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Abstract 

This paper presents an analysis of the non-linear vibrations of beams, which play a cru-
cial role in various industrial and construction structures. Understanding the transverse 
vibrations of beams and accurately determining their frequency response is essential 
for achieving optimal design and structural performance. The novelty of this study 
lies in conducting a transverse non-linear vibration analysis of a three-dimensional 
beam while considering the effect of mid-plane elongation. By incorporating this 
aspect into the analysis, the study aims to provide deeper insights into the dynamic 
behavior of beams subjected to non-linear effects. A multiple-time scale approach 
has been adopted to conduct this research. To verify the accuracy of the method 
as well as the accuracy of the outcomes gained from this method, a contrast has been 
made with the 4th-order Runge-Kutta technique, which indicates that the results 
obtained are acceptable. The frequency response of the beam indicates the presence 
of a phenomenon of splitting into two non-linear branches during the three-dimen-
sional vibrations of the beam, as well as a hardening state in the frequency response 
as a result of stretching the middle plane of the beam. Furthermore, a parametric study 
was conducted in which different parameters were examined to determine the start-
ing point of non-linear bifurcation. As a result, the damping coefficient and resonance 
deviation parameter are two factors that affect the preference for critical bifurca-
tion over safe bifurcation. Furthermore, the stretching of the middle plane results 
in a higher non-linear term coefficient in the vibration equations of the beam, which 
increases the oscillation frequency of the beam.

Keywords:  Non-linear vibration, Frequency response, Analytical study, Bifurcation 
phenomenon

Introduction
Non-linear beam vibration modeling helps in the design and analysis of mechanical 
structures subjected to dynamic loads. This includes applications in aerospace, auto-
motive, and civil engineering, where accurate prediction of structural responses under 
varying conditions is crucial for ensuring safety and performance [1, 2]. In both industry 
and construction, beams are one of the most important structural elements. In addi-
tion to applications in micro- and nano-scale structures, this structural member can also 
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be used in macro-scale structures, such as airplane wings, flexible satellites, and bridge 
spans [3–5]. It is, therefore, possible to model and analyze many members of the struc-
ture as beams. To achieve a suitable design in beam-shaped members, it is particularly 
important to understand how the beam vibrates in transverse modes and to determine 
its natural frequencies. It is more evident that fatigue of the beam’s constituent materi-
als and its overall structural failure occurs in large-range vibrations, where effects raised 
around the natural frequency play an even greater role [6–10]. As a result, the non-linear 
effects in the equations governing beam vibrations are of greater importance [11].

