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Abstract 

The unconfined compressive strength (UCS) of rocks is a crucial factor in geotechni-
cal engineering, assuming a central role in various civil engineering undertakings, 
including tunnel construction, mining operations, and the design of foundations. The 
precision in forecasting UCS holds paramount importance in upholding the secu-
rity and steadfastness of these endeavors. This article introduces a fresh methodol-
ogy for UCS prognostication by amalgamating Gaussian process regression (GPR) 
with two pioneering optimization techniques: sand cat swarm optimization (SCSO) 
and the equilibrium slime mould algorithm (ESMA). Conventional techniques for UCS 
prediction frequently encounter obstacles like gradual convergence and the poten-
tial for becoming ensnared in local minima. In this investigation, GPR is the foun-
dational predictive model due to its adeptness in managing nonlinear associations 
within the dataset. The fusion of GPR with cutting-edge optimizers is envisioned 
to elevate the precision and expeditiousness of UCS prognostications.

An extensive collection of rock samples, each accompanied by UCS measurements, 
is harnessed to assess the suggested methodology. The efficacy of the GPSC and GPES 
models is juxtaposed with the conventional GPR technique. The findings reveal 
that incorporating SCSO and ESMA optimizers into GPR brings about a notewor-
thy enhancement in UCS prediction accuracy and expedites convergence. Notably, 
the GPSC models exhibit exceptional performance, evidenced by an exceptional 
 R2 value of 0.995 and an impressively minimal RMSE value of 1.913. These findings 
emphasize the GPSC model’s potential as an exceedingly auspicious tool for experts 
in the realms of engineering and geology. It presents a sturdy and dependable method 
for UCS prediction, a resource of immense value in augmenting the security and effi-
ciency of civil engineering endeavors.
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Introduction
Background

At the heart of engineering, initiatives lie densifying loose soils, an indispensable 
endeavor that amplifies the mass per unit area for constructions like earth dams and 
highway embankments. Compaction transcends mere strength augmentation; it forti-
fies the soil’s resilience, elevates its load-bearing capability, and steadies embankment 
inclines to mitigate settlement issues [1]. In addition to bolstering strength, compac-
tion offers a multitude of benefits, encompassing enhancements in volume, porosity, 
density, permeability, and impermeability. These improvements collectively elevate the 
soil quality, augmenting its ability to sustain structural loads. The UCS, a fundamental 
component of geomechanical models, is pivotal in mechanical rock behavior [2, 3]. UCS 
signifies the highest compressive stress a rock can withstand under controlled, uniaxial 
loading prior to experiencing failure. The field of rock mechanics, amalgamating theo-
retical foundations with practical implementations, elucidates the response of rocks 
to diverse stress conditions [4, 5]. The ramifications of rock failure bear significance in 
areas such as the production of solid materials and the stability of wellbores, especially 
within the context of petroleum operations. UCS data derived from subsurface forma-
tions holds utmost importance in drilling activities. This wealth of information informs 
the intricacies of bit hydraulics, determines the ideal mud weights for drilling, manages 
drilling costs, and elevates drilling efficacy [6].

UCS data extracted from subsurface formations is highly significant in drilling opera-
tions. This reservoir of data enlightens us about the complexities of bit hydraulics, estab-
lishes the optimal mud weights for drilling, oversees drilling expenditures, and enhances 
drilling efficiency. The unconfined compression test (UCT) adheres to a standardized 
procedure endorsed by both the American Society for Testing and Materials (ASTM) 
and the International Society for Rock Mechanics (ISRM) [7–9]. Conducting direct 
UCS measurements in the laboratory consumes significant time and financial resources 
and requires the careful preparation of core samples. Meeting the latter requirement 
becomes arduous when working with frail, thinly layered, or heavily fractured rock for-
mations. Numerous researchers advocate embracing indirect methodologies for UCS 
prediction to tackle the aforementioned difficulties linked to core sample preparation 
and testing. These examinations are rapid, easy to perform, portable, and cost-efficient. 
Indirect testing techniques, such as the point load index test (Is (50)), the Brazilian ten-
sile strength test (BTS), and the ultrasonic test ( Vp ), are commonly utilized for forecast-
ing UCS. These evaluations place less rigorous requirements on sample preparation in 
contrast to the UCS test. These associated index tests, especially when coupled with 
engineering knowledge, can provide a valuable initial assessment of UCS [3, 4, 10, 11].

