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Abstract 

Route finding is an everyday challenge for urban residents. While many route planner 
applications exist, they cannot find suitable routes based on user preferences. Accord-
ing to user preferences, routing in a multimode urban transportation network can be 
considered a multiobjective optimization problem. Different objectives and modes 
for transportation, along with many routes as decision elements, give rise to the com-
plexity of the problem. This study uses an elitism multiobjective evolutionary algorithm 
and the Pareto front concept to solve the problem. The data of a simulated multimode 
network consisting of 150 vertexes and 2600 edges are used to test and evaluate 
the proposed method. Four transport modes are considered: the metro, bus, taxi, 
and walking. Also, three minimization objective functions are considered: expense, 
discomfort, and time. The results show the competence of the algorithm in solving 
such a complex problem in a short run time. The optimal setting for the algorithm 
parameters is found by considering the algorithm run time, diversity of solutions, 
and convergence trend by running sensitivity analyses. A repeatability test is applied 
using the optimal setting of the algorithm, which shows a high level of repeatability. 
While NSGA-II (Non-dominated Sorting Genetic Algorithm II) may be a well-established 
algorithm in the literature, its application in multiobjective route finding in multimode 
transport networks is unique and novel. The outcomes of the proposed method are 
compared with existing methods in the literature, proving the better performance 
of the NSGA-II algorithm.

Keywords:  Heuristics, Genetic algorithms, Multiple objective programming, Decision 
support systems

Introduction
Route planning is one of the daily decisions of every citizen. The parameters and pri-
orities each person considers when selecting their path can vary based on their char-
acteristics: age, occupation, financial status, education level, etc. Individuals’ priorities 
and objectives would differ, but these objectives may be limited to minimizing the route 
cost, discomfort, time, and distance. Available travel modes in urban areas have differ-
ent characteristics. The three significant modes in the public transport system of met-
ropolitans usually are the metro, taxi, and bus. Usually, people assume the metro as a 
fast mode, the taxi as a comfortable mode, and the bus as a low-cost mode. Multiobjec-
tive routing in the multimode network means finding a route between two points using 
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different modes while optimizing desired objectives simultaneously. The availability of 
other modes and different individual concerns make planning a complex and multiob-
jective problem.

The routing problem is one of the classic problems in network analysis and GIS 
domains, which has been the subject of much research [1–4]. Single objective meth-
ods have already been used to solve problems like Travel Salesman Problem (TSP) and 
single-mode and multi-mode routing. Multiobjective practices can incorporate different 
objectives and preferences of the users and are consequently more acceptable. Multiob-
jective routing in multimode networks means searching among a large space of routes 
and finding a group that simultaneously optimizes different objectives. Deterministic 
methods cannot be used for such a problem because of the low speed of these methods 
and the complexity of the problem-solving space. On the contrary, meta-heuristic strate-
gies can overcome such complexities. These methods usually offer a group of optimal 
solutions, called Pareto Front, which are not superior to (completely dominated by) each 
other.

This study develops an Elitism MultiObjective Evolutionary (EMOE) algorithm to 
solve a multiobjective routing problem in a multimode public transport network. The 
routing objectives are to minimize trip expense, time, and discomfort. The modes of 
the metro, bus, and taxi are considered, and the walking mode is used for exchanging 
between the modes. The proposed algorithm is implemented and evaluated using the 
simulated data of a large network (150 vertexes and 2600 edges). While NSGA-II (Non-
dominated Sorting Genetic Algorithm II) may be a well-established algorithm in the lit-
erature, its application in multiobjective route finding in multimode transport networks 
is unique and novel. In the next section, the existing methods and research are reviewed. 
In Methods/experimental section, the algorithm’s principal elements and structure are 
introduced. Results and discussion section describes the implementation of the pro-
posed method for solving the problem. Finally, the main achievements of the study, 
along with conclusions and recommendations, are provided in Conclusions section.