Non-linear terms in vibration equations can be derived from geometrical, inertial, 
or material sources [12]. The stretching of the middle plane and the presence of large 
curvatures can result in geometric non-linearity. Material non-linearity is a result of a 
non-linear relationship between stress and strain in the beam material. Additionally, 
asymmetrically distributed and concentrated masses contribute to the non-linearity of 
inertia. In some studies, the vibration behavior of mechanical systems has been mod-
eled using multi-degree-of-freedom models [13–17] or continuous media theory [18, 19]. 
Based on Euler-Bernoulli’s theory, it is assumed that beam cross-sections remain perpen-
dicular to the main axis during deformation [20]. According to this theory, transverse ver-
tical strains and shear deformations are not taken into account. A study conducted by 
Abohamer et al. [21] delves into the dynamic analysis of a novel three-degree-of-freedom 
mechanism comprising two interconnected segments. The system is subject to external 
harmonic forces to induce motion. The dynamical system’s stability and vibration, as 
explored by Abohamer et al. [22], have been rigorously modeled. The homotopy analysis 
method was used by Javidi et  al. [23] to investigate the non-linear behavior of a beam 
under axial load and to obtain a suitable expression to express the frequency of such non-
linear behavior. This method was applied by Sediqi et al. [24] to analyze beam vibrations 
with non-linear damping, and acceptable results were obtained. Liu et  al. have investi-
gated the non-linear forced vibrations of functionally graded three-phase composite 
cylindrical shells [25]. Zheng et al. [26] studies focus on examining how rotating compos-
ite blades chaotically respond to vibrations, specifically looking at resonant responses and 
the occurrence of double-parameter multi-pulse vibrations. Liu et  al. [27] investigated 
three specific phenomena in the context of a large deployable space antenna experiencing 
thermal load and internal resonance at a 1:3 ratio. The three phenomena being studied 
are non-linear vibrations, Andronov-Hopf bifurcations, and Pomeau-Manneville inter-
mittent chaos. This research is the first of its kind to explore these aspects of the LDSA 
under these specific conditions. Liu et  al. [28] studied the non-linear breathing vibra-
tions of an eccentric rotating composite laminated circular cylindrical shell subjected to 
lateral and temperature excitations. The governing equations of motion are established 
based on Donnell thin shear deformation theory, von Karman-type non-linear relation, 
and Hamilton’s principle. Mejia-Nava et al. [29] investigated the conditions of creating a 
non-linear bifurcation in cantilever beams through analytical analysis. Using the multiple 
time scale method, Ding et al. [30] considered the non-linear vibrations of a supported 
beam with asymmetric elastic supports, taking into account the effects of shear defor-
mation and rotational inertia. Akkoca et al. [31] modeled the equations for a beam and 
took into account the effect of elongation in the middle plane. The frequency response 
of the device was then studied using the multiple time scale method in two modes, 
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primary and secondary resonance. Lewandowski [32] demonstrates a method for analyz-
ing steady-state vibrations of geometrically non-linear systems utilizing a harmonic bal-
ance approach with an exponential version. An analysis of the method and the numerical 
procedure corresponding to it is provided in detail. Geometric non-linearity is described 
through the von Karman theory. According to the first-order shear deformation theory, 
Sohani et al. [33] present an analytical procedure for forecasting the non-linear natural 
frequencies of beams. It is assumed by the non-linear kinematics assumptions that the 
transverse deflection and mid-plane stretching, which, utilizing von Kármán connec-
tions, are defined, will exhibit moderately large deformations. Hooke’s law is utilized as 
the constitutive equation because the strains are small. Hamilton’s principle is utilized to 
derive coupled non-linear longitudinal-transverse motion equations. In the results, the 
axial and transverse amplitudes of vibrations have a significant effect on the non-linear 
frequencies. Zamani et al. conducted an examination of large-amplitude free vibrations 
of simply supported beams [34] utilizing the method of finite elements. According to the 
Rayleigh-Ritz method, they presented an analytical expression.

Numerous investigations in the realm of beam vibration analysis from a non-linear 
perspective primarily focus on the inclusion of the third-order non-linear term while 
disregarding the influence of higher-order terms, subsequently resolving the issue 
through analytical methods [35–37]. A comprehensive review of existing literature 
underscores a notable gap in the exploration of non-linear beam vibrations under par-
ametric excitation. This article seeks to address this gap by first establishing the gov-
erning equations for the non-linear vibrations of a three-dimensional Euler-Bernoulli 
beam subjected to parametric excitations and midplane elongation. Subsequently, the 
force response, as well as the beam’s frequency response, are ascertained utilizing the 
multiple time scale method. A detailed examination of the beam’s frequency response 
is undertaken to elucidate the occurrences of supercritical pitchfork bifurcation and 
continuous or safe bifurcations. Various design parameters are scrutinized to assess 
their influence on this significant non-linear phenomenon.

Equations of motion

The geometric model of the clamped-clamped beam and coordinate system are 
shown in Fig. 1. Partial differential equations controlling the Euler-Bernoulli beam’s 
transverse vibrations, taking into account the variable axial force along the length of 
the beam, are obtained as follows [38].

Fig. 1  Geometric of the clamped-clamped Euler-Bernoulli beam
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In Eq. (1), V(x,t) and W(x,t) are the transverse deformation of the beam in two directions 
perpendicular to the longitudinal axis of the beam. I is the moment of cross-sectional of 
inertia, m is the mass per unit length, E is the modulus of elasticity, T is the axial force along 
the length of the beam, t is time, x is displacement, and (px, py, pz) are forces components 
acting on the beam. In the derivation of these equations, it is assumed that transverse vibra-
tions are carried out slowly; that is, the speed of beam oscillations is low. Also, dynamic 
stimulation is applied slowly in the upper support. Therefore, the longitudinal inertia term 
is omitted in these equations.