Laboratory trials on extracted core samples, offering insights into genuine stress con-
ditions and mechanical traits, establish the groundwork for directly appraising mechani-
cal rock properties [8]. These assessments encompass a spectrum of tests, including 
uniaxial and triaxial compressive strength assessments, scratch trials, Schmidt hammer 
examinations, and point load tests. Collectively, these methodologies set the standard 
for property assessment [12]. Nevertheless, acquiring a continuous UCS profile along 
wellbores encounters challenges with procuring representative core samples, including 
substantial costs and time-intensive procedures. To overcome this limitation, indirect 
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methodologies have been formulated to bridge gaps by establishing connections between 
rock properties and petrophysical well-log data [13]. The significance of UCS transcends 
rocks and encompasses various materials, including soils and industrial byproducts, 
exerting a substantial impact on foundation design, slope stability analysis, and struc-
tures’ resilience. In Equilibrium slime mould algorithm materials, UCS assumes a pivotal 
role in influencing both the structural integrity and operational performance of pave-
ments [7].

Nonetheless, the determination of a material’s UCS involves addressing a plethora 
of variables, encompassing physicochemical characteristics, varieties of cementitious 
additives, and the duration of curing. These factors mandate carefully designed labora-
tory investigations and specialized equipment [14, 15]. The validity of these evaluations 
pivots on the pursuit of precision, as evidenced by the specifications of the employed 
specimens [16, 17]. The exploration of alternative methodologies to determine the UCS 
of stabilized materials, such as pond ashes, arises from the demanding nature of these 
assessments, the resource-intensive requirements, and the complexity of acquiring rep-
resentative samples [18, 19].

Literature review

Momeni’s research [20] presents a PSO-based model for predicting the UCS of gran-
ite and limestone. This model outperforms traditional methods in accuracy, validated 
through experimentation with 66 sample sets. Inputs such as point load index, rebound 
number, p-wave velocity, and dry density contribute to its high predictive performance, 
particularly sensitive to dry density and rebound number. However, its universal appli-
cability beyond granite and limestone types is cautioned, indicating a need for further 
refinement. Jahed Armaghani’s study [21] introduces an adaptive neuro-fuzzy inference 
system (ANFIS) for forecasting UCS and Young’s modulus (E) of granite, surpassing 
conventional methods like multiple regression analysis (MRA) and artificial neural net-
works (ANN) in accuracy. ANFIS achieves exceptional  R2 values of 0.985 for UCS and 
0.990 for E, with low root-mean-square error (RMSE) and high variance accounted for 
(VAF) percentages, minimizing uncertainties in rock engineering projects. Armaghani’s 
subsequent study [22] focuses on sandstone samples from Malaysia, employing a hybrid 
ICA-ANN model to predict UCS. This model demonstrates high accuracy, indicating 
significant progress in geotechnical research and offering practical applicability in esti-
mating UCS for sandstone.