Review of related research
In general, multiobjective decision-making algorithms are divided into three cat-
egories: without weighting, weighting before solving, and weighting after solving. In 
without weighting methods, no preference among factors is declared by the decision-
maker. Instead, an ideal state is defined, and the criterion for selecting the options is the 
closeness to this perfect state [5]. In weighting before methods, the objectives are first 
weighted by the user and then combined to form a single objective [6]. In contrast, a col-
lection of optimal solutions is obtained first in weighting after solving methods. Then, 
using the preferences declared by the user, the final solution can be selected [7]. There-
fore, the third category can be more user-friendly by providing desirable and competi-
tive choices for each end user.

Most research on shortest-path finding in multimode networks is based on a single 
objective and limited transportation networks [8, 9]. Batista et  al. offered a heuristic 
“Path Composition Approach” method that finds the suitable path in a two-mode net-
work based on user preferences. The basis of this method is dividing the whole way into 
some sub-paths that are recombined to make the final paths. In fact, in this method, 
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the idea that “each part of the optimal path is itself an optimal path” is used [10]. Mod-
esty et al. presented a framework for the problem of multiobjective routes in multimode 
transport networks. In this method, all possible routes are searched, and eventually, the 
routes that optimize each respective objective are selected and offered to the user [11]. 
Golnarkar et  al. presented a deterministic method based on fuzzy weighting for the 
weight of multimode network edges implemented on a small and single objective simu-
lated network [12]. Most deterministic algorithms for solving multiobjective problems 
combine objectives into one objective (weighting before solving) and produce a single 
optimal route in each run. Therefore, having an optimal solution group (suggestion of 
better routes) is not feasible in a single objective algorithm run.

Evolutionary algorithms are implemented and evaluated for solving single objective 
optimization problems from different viewpoints. In comparison, a few researches are 
available on applying evolutionary algorithms for solving multiobjective routing prob-
lems regarding traffic planning, route design, transport, etc. For the first time, in 1997, 
a genetic algorithm was used with constant-length chromosomes to solve the routing 
problem [13]. Jene and Leen studied the usage of a hybrid multiobjective genetic algo-
rithm to minimize expense and maximize traffic flow in a two-mode network. This study 
demonstrates better results for the evolutionary algorithm than the deterministic meth-
ods [14]. Mounely et  al. studied and reported on the adequacy and efficiency of their 
developed evolutionary algorithm for solving multiobjective shortest path problems 
(MSPP) in a GIS environment. The results of their implementation on simulated data 
and actual road network data were better than the Dijkstra algorithm in terms of imple-
mentation time and convergence towards the Pareto solution front [15]. Abbaspour and 
Samadzadegan used a genetic algorithm to solve the shortest path problem in a two-
mode transport network [16]. In addition to this research, some applied systems are 
developed for single objective multi-mode route planning [17, 18].

The main limitation of many of these researches in the existing literature is their 
inefficiency when dealing with the data of real networks. The multimode nature of the 
network and the need for multiobjective routing dramatically increase the problem’s 
computational complexity. In dealing with such complex issues, meta-heuristic meth-
ods are usually more promising than deterministic ones because they can provide a set 
of optimal solutions instead of one single solution. Therefore, the proposed method in 
this study can overcome the limitations of traditional and deterministic route-finding 
algorithms.

Methods/experimental
Main concepts and definitions of the EMOE algorithm

The natural evolution process inspires evolutionary algorithms in engineering. They are 
used for solving optimization problems with large search space. The evolutionary algo-
rithm starts with a random initial population of solutions and continues with generating 
new and better answers from the previous ones using some operators. In the elitism evo-
lutionary algorithm, the superior solutions from the population of each generation are 
preserved and transferred to the next generation as the elite population.
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In multiobjective problems, users usually prefer a group of solutions, among which 
they can select according to their preferences. Using algorithms like EMOEA (EMOE 
Algorithm), the final result is a group of optimum solutions such that none is entirely 
superior to (dominated by) any other, considering all objectives. In Fig.  1, the main 
stages of the EMOE algorithm are presented.