Galerkin technique is utilized to convert partial differential equations into ordinary dif-
ferential equations. For this purpose, the hypothesis solution of Eq. (1) is considered as

In line with using the Galerkin technique for the present problem, in Eq. (2), �1(x) and 
�2(x) are assumed as one of the linear modes of beam vibrations in its transverse direc-
tions. Therefore, v(t) and w(t) are the time-dependent amplitudes of beam vibrations. The 
boundary conditions for the beam in Fig. 1 are as follows:

In the above equations, s0 and f(t) are, respectively, the initial static displacement and the 
dynamic displacement applied to the left support of the beam. According to the defined 
boundary conditions, at first, the upper support of the beam is under initial static displace-
ment. Then, during vibrations, stimulation is applied to it in the form of dynamic displace-
ment through the upper support. From Eq. (2a), an expression can be obtained to express 
the axial force. By performing mathematical operations, the axial force is obtained by ignor-
ing its changes along the length of the beam and by ignoring volume forces and other exter-
nal forces, as follows:
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As can be seen in Eq. (3), the obtained axial force is only a function of time. In the con-
tinuation of using the Galerkin method, it is assumed that [39, 40]:

By inserting Eq. (3) into Eq. (1), the following equation can be written:

By using Eq. (4), the boundary conditions are defined for the beam, and by applying the 
Galerkin technique to the latter equations, the following system of equations is achieved. 
The weight function used in the Galerkin technique is the same as the first linear mode 
of the clamped-clamped beam.

The Eq. (6) is the characteristic equation of beam vibrations. The coefficients intro-
duced in Eq. (6) are given in the appendix. In the following, the solution of this system of 
equations will be discussed. The basic conditions for solving this system of equations are 
considered as zero initial conditions.

Methods
While numerical solution and finite element methods have seen significant develop-
ment across various engineering disciplines [41–45], the provision of analytical methods 
remains crucial for addressing non-linear equations and comprehensively understand-
ing system behavior. The multiple time scale method [46–48], also known as multiscale 
analysis or hierarchical modeling, is a technique commonly employed in dynamical sys-
tems and mathematical modeling to analyze systems with weakly non-linear behavior. 
In our study, we utilized the multiple time scale method to address the complex interac-
tions and dynamics observed in the non-linear vibration of the beam. The system of Eq. 
(6) is solved utilizing the multiple time scale technique. According to this method, these 
equations are rewritten as follows [49]:

In Eq. (7), ε is a small parameter. According to the multiple time scale method, the 
answer is considered as Eq. (8):
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In this equation, T0=t and T1=εt represent fast and slow time scales. Next, the lin-
ear damping term is added to Eq. (7), and then Eq. (8) is inserted into Eq. (7). After 
that, by adjusting the obtained equations according to the power of the small param-
eter ε on both sides of the equations, in such a way that equal coefficients ε are placed 
on both sides of the equation, the collection of linear differential equations that fol-
lows is gained:

In Eq. (9), μ is the linear damping coefficient. As can be seen, the solutions of Eq. (9) 
are interdependent. The solution of the first device is obtained in the form of Eq. (10):

The parametric excitation, which is applied in the form of displacement at the end 
of the beam in Fig. 1, is expressed by Eq. (11):

In Eq. (10), K is the beam support’s dynamic displacement range, as well as Ω is 
the excitation frequency. By defining the resonance deviation parameter as below, it 
is possible to check the force response of the system in the sub-harmonic mode [50]. 
Assuming that the external excitation has primary resonances, the excitation fre-
quency is assumed to be:

in which σ is the detuning parameter. By inserting Eq. (10) into Eq. (9), to prevent the 
occurrence of secular terms in the solution of the problem, the coefficient eiω0T0 should 
be set to zero, as a result:
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ẅ1(T0,T1)+ ω2
0w1(T0,T1) = δp(t)w0(T0,T1) + αw0(T0,T1)v0(T0,T1)

2

+2
∂2w0(T0,T1)

∂T0∂T1

+ µ
∂w0(T0,T1)