Asteris’s research [23] enhances Schmidt hammer rebound number analysis by 
integrating N- and L-type measurements into a comprehensive database. Models 
utilizing backpropagating neural networks (BPNN), genetic programming (GP), and 
third-order linear equations achieve superior prediction accuracy, with the BPNN 
1–7-1 model notably precise. The study proposes the a-20 index as a preferable per-
formance indicator over the Pearson correlation factor (R), advancing predictive 
modeling for rock characterization. Armaghani’s study [24] compares nonlinear pre-
diction models for estimating the UCS of granitic rocks, highlighting ANFIS as the 
superior predictor. However, caution is advised regarding the universal application, 
emphasizing suitability primarily for similar rock types. Soft computing methods 
like ANFIS exhibit consistent superiority over ANN and NLMR, showcasing their 
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potency in UCS estimation based on rock index properties. Yagiz’s research [25] 
explores the correlation between Schmidt hardness rebound values and the UCS 
of rock, offering empirical equations for preliminary design assessments. Context-
specific equations are recommended due to variations across geological formations, 
ensuring accurate estimations tailored to specific conditions. Yagiz’s subsequent 
research [26] investigates the impact of cycling integer variations in the slake dura-
bility index test on intact rock behavior. ANN proves effective in estimating cru-
cial rock properties like UCS and modulus of elasticity (E), highlighting its utility in 
material characterization and geotechnical engineering research.

Objective

This study introduces an innovative machine-learning methodology aimed at 
achieving precise and optimal predictive results in geotechnical engineering appli-
cations. The hybridization approach implemented here focuses on enhancing the 
performance of Gaussian process regression (GPR) models to generate depend-
able outcomes. By incorporating two advanced and efficient optimizers, namely the 
sand cat swarm optimization (SCSO) and the equilibrium slime mould algorithm 
(ESMA), the development of these hybrid models surpasses the performance of con-
ventional methods, marking a significant advancement. The evaluation of model 
results encompassed the use of established performance metrics such as  R2 and 
RMSE, playing a crucial role in mitigating potential biases and providing a more pre-
cise understanding of the models’ effectiveness. The increased precision achieved 
by the hybrid models can enhance well-informed decision-making in geotechnical 
engineering projects, thus reducing the risks associated with inaccurate estimates 
of unconfined compressive strength (UCS). The utilization of GPR as a foundational 
predictive model for handling nonlinear associations within rock datasets offers sev-
eral key advantages. GPR’s inherent flexibility enables it to capture intricate nonlin-
ear relationships, providing more accurate predictions compared to linear regression 
techniques.

Additionally, GPR offers uncertainty quantification, crucial in geological studies where 
data may be uncertain or noisy, facilitating better decision-making through probabilis-
tic predictions. Its robustness to small datasets mitigates overfitting issues commonly 
encountered with traditional regression methods, while its interpretability offers insights 
into spatial correlations, which is vital for geological exploration. Moreover, GPR’s 
adaptability to varying scales ensures accurate predictions across datasets with different 
units, making it a potent tool for predictive modeling in geotechnical engineering and 
related fields. The selection of SCSO and ESMA for hybridization with GPR in UCS pre-
diction is motivated by their effectiveness in addressing challenges such as gradual con-
vergence and avoiding local minima. SCSO utilizes swarm-based approaches inspired by 
sand cat colonies for efficient exploration of solution spaces, while ESMA, inspired by 
slime mold behavior, dynamically adjusts search parameters to navigate complex land-
scapes effectively. Combining the strengths of SCSO and ESMA with GPR equips hybrid 
models to tackle such challenges, ensuring more robust and reliable UCS predictions in 
geotechnical engineering applications.
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Methods
Gaussian process regression (GPR)

The probabilistic regression approach of GPR initiates with a training dataset, 
denoted as D = {(yw , xw),w = 1, 2, 3, . . . ,W } , consisting of W pairs of vector inputs 
xw ∈ R

L . Utilizing this training dataset with noisy scalar output values (yn), GPR con-
structs a model capable of effectively extrapolating the output distribution to novel 
input locations. Presumably, external factors such as truncation or observational 
errors are responsible for the uncertainty in output noise. This noise is additive, char-
acterized by a zero-mean, stationary, and normally distributed nature [27].