In EMOEA, like other evolutionary algorithms, each generation consists of a solutions 
group, and each solution is a chromosome (can be imagined as a vector). Each chromo-
some consists of independent units called genes, which are the components or parts of 
a solution. The algorithm procedure consists of initialization, main loop (operators), and 
determining non-dominated solutions. Initialization is the assignment of initial values to 
the parameters of the algorithm, which are the number of chromosomes in each genera-
tion, the algorithm’s break conditions, and the rates for crossover and mutation opera-
tions. Each generation contains some solutions evolved from the previous generation by 
the operators [19].

When a new generation is created, the break conditions should be tested. A typical 
break condition is to reach a pre-defined maximum number of iterations for the main 
loop. The second condition for stopping the main algorithm loop can specify the mini-
mum difference between the best solutions competencies in two consecutive generations 
[7]. Reaching this minimum difference can indicate that the algorithm cannot improve 
the solutions further.

Finally, the concepts of domination, non-dominated solutions, and the Pareto front 
are used to determine the best solutions. According to the definition, solution X1 

Fig. 1  Pseudo code of elitism multiobjective evolutionary algorithm
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dominates solution X2 if and only if X1 is not worse than X2 in all objectives and X1 
is better than X2 at least in one objective function [6]. In Fig. 2, the area of solutions 
dominated by a solution X1 is shown as a rectangle in the two-dimensional space of 
minimization objective functions F1 and F2. A solution is a member of the first level 
of the Pareto front if and only if any other solution does not dominate it. In the Pareto 
front, the solutions are placed in some solution fronts according to their objective 
values. The solutions categorized in each front are not dominated by each other. 
However, the solutions of each front are dominated by higher front solutions. They 
also dominate the solutions of lower fronts.

As already mentioned, at each loop of the second stage of the algorithm, a new gen-
eration is created by applying the operators on the previous generation, and at the 
end of the loop, break conditions are tested. The procedures related to these opera-
tors are described in the following.

Each solution has a specified value for each objective function. Competence-deter-
mination operator compares all solutions’ objective values and determines the Pareto 
Fronts’ first front using the earlier definition. The rest of the solutions are then com-
pared to select the second front, and it continues until determining all fronts. After 
finishing this process, each solution’s front level is determined [6].

The selection operator selects the parent solutions for the production of new solu-
tions, based on pre-specified values of crossover rate. The parents are selected prob-
abilistically with probabilities proportional to the Pareto level of the solutions. The 
crossover operator combines the two parent solutions, which creates two offspring 
solutions as members of the new generation [19].

After crossover, the number of resulting solutions exceeds the specified number of 
generation solutions. To reduce their number, an elitism operator is used. The elitism 
operator ranks the available solutions according to two factors of competence (Pareto 
front number) and swarm distance for selecting the required solutions based on this 
ranking. The swarm distance of each solution means the density of other solutions 
situated in its vicinity within the objectives space [19].

Fig. 2  Dominated solution group for two objective functions
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The mutation operator selects the solutions randomly based on a predefined muta-
tion rate and then chooses a gene of that solution randomly. Another gene replaces the 
selected gene. Fig. 3 shows the sequence of operators in the algorithm’s main loop.

Using EMOE algorithm to solve the multimode route planning problem

This study aims to use the EMOE algorithm to find optimal routes that satisfy three 
objectives simultaneously in a multimode transport network. The route consists of 
a sequence of vertexes (nodes) that starts with a specified origin vertex and ends with 
a destination vertex without crossing any vertex more than once. A multimode trans-
port network comprises different modes such as cars, buses, and walking. Similarly, a 
multimode route can be defined as a route comprising some parts covered by various 
modes. The network can be presented as a graph in which more than one edge might 
exist between two vertexes related to different modes. For any existing path between two 
vertexes with a specified mode, an edge is assumed with a specified code for that mode 
and three weight values for the three objectives. The walking mode is assumed in each 
vertex to exchange between the modes. Figure 4 illustrates a small multimode network 
with five vertexes and 14 edges for three metro, taxi, and bus modes.