∂T0

+ αw0(T0,T1)
3

(10)

{

v0(T0,T1) = A1(T1)e
iω0T0 + A1(T1)e

−iω0T0

w0(T0,T1) = A2(T1)e
iω0T0 + A2(T1)e

−iω0T0

(11)f (t) =
1

2
K
(

ei�T0 + e−i�T0

)

� = 2ω0 + εσ



Page 7 of 16Liao ﻿Journal of Engineering and Applied Science           (2024) 71:85 	

It is assumed that

where ai and βi, i = 1 and 2 are unknown constants. By incorporating these equations 
into Eq. (12), there are

By performing a series of mathematical operations on Eq. (14), the following equa-
tion is obtained:

The parameters are defined as follows:

According to the examination of vibrations around the stable point of motion, such 
as the center points in the phase plane diagrams, Eq. (17) is written:
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The above equations state that, near the stable points of the vibrating system, the 
oscillations’ amplitude and phase will not change. According to the mentioned points, 
the system’s frequency response equations can be gained as follows:

Equation (18) has two obvious and non-obvious solutions. The obvious solution of 
this equation is a1=a2=0. From solving the system of Eq. (18), it can be concluded that 
a1=a2. Therefore, according to this result, the frequency response and the amplitude, 
depending on the time of movement, in the sub-harmonic mode for the non-trivial solu-
tion, will be obtained in the following implicit form:

on the other hand

In Eq. (20), β0 is the constant of integration. As a result, according to Eq. (8), the first 
approximation for the time response is calculated as follows:

For vibrations in the z direction, a similar expression will be obtained according to the 
result.

Results and discussion
The present problem has been solved numerically to demonstrate the accuracy and 
correctness of the analytical solution made in this study. Figure 2 illustrates the time-
dependent amplitudes of beam vibrations in one of the transverse directions. The ana-
lytical results obtained from the method of multiple time scales are in agreement with 
those obtained from the four-order Runge–Kutta method, as seen in the comparison 
figure.
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Figure 3 compares the time trace of deflection obtained through our present method 
with the deflection response of the beam’s center as determined by Barari et al. [51]. In 
this case, only transverse vibrations are considered and the other component of out-of-
plane vibrations is neglected. A notable observation from these figures is the congru-
ent deflection behavior exhibited by the center of the beam over an extended period, 

Fig. 2  Comparison of the analytical solution of multiple time scales and the fourth-order numerical solution 
Runge-Kutta

Fig. 3  A comparison of the time history of the central deflection curve of the beam
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aligning with semi-analytical approaches documented in the literature. Furthermore, a 
parametric study has been conducted to scrutinize the time-marching response of the 
central deflection of the beam.

For different values of the resonance deviation parameter, Fig.  4 shows the force 
response of beam vibrations. According to this figure, the phenomenon of non-linear 
bifurcation may occur, both safely and catastrophic bifurcations, accompanied by the 
phenomenon of mutation. In the case of the parameter of deviation from negative reso-
nance, the obvious answer will be transferred to the non-obvious answer without the 
occurrence of mutation, whereas when the parameter becomes positive, the transition 
will be accompanied by mutation. It can be seen that the bifurcation starting point for 
σ = 0, σ = 0.1, and σ = 0.5 occurs in the force range of K = 0.98, K = 1.95, and K = 0.2 
respectively. Therefore, with the increase of the detuning parameter and the distance of 
the frequency of the excitation force from the natural frequency of the structure, the 
domain of the bifurcation phenomenon increases. Based on the analysis conducted by 
Nayfeh [52], stable and unstable parts of the answers have been separated. The force 
response of beam vibrations is illustrated in Fig. 5 as a function of the non-linear term 
coefficient. Using this figure, it can be seen that the starting point of bifurcation does not 
change when the coefficient of the non-linear term is changed. The system’s frequency 
response is shown in Fig. 6, which is obtained by solving Eq. (19). Based on the graph 
depicted in this figure, it can be seen that the graph is inclined to the right. This indicates 
that the hardening type has a non-linear effect on the beam equations. Conversely, the 

Fig. 4  The influence of resonance deviation parameter on force response curve
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phenomenon of consecutive non-linear bifurcations is evident. The starting points of the 
non-linear bifurcation are specified in this figure.