GPR employs a Gaussian process (GP) to depict the latent variables of f  , with x 
functioning as an indicator for these variables. The objective is to confine the 
examination to functions for which the values exhibit Gaussian correlation. This 
is accomplished by utilizing a consistent Gaussian distribution for any finite set of 
{ f (x1), . . . , f (xk) } with distinct indices. This equates to introducing a GP prior to 
functions within a Bayesian framework. By defining the mean function v(x) and the 
covariance function k(x, x′) , functions can be conveniently described. This method 
simplifies predicting function values for new inputs, even with limited training data. 
The variance, denoted as s2noise , is utilized to represent the model’s noise.

The E[.] represents the expectation. Typically, the mean function is chosen to be 
0, with the primary focus on the unobserved region of the input space. The behavior 
of the process is solely influenced by the covariance function, which, by definition, is 
symmetric positive semi-definite when evaluated for any pair of input space points 
[28]. The covariance function typically encompasses multiple hyperparameters that 
dictate the prior distribution of f(x). The squared exponential covariance function is a 
frequently employed choice [29].

In this context, k represents a norm defined within the input space. It is essential to 
highlight that as the distance between input pairs x and x′ increases, the covariance 
function diminishes rapidly, signifying weaker correlations between f (x) and f (x′) . 
There are three hyperparameters at play: q1 determines the upper limit for covariance, 
q2 is a strictly positive hyperparameter dictating the rate at which correlation dimin-
ishes with increasing point separation, and q3 serves as an additional hyperparameter, 
representing the unknown variance s2noise in Eq.  (1), even though it is not explicitly 
mentioned in Eq.  (2). These hyperparameters are assembled into a vector denoted 
as (q), which is treated as the actualization of a random vector (Q). The realization 
that provides the closest fit to the dataset is selected for generating predictions using 
the training data. The following joint Gaussian distribution can be derived when it is 

(1)y = f (x)+ δ, δ
′′
W 0, s2noise

(2)v(x) = E[f (x)], k
(

x, x′
)

= E
[

(f (x)− v(x))(f
(

x′
)

− w
(

x′
)

)
]

(3)k
(

x, x′
)

= q1exp

(

�x − x′�

2q2

)
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assumed that the hyperparameters are already known in this study, with the vector of 
training latent variables represented as f and the vector of test latent variables as f ∗:

The symmetric covariance matrix K is generated by computing the covariance between 
the i_th variable in the group denoted by the first subscript and the j_th variable in the 
group represented by the second subscript (where * is utilized as an abbreviation for f ∗ ). 
This computation involves the covariance function k(., .) from Eq. (4) and the associated 
hyperparameters [30]. Figure 1 presents the GPR flowchart.

Sand cat swarm optimization (SCSO)

SCSO is an algorithm based on swarm behavior, taking inspiration from the hunting tac-
tics of sand cats for its convergence to a solution. The primary stages of SCSO can be 
outlined as follows.

(4)p
(

f , f ∗
)

= W

(

0,

[

kf ,f k∗,f
kf ,∗ k∗,∗

])

Fig. 1 The prediction framework based on the GPR model
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❖ Step 1: Initiating the algorithm—within the optimization problem, each sand cat cor-
responds to an array with a 1 × Dim dimension (where Dim signifies the number of 
decision variables), as illustrated in Fig. 2 [31]. Per this diagram, each Pos value must 
fall within the specified upper and lower bounds. Initially, an initialization matrix is 
generated, considering the problem’s dimension ( n× Dim ) [32, 33]. The associated 
solution is regarded as the output value, with each subsequent iteration replacing it 
with a superior value. If no improved values are attained during the current iteration, 
the solutions will remain unchanged and unsorted.

❖ Step 2: Exploration phase (hunting for prey)—sand cats possess the capability to 
detect low frequencies below 2 kHz, and SCSO leverages this keen sense of hearing 
[34]. The auditory acuity of the sand cat is expressed by Eq. (5) and denoted as RG.

