 [32], and RENOIR.

Experiments on DAE

The DAE used in our experiments is made up of two parts: one is encoder z = f
(
x̃i
)
 , and 

the other is decoder y = g(z) , and both are CNNs (Table 1). z denotes the low-dimen-
sional hidden layer feature vector extracted from input x . On the generation of training 
data, we utilize three different noise models: Gaussian noise, heterogeneous Gaussian 
noise, and heterogeneous Gaussian noise with ISP. The test data are generated in the same 
way on PolyU and RENOIR datasets. In the procedure of training, we use stochastic opti-
mization algorithm with a learning rate 3 ×  10 −4 and set the training epoch as 100.

Figures 3 and 4 show the image denoised results of a PolyU image respectively on the 
AWGN model and heterogeneous Gaussian noise model. Compared with the improved 

Table 1 Network structure of the tested DAE

Encoder Decoder

Encoder layer Layer shape Kernel Decoder layer Layer shape Kernel

Conv2d [, 64, 96, 96] (3, 64, 3, 1, 1) ConvTranspose2d [, 256, 24, 24] (256, 128, 3,1, 1)

BatchNorm2d [, 64, 96, 96] 64 ReLU [, 256, 24, 24] -

Conv2d [, 64, 96, 96] (64, 64, 3, 1, 1) BatchNorm2d [, 256, 24, 24] 128

ReLU [, 64, 96, 96] - ConvTranspose2d [, 128, 48, 48] (128, 128, 3,2,1, 1)

MaxPool2d [, 64, 96, 96] (2, 2) ReLU [, 128, 48, 48] -

BatchNorm2d [, 64, 48, 48] 64 BatchNorm2d [, 128, 48, 48] 128

Conv2d [, 64, 48, 48] (64, 64, 3, 1, 1) ConvTranspose2d [, 64, 48, 48] (128, 64, 3,1, 1)

ReLU [, 64, 48, 48] - ReLU [, 64, 48, 48] -

BatchNorm2d [, 64, 48, 48] 64 BatchNorm2d [, 64, 48, 48] 64

Conv2d [, 64, 48, 48] (64, 128, 3, 1, 1) ConvTranspose2d [, 32, 48, 48] (64, 32, 3,1, 1)

ReLU [, 128, 48, 48] - ReLU [, 32, 48, 48] -

BatchNorm2d [, 128, 48, 48] 128 BatchNorm2d [, 32, 48, 48] 32

Conv2d [,128, 48, 48] (128, 128, 3, 1, 1) ConvTranspose2d [, 32, 48, 48] (32, 32, 3,1, 1)

ReLU [, 128, 48, 48] - ConvTranspose2d [, 16, 96, 96] (32, 16, 3,2,1, 1)

BatchNorm2d [, 128, 48, 48] 128 ReLU [, 16, 96, 96] -

Conv2d [,256 48, 48] (128, 256, 3, 1, 1) BatchNorm2d [, 16, 96, 96] 16

ReLU [, 256, 48, 48] - ConvTranspose2d [, 16, 96, 96] (16, 3, 3,1, 1)

MaxPool2d [, 256, 24, 24] (2, 2) Sigmoid [, 3, 96, 96] -

BatchNorm2d [, 256, 24, 24] 256
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DAE, the traditional DAE methods generate more artifacts in the denoised images and 
lose some details in the image structures. The improved DAE performs better in pre-
serving image detail structures and achieves positive gains in PSNR and SSIM metrics 
when removing noise.

Figure 5 shows the variation of MSE loss and validation result respectively about the 
traditional DAE and the DAE improved by the two strategies with the training on the 
RENOIR dataset. As is seen from Fig.  5, the improved DAES1 has the fastest rate of 
decline speed on MSE loss curve and validation curve. All the two improved DAEs out-
perform traditional DAE on the decline speed of MSE loss curve and validation curve, 
demonstrating an improvement in denoising effectiveness.

Experiments on CBDNet

CBDNet has demonstrated effective noise reduction capabilities on real-world images. 
In order to enhance the denoising performance and improve the generalization to non-
Gaussian noise of CBDNet, we applied the MTL framework to its training process. It 
takes about 2 days to train the improved CBDNet on a Nvidia GeForce GTX 1060 GPU.

Figure  6 provides the denoised result on a PolyU image in heterogeneous Gaussian 
noise model with ISP. The improved CBDNet demonstrates positive gains over the tradi-
tional CBDNet in preserving image edges and achieving relative increases in PSNR and 
SSIM on the RENOIR dataset. Figure 7 shows the denoising results of different methods 
on RENOIR images under the Gaussian noise model. The original DAE method pro-
duces over-smoothing results, while the improved DAE method restores more local 
details and has better denoising effect than DnCNN and FFDNet.