The evolutionary algorithm runs in four main steps. Firstly, it is required to encode the 
problem into the algorithm’s space which defines the problem by chromosomes (made 
of genes) and objective functions. The second step is initializing the algorithm, which 
comprises two steps of valuing the evolutionary parameters and generating a random 

Fig. 3  Sequence of operators in the main loop of the EMOE algorithm

Fig. 4  An illustration of a multimode network
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generation as generation zero. Thirdly, the main loop of the algorithm starts to create better 
generations, and it repeats until the breaking conditions are met. Finally, the outcomes of 
the algorithm must be decoded from the chromosomes to the routes.

The main loop starts with a generation of chromosomes and aims at improving it through 
its operators. The first operator of the main loop selects parents for crossover and mutation 
operators. The second operator combines parents to generate new chromosomes. The third 
operator mutates parents to generate new chromosomes. Both crossover and mutation aim 
at expanding the search space and adding more diversity to the pool of chromosomes. The 
fourth step selects and removes some of the chromosomes to decrease the population to 
the initial size. Finally, the breaking conditions are verified to decide on repeating the loop 
or stopping it.

Each chromosome in the evolutionary algorithm is a solution comprised of genes. It 
defines a route as a sequence of vertexes between two specified origin and destination ver-
texes. Considering these, the number of each vertex can be regarded as a gene, and a route, 
which is the sequence of vertexes, can be regarded as a chromosome. The length of each 
route or chromosome is different and limited by the total number of network vertexes. In a 
multimode route, to define the route thoroughly, we need to declare both the vertex num-
bers and the mode of the edge between any consecutive vertexes.

Therefore, the odd genes in each chromosome may be assigned to the index of vertexes 
and even genes to the modes used between two consecutive vertexes. In Fig. 5, two differ-
ent routes or chromosomes are specified for travel between vertexes 1 and 3 of Fig. 4. Num-
bers of modes are presented in a bold quadrangle and located in even genes.

The competence of each solution is calculated according to its front. To determine the 
competence of each chromosome, its front level should be determined. First, the values 
of all three objective functions related to discomfort, time, and expense are calculated. 
According to the concept of the Pareto front, the solution front related to each route is 
determined [19]. Figure 6 presents the method for defining the domination between two 
solutions, including three objective functions. In this figure, X1 (E1, C1, T1) denotes route 
X1, and E1, C1, and T1 represent values of the three objective functions for route X1.

After determining the competence of each solution, it is time to select existing solution 
chromosomes for crossover and mutation operations. According to the “roulette wheel’ 
method of selection operator, the area of a circle is divided among the solutions, propor-
tional to their competence value. In single objective problems, the width of the section allo-
cated to each solution is proportional to its objective function. However, in multiobjective 
problems, the width of this section is proportional to the solution competence, which is 
the level of its front. In the selection stage, each one of the routes is selected to be a parent 
probabilistically, with probabilities proportional to its competence [7, 19].

The crossover operator creates two new child chromosomes by combining parts 
from both parent chromosomes. Each chromosome is supposed to be a complete route 
between the origin and destination vertexes. Therefore, for connecting some parts of the 

Fig. 5  Two chromosomes with different lengths between vertexes 1 and 3



Page 8 of 16Faroqi ﻿Journal of Engineering and Applied Science           (2024) 71:81 

two parent routes, their common vertexes or genes along the two routes are needed to 
be found and used. At first, the first similar vertex (excluding origin and destination) 
between the two routes is found. Any of the two routes is split at this vertex. Then, the 
parts between the two routes are switched to create two new routes between the origin 
and destination. At the crossover stage, the number of newly created solutions equals 
the product of the crossover rate and the number of generation population. Figure  7 
shows an example of a crossover operator for the two routes of Fig. 5.

In elitism, two factors of competence and swarm distance are considered. Accord-
ing to Outcomes section, the competence of each route is proportional to the level of 
its front. A route’s swarm distance equals the density of solutions around it within a 
three-dimensional space of objective functions. The solutions are ranked according to 
their competence. For organizing two chromosomes with equal competence, a chro-
mosome with a lower swarm distance is prioritized; this means that more attention 
will be paid to the less-explored area of the search space. After ranking all the routes 
using these two factors, the routes are selected in order from the top of the list up to 
the number of the initial population count.