In Eq.  (6), parameter R serves as the control factor for regulating the exploration 
and exploitation phases of the algorithm. The value of SM is set to 2. During the 
search, the sand cat stumbles upon a new position randomly within the sensitivity 
range. The sensitivity range (r) undergoes random variations to prevent getting stuck 
in local solutions.

In this equation, the parameter R_G serves as a guide for the sensitivity range, 
denoted as r. Each sand cat’s position is represented by Pi . The sand cat seeks the 
prey’s location relative to the best candidate position (Pbc) , the current position (Pt

c) , 
and the sensitivity range (r), as described in Eq. (8):

(5)RG = SM − (
SM × Iter

MaxIter
)

(6)R = 2× RG × rand(0, 1)− RG

(7)r = RG × rand(0, 1)

Fig. 2 Update the mechanism of sand cat position in iterations. a Iteration i  . b Iteration i + 1
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❖ Step 3: The exploitation phase (prey attack)—when simulating the sand cat’s attack, 
the distance between the sand cat and its prey is expressed by Eq.  (8) [35]. In the 
attack modeling procedure, it is posited that the sensitivity range forms a circular 
area, and a random angle determines the direction of the sand cat’s movement (α) 
chosen through the Roulette wheel selection function. The sensitivity range ranges 
from − 1 to 1 for the random selection of α within the [0o, 360o] range. As illustrated 
in Fig.  2, this circular motion results in the sand cat moving in various peripheral 
directions. As a result, the sand cat can reach the hunting location more swiftly. The 
process of attacking prey is defined by Eq. (10) [36].

❖ Step 4: Executing the SCSO algorithm—as previously stated, the exploration and 
exploitation phases control is governed by R and R_G. As per Eq.  (10), R takes on 
a random value within the range [− 4, 4] due to the decrease of R_G from 2 to 0, as 
indicated in Eq.  (9). Hence, in accordance with Eq.  (10), when the value of R is less 
than or equal to 1, the sand cat will engage in attacking the prey; otherwise, it will 
search for the prey within the global domain under different circumstances.

In line with Eq. (11), the sand cat’s position undergoes updates during the explora-
tion and exploitation.

Equilibrium slime would algorithm (ESMA)

The foraging behavior of slime mould presents a promising source of inspiration for 
developing effective and efficient optimization methods [37]. The starting position 
vector of each slime mold is randomly initialized through a randomization process.

The positioning model for the i-th slime mould, represented as Xi ( j = 1, 2, ...,N  ), in 
the next iteration (t + 1), is established using SMA as follows:

(8)Pt+1 = r × (Pt
bc − rand (0, 1)× Pt

c)

(9)Prnd =
∣

∣rand(0, 1)× Pt
b − Pt

c

∣

∣

(10)Pt+1 = Pt
b − r × Prnd × cos(α)

(11)Pt+1 =

{

r ×
(

Pt
bc − rand(0, 1)× Pt

C

)

|R| > 1, (exploration)

Pt
b − Prnd × cos(α)× r |R| ≤ 1, (exploitation)

(12)−→
X i(t = 1) = r1.(UB− LB)+ LB, i = 1, 2, . . . ,N .
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The 
−→
X Gbest denotes the value of the global best fitness achieved across iterations one 

to t. Additionally, the variables r1 and r2 correspond to random values within the range 
of [0, 1].

To eradicate and disseminate the slime mold, a probability denoted by z is utilized. 
Within the context of this study, z is a constant value of 0.03 [38]. Equation (14) sorts the 
fitness values in ascending order.

Equation (15) is employed to calculate 
−→
U .