(b) Noisy image 

PSNR/SSIM: 19.16/0.33

(c) Traditional DAE 

PSNR/SSIM: 30.17/0.94

(d) Improved DAE 

PSNR/SSIM: 32.07/0.98
(a)Target  image

Fig. 3 Restored results of a PolyU image over AWGN (σ = 30). a Target image. b Noisy image PSNR/SSIM: 
19.16/0.33. c Traditional DAE PSNR/SSIM: 30.17/0.94. d Improved DAE PSNR/SSIM: 32.07/0.98

(a) clean  image (b) Noisy image 

PSNR/SSIM: 22.89/0.51

(c) Traditional  DAE

PSNR/SSIM: 30.74/0.95

(d) Improved DAE 

PSNR/SSIM: 32.51/0.97

(a) clean  image

Fig. 4 Restored results of a PolyU image over HG noise. a Clean image. b Noisy image PSNR/SSIM: 22.89/0.51. 
c Traditional DAE PSNR/SSIM: 30.74/0.95. d Improved DAE PSNR/SSIM: 32.51/0.97
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Table  2 exhibits the denoising performance comparison on the RENOIR dataset 
between the improved versions using the two strategies proposed in the “Network 
structure” section and the original DAE, DnCNN, FFDNet, and CBDNet. The improved 

Fig. 5 The variation in MSE loss and validation

(a) clean  image (b) Noisy image 

PSNR/SSIM: 26.52/0.79

(c) Traditional CDBNet

PSNR/SSIM: 30.40/0.88

(d) Improved CDBNet 

PSNR/SSIM: 30.49/0.92

(a) clean  image

Fig. 6 Denoising results of a PolyU image over HG noise + ISP. a Clean image. b Noisy image PSNR/SSIM: 
26.52/0.79. c Traditional CDBNet PSNR/SSIM: 30.40/0.88. d Improved CDBNet PSNR/SSIM: 30.49/0.92

(a) clean  image (b) Noisy image

(c) DnCNN (d) FFDNet (e) DAE

(f) Improved 

DAES1

(g) Improved 

DAES2

Fig. 7 Denoising results of a RENOIR image. a Clean image. b Noisy image. c DnCNN. d FFDNet. e DAE. f 
Improved DAES1. g Improved DAES2
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DAE is trained with image generated through the AWGN model and the heterogene-
ous Gaussian noise model respectively. In the heterogeneous Gaussian noise model with 
ISP, the improved DAE demonstrates significantly enhanced denoising performance on 
noisy images. Its PSNR/SSIM results outperform those of DnCNN and FFDNet, indi-
cating that the proposed method can enhance the denoising performance of DCNN 
for non-Gaussian noisy images. The improved CBDNetS2 has the highest PSNR/SSIM 
results in all methods.

Figure  8 shows the denoising results on a BSDS500 image using CBDNet and its 
improved version under the ISP’s heterogeneous Gaussian noise model. Compared to 
the original method, the improved approach preserves more local details in the denoised 
image, resulting in a better visual effect.

Conclusion
Due to the limitations of training DCNNs solely using MSE loss, which cannot fully 
match non-Gaussian noise in images and may introduce additional information during 
the denoising process, resulting in a decrease in the visual quality of the denoised image. 
To address this, we explore various image evaluation metrics that describe image charac-
teristics from different angles, such as residual statistical properties and image structural 

Table 2 The denoising results on RENOIR dataset

Method PSNR SSIM Time(s)

DnCNN 28.77 0.6399 0.3782

FFDNet 28.61 0.6882 0.3653

CBDNet 29.70 0.9016 0.3745

DAE 28.54 0.8460 0.3431

Improved DAES1 28.99 0.8562 0.3415

Improved DAES2 28.85 0.8594 0.3221

Improved DAES1 + HG 29.52 0.8710 0.3082

Improved DAES2 + HG 29.36 0.8781 0.3182

Improved CBDNetS1 31.49 0.9055 0.3762

Improved CBDNetS2 31.67 0.9075 0.3826

(a) clean  image (b) Noisy image 

PSNR/SSIM: 26.43/0.84

(c) CDBNet

PSNR/SSIM: 27.81/0.89

(d) Improved CDBNet 

PSNR/SSIM: 28.89/0.91

(a) clean image

Fig. 8 Denoising results of a BSDS500 image generated over the HG noise model + ISP. a Clean image. 
b Noisy image PSNR/SSIM: 26.43/0.84. c CDBNet PSNR/SSIM: 27.81/0.89. d Improved CDBNet PSNR/SSIM: 
28.89/0.91
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similarity. These metrics are then employed as loss functions to improve the training of 
DCNN. This approach aims to enhance the generalization ability of DCNNs for non-
Gaussian noise, improve the recovery of details in denoised images, and reduce the 
generation of artifacts. Additionally, we introduced novel training strategies to address 
the issue of automatically selecting appropriate weight coefficients for each task. These 
measures effectively enhanced the image denoising performance of the original DCNNs. 
Future research will explore the introduction of more reasonable image evaluation met-
rics, applying the MTL framework to new network architectures, such as non-reference 
image quality evaluation metrics and denoising networks based on Transformer. We will 
also consider integrating these metrics with self-supervised denoising methods for noisy 
images to reduce dependence on noise-free training data.
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