In particular, when considering structures with doubly-clamped ends, the phenom-
enon of hardening resonance can be attributed to the tension induced during the 

Fig. 5  The force response curve’s impact from the non-linear term coefficient

Fig. 6  Frequency response of beam vibrations
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oscillatory transverse motion of the beam. This tension, stemming from the dynamic 
interaction between the beam’s motion and its clamped supports, contributes signifi-
cantly to the observed hardening behavior in the system’s resonance response. As dis-
played in Fig. 7, the force response diagram for several different values of the linear 

Fig. 7  Non-linear bifurcation diagram for σ = 0.1

Fig. 8  Excitation coefficient’s impact on frequency response
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damping coefficient is shown at the point σ = 0.1. As can be displayed in this figure, 
with the rise of the damping coefficient, the phenomenon of critical bifurcation tends 
to be a safe bifurcation without mutation phenomenon. Also, by raising the value of 
the linear damping coefficient, the starting point of bifurcation moves away from the 
coordinate origin. Figure 8 examines the effect of the parametric excitation coefficient 
on the frequency response of the system. As it is known, this parameter affects the 
starting point of non-linear bifurcation.

According to Fig. 9, increasing the non-linear coefficient results in the graph becom-
ing more skewed to the right, which is to say, it becomes more hardening. The results 
suggest that non-linear effects exhibit a hardening behavior of the system’s equivalent 
spring. Additionally, as these effects become more pronounced, there is a discernible 
increase in the degree of amplitude distortion towards the right. Given that the natural 
frequency is one of the pivotal factors influencing the dynamics of forced vibrations in 
structures subjected to parametric excitation, its value was thoroughly examined in this 
study. Figure 10 illustrates the outcomes, indicating a substantial impact of this param-
eter on the frequency curve of the beam. Specifically, it induces a softening behavior in 
the stiff spring, as evidenced by the observed trends. Unlike the parametric excitation 
coefficient, this parameter reduces the hardening effect and also reduces the starting 
point of the non-linear bifurcation, as opposed to the non-linear stiffness coefficient.

Conclusions
In conclusion, this study contributes to the field of structural dynamics by presenting a 
comprehensive analysis of the non-linear vibrations of beams. By considering the effect 
of mid-plane elongation in the analysis, the study offers valuable insights into the intricate 

Fig. 9  Effect of non-linear term coefficients on frequency response
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dynamics of three-dimensional beams. The incorporation of this aspect enhances the 
accuracy and relevance of the analysis, thereby advancing our understanding of beam 
vibrations and their implications for structural design. Moving forward, the study’s con-
clusions can serve as a foundation for further research in this area and inform the devel-
opment of more robust design methodologies for industrial and construction structures.

Incorporating the elongation of the beam’s middle plane led to the emergence of 
non-linear terms in the equations, contributing to a hardening state in the frequency 
response diagram. Notably, an increase in the coefficient of these non-linear terms 
was observed to reduce the fluctuation period, elucidating the intricate dynamics of 
the system. Analysis of the force response graphs revealed the presence of non-linear 
bifurcations, signifying critical transitions in the system’s behavior. Notably, adjust-
ments to the parameters of deviation from resonance and damping coefficient could 
transform critical bifurcations into safe ones, highlighting the potential for control 
and mitigation strategies. Furthermore, an examination of the frequency response 
demonstrated that increasing the linear frequency led to a decrease in non-linear 
stiffness and displacement at the starting points of non-linear bifurcations. This 
insight into the interplay between linear and non-linear dynamics sheds light on the 
system’s response to varying excitation conditions. Moreover, variations in excitation 
amplitude were found to induce changes in the starting points of non-linear bifurca-
tions, underscoring the sensitivity of the system to external influences.

Overall, the findings underscore the complex interplay between parametric exci-
tation, non-linear dynamics, and damping effects in beam vibrations. These insights 
have implications for the design and control of structures subjected to dynamic load-
ing conditions, offering avenues for optimizing performance and mitigating undesir-
able responses.

Fig. 10  The effect of the linear natural frequency of the system on the frequency response
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