The mutation operator randomly selects one route and one of its vertexes and then 
replaces the selected vertex with a randomly found new vertex. The replacement is 

Fig. 6  Determination of X2 solution domination over X1 with three objective functions

Fig. 7  Crossover operator
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subject to the availability of edges between the new vertex and vertexes before and 
after the selected vertex in the route. After the completion of the mutation operation, 
a new generation of routes is created. The algorithm’s main loop will be stopped or 
continued by examining the break conditions explained earlier.

Results and discussion
The proposed methodology is implemented on simulated public transport network data 
from Tehran, Iran. In the following, the main stages of implementation, along with the 
results, are explained, and different algorithm implementations are evaluated.

Data collection

The data required to implement the algorithm includes the map of the transporta-
tion network and the values of the objective functions assigned to the respective net-
work. The case study is located in the central district of Tehran, Iran, as a rectangle 
with coordinates of {(35.68404,51.34352), (35.68571,51.45682), (35.75595,51.45613), 
(35.75651,51.34009)}: This area covers the central Bazar of Tehran and includes many 
educational buildings and organizations. The final simulated network consists of 150 
vertexes (intersections of roads) and covers approximately an area of 80 square kilom-
eters: Each vertex is a station where edges of different modes may enter or exit there/
from. If more than one mode (edges) converge to a certain vertex (station), the inter-
change between the modes is assumed to take place through a walking mode (edge); the 
expense of walking mode is zero, and a constant value of 3 min is considered for the 
time value of a walking edge. The network contains 120 edges for the taxi mode, 45 for 
the bus mode, 25 for the metro mode, and 70 for walking between different modes. The 
value of the expense objective function for the taxi mode is proportional to the traveled 
distance: The traveled distance is in km units, and the expense for each trip leg of the 
taxi mode is 75 (money) units per km. For the metro and bus modes, this value is pro-
portional to the number of stations in that mode and edge; for the metro, the expense is 
35 units per station; for the bus, the expense is 20 units per station. The value of the time 
objective is calculated based on the distance between vertexes and the average speed 
assumed for that mode: According to the traffic congestions in the study area, the aver-
age speed for the taxi is considered as 15 km/hour, for bus 10 km/hour, and metro 20 
km/hour. The objective function of route discomfort assumes a predetermined value for 
each type of mode, which is 1 for taxi, 2 for metro, 3 for bus, and 4 for walking; Taxi is 
the most comfortable mode.

Outcomes

Date sets are gathered (in Shapefile format) and preprocessed (converted to CSV for-
mat) by QGIS. The Rstudio environment is the programming environment to implement 
the proposed method: Libraries from “rmoo” package are mainly used. Three 2-dimen-
sional diagrams show the Pareto front in the space of three assumed objective functions 
for each implementation. To implement the algorithm on the simulated network, it is 
required to determine the break conditions and set the initial values of the crossover rate, 
mutation rate, and solutions population number. Initialization values of those param-
eters are selected after running sensitivity analyses. The first break condition is to reach 
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the maximum iteration number of the main loop. Also, the algorithm will stop if the dif-
ference between objective function values of two consecutive generations becomes less 
than 3. The crossover and mutation rates in each generation are set to 0.1, and for other 
parameters, different values are considered in several algorithm implementations.

To analyze the algorithm results, two vertexes with the longest possible distance on the 
network are assumed as the origin and destination, and the algorithm is implemented 
with different parameters of solutions population and iteration numbers. Table 1 sum-
marizes the results for nine algorithm implementations with different parameter values 
for the two vertexes. In general, upon increasing the iterations count and the number 
of the initial solutions population, algorithm run time is increased, more routes are 
found to be at the first front, and the total routes found are increased. Run number 6 
found nine non-dominated solutions in the first front. Run number 8 found 51 routes, 
the maximum number of found solutions, of which five routes were situated at the first 
front. Runs 5 and 9 are stopped based on the second break condition, i.e., the difference 
between objective function values of two consecutive generation routes.

Based on the concept of non-dominated solutions and to illustrate the relationship 
between routes obtained from different implementations, the diagrams related to objec-
tive function values of routes in the first front are presented in Fig. 8; for easier compari-
son of the charts, equal ranges are assumed for all of the horizontal axes (objectives) in 
all graphs: The expense function values are drawn within the range (216,315), time func-
tion values within the range (51, 69), and discomfort function values within the range 
(28, 46). The non-dominance feature of the routes is defined according to Fig. 6 rules and 
is observable in the values of objective functions in Fig. 8. In Fig. 8, each little square rep-
resents a solution in the first front of a run. Numbers above the little squares represent 
the ID of each solution to compare across different objective functions.

Run 6 is the only implementation that includes solutions in the whole range of all three 
objectives and has searched and covered a larger area in the objective function space 
(larger search area). Also, runs 5, 8, and 9 have explored a relatively wide range of spaces. 
In comparison, run 5, having only four routes at the first front, has a better distribution 
in searching the objective functions space. The size of the searched space in objective 
functions space and the variety of the non-dominated solutions provides the user with a 
better condition for selecting amongst solutions and initial parameters.

Table 1  Results of implementations with different solutions population and iteration numbers

No of run Population no Maximum 
iteration 
number

No found 
routes

No of routes 
in 1st front

Run time 
(seconds)

Iteration stop

1 30 50 21 4 5.5 50

2 30 500 18 4 5.8 500

3 30 1000 16 6 6.0 1000

4 60 50 42 3 9.6 50

5 60 500 28 4 9.9 152

6 60 1000 38 9 11.6 1000

7 80 50 48 4 12.8 50

8 80 500 51 5 13.3 500

9 80 1000 50 6 11.9 883
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Table 2 specifies the minimum values found for any objective function for all imple-
mentations. The minimum values for all objective functions are bolded. Also, the 
route number (found solution/chromosome) related to objective values is presented 
in parentheses. Run 6 has found the minimum values in all objective functions. Runs 

Fig. 8  Pareto fronts of all runs presented in two-dimensional space of objective functions (elongated squares 
are two or more overlapped regular squares)
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1, 3, 4, 8, and 9 found minimum values for two objective functions. Runs 2, 5, and 7 
have found a minimum value for just one of the objective functions. Therefore, run 
6 can be assumed as the best implementation due to its extent of search in solutions 
and objective functions space, diversity, and number of routes found in the first front, 
and minimum values found for all objective functions.

The convergence test is used to study the convergence trend of the results obtained 
from the algorithm at each run. The convergence test analyzes the variations of objec-
tive function values over time (increase of iterations). Figure 9 shows the convergence 
diagrams regarding the three objectives for all runs. Each chart considered the varia-
tion of the minimum values related to the respective objective function. To compare the 
convergence trend of different algorithm runs, gradient diagrams and the range of accu-
rate values can be considered. The high gradient of the graph (steeper graph) shows fast 
convergence of the algorithm in finding the solutions with minimum objective function 
values. The convergence diagram of the runs is mostly descending or stepping towards 
the objective functions’ lower values. The gradient of runs 1 and 7 are almost constant in 
all three objective parts. A wider range of objective values in each diagram demonstrates 
better covering of the search space by that run. The best convergence trend in the chart 
related to the time function is related to runs 4, 8, and 6. In the expense objective func-
tion diagram, runs 1, 6, and 9 show the maximum gradient with maximum variation 
range. In the convergence diagram of the discomfort objective function, runs 9, 3, and 6 
show the best convergence trend. Therefore, run number 6 is assumed as a good run in 
the convergence diagram of all three objective functions.

According to the previous sensitivity analyses, run 6 can be chosen as an optimal run. 
It has found more routes in the first front than others. Also, run 6 in Table 2 found the 
minimum values of each objective function compared to others. For the repeatability 
test, run 6 is implemented ten times with the same initial parameters and origin and 
destination points. The result of the repeatability test is shown in Fig. 10. The count of 
routes found at each run is presented on the horizontal axis, and the counts of the runs, 
with that number of routes in the first front, are specified on the vertical axis. The figure 
shows that four iterations found nine routes, and four others found eight courses in the 
first front. The other two runs found 7 and 6 routes. This indicates 80% repeatability for 
the algorithm, meaning that in 80% of the situations, the algorithm finds similar results.

Table 2  Minimum values found for the objective functions in runs

Run NO Min expense(path no) Min time(path no) Min 
discomfort(path 

no)

1 216(5) 58(2) 28(7)

2 216(5) 52(6) 37(2)

3 236(8) 51(4) 28(7)

4 216(5) 51(4) 36(4)

5 247(1,3) 52(6) 28(7)

6 216(5) 51(4) 28(7)

7 236(8) 51(4) 36(4)

8 216(5) 51(4) 36(4)

9 216(5) 58(2) 28(7)
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Fig. 9  Convergence trend of all runs regarding each objective function

Fig. 10  The results of the repeatability test
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For evaluation, the proposed method is compared with the methods developed in 
[20]. And [20] focused on two variations of ant colony optimization (ACO) algorithms, 
multi-pheromone and multi-colony, for solving a similar route finding problem. Follow-
ing [20], two metrics of error ration (ER) for convergency [21, 22] and spacing metric 
(SM) [23, 24] for diversity purposes are used to compare the performance of the algo-
rithms. Table 3 summarizes the evaluation outcomes. NSGA-II has better performance 
in both convergency and diversity metrics than two variations of multiobjective ACO 
algorithms.

Conclusions
Multiobjective routing in multimode networks is a complex problem. This might be due 
to the presence of different modes, various and even incompatible objectives, numer-
ous possible combinations of edges in creating the routes, etc. Using deterministic 
algorithms for solving such complex problems usually results in difficulties such as non-
convergence, long running time, and failure in finding optimal solutions. In this study, 
an elitism multiobjective evolutionary algorithm is used to find the optimum routes, 
which overcome the shortcomings of deterministic algorithms. It has found optimal 
routes within proper and acceptable running time while simultaneously considering 
three objectives: minimizing time, discomfort, and expense. The elitism technique used 
in the offered algorithm leads to the fast convergence of the algorithm, even when using 
different initial parameter values. The outcomes of the proposed method are compared 
with existing methods in the literature, proving the better performance of the NSGA-
II algorithm. While NSGA-II may be a well-established algorithm in the literature, its 
application in multiobjective route finding in multimode transport networks is unique 
and novel.

The proposed method runs a large multimode network. The outcomes present 
the suitability for implementing the proposed heuristic as a core algorithm of the 
trip planner applications. Finding several optimal solutions as algorithm output 
would allow end-users to select routes according to their preferences of objectives. 
The algorithm uses the Pareto front diagrams for presenting the optimal front solu-
tions, resulting in a better understanding of the solutions status by the user. These 
diagrams present the values achieved for all three objective functions in all optimal 
solutions. Using these diagrams, the user can compare the solutions in terms of 
meeting different objectives and select the most appropriate route according to his 
preferences. The use of evolutionary algorithms is a promising approach to solving 
routing problems. Yet, further research is required on adapting this technique in dif-
ferent scenarios of route planning.

Table 3  Evaluation outcomes

Algorithm ER SM

NSGA-II 0.516 0.060

Multi-Pheromone ACO 0.599 0.066

Multi-Colony ACO 0.569 0.064
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Future research could focus on three directions. Firstly, larger datasets could be used 
to evaluate the performance of the proposed methodology. Secondly, the proposed 
method could be further developed to use prior knowledge as input f or a better under-
standing of users’ preferences. Finally, other heuristic algorithms (e.g., particle swarm 
optimization (PSO)) could be studied to solve the routing problem and integrate with 
the NSGA-II algorithm.
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Gene	� The property of each element that makes up the chromosomes.
Mutation Operator	� It maintains the diversity of the population by tweaking the chromosomes.
Objective Function	� A mathematical formulation to quantify how good chromosomes are.
Population	� A set of chromosomes.
Repeatability Test	� A test for examining the reliability of the EMOE algorithm.
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