A random number, r3 , uniformly distributed within the range of [0, 1], is utilized. The 
local worst and best fitness values acquired during the current iteration are denoted by 
fLworstand fLbest , respectively. Equations (15–16) are employed to calculate these fitness 
values.

and

Below is the formula that defines the variable Pi , which represents the probability of 
selecting the trajectory of the i-th slime mold:

For eachi = 1, 2, ...,N  , the fitness value of the i-th slime mold in Xi is determined by 
f (Xi). The initial iteration’s global best fitness value up to the current iteration is repre-
sented by fGbest . The magnitude of the step size is indicated by −→stepa and is determined by 
a uniform distribution ranging from − a to a. Similarly, the size of the step, represented 
by−→stepb , is determined by a uniform distribution ranging from − b to b. The values of a 
and b are determined by Eq. (19), which is a function of the current iteration t and the 
maximum iteration T:

(13)
−→
X i(t = 1) =











r1.(UB− LB)+ LB, r1 < z
−→
X Gbest +

−→
stepa.

�

−→
U .

−→
X C −

−→
X D

�

, r2 < Pi(t) and r1 ≥ z
−→
stepb.

−→
X i(t), r2 ≥ Pi(t) and r1 ≥ z

(14)[sortf , sortIndex] = sort
(

f
)

,where f = {f1, f2, . . . ., fN }

(15)
−→
U (sortIndex

�

j
�

) =







1+ r3.log
�

fLbest−sortf (j)
fLbest−fLworst

+ 1
�

1 ≤ j ≤ N
2

1− r3.log
�

fLbest−sortf (j)
fLbest−fLworst

+ 1
�

N
2 < j ≤ N

(16)fLbest = sortf (1)

(17)fLworst = sortf (N )

(18)Pi = tanh
∣

∣f (Xi)− fGbest
∣

∣

(19)a = arctanh (−

(

t

T

)

+ 1)

(20)b = 1−
t

T
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Despite the SMA’s promising results, there is still room for improvement in the search 
process, as indicated by Eq. (24). It is essential to note that incorporating random slime 
molds can alter the trajectory of the search. Local minima can constrain the efficacy of 
the search process when selecting individuals 

−→
X D and 

−→
X C from a sample of N slime 

molds. This section introduces a new optimization technique called the equilibrium 
slime mould algorithm (EOSM). This algorithm replaces the position vector 

−→
X A with 

a vector derived from an equilibrium pool of four superior position vectors. The aver-
age position of this selection is then computed, guided by the EO concept. Equation (21) 
precisely defines the components of the equilibrium pool.

A set of five-position vectors is utilized to construct the equilibrium pool, represented 
by 

−→
X eq,pool.

In ESMA, the position vector for the i-th slime mold isXi(j = 1, 2, ...,N ) , while the new 
iteration (t + 1) is represented by the following:

The position vector 
−→
X eq is obtained by randomly selecting a vector from the equi-

librium pool. The algorithmic tool z is employed to facilitate exploration in the search 
process, ensuring ESMA’s effectiveness by preventing minimal local occurrence. An 
experimentally determined threshold value of 0.03 is utilized to achieve this objective. 
It is important to note that the ESMA algorithm modifies the position vector in the fol-
lowing iteration by combining the global best position, the local best position obtained 
from the best-so-far equilibrium pool, and a random vector. This approach allows for a 
balanced exploration–exploitation trade-off.

Data gathering

The comprehensive data collection process encompasses the meticulous acquisi-
tion of 106 soil samples sourced from a diverse array of locations, ensuring a rep-
resentative cross section. These samples are then meticulously subjected to rigorous 
laboratory testing, employing a systematic approach to analyze their composition, 
characteristics, and properties. The detailed findings of this exhaustive process are 

(21)

−→
X eq(1) = X(sortIndex(1))
−→
X eq(2) = X(sortIndex(2))
−→
X eq(3) = X(sortIndex(3))
−→
X eq(4) = X(sortIndex(4))
−→
X ave =

−→
X eq(1)+

−→
X eq(2)+

−→
X eq(3)+

−→
X eq(4)

4

(22)
−→
X eq,pool =

{

−→
X eq(1),

−→
X eq(2),

−→
X eq(3),

−→
X eq(4),

−→
X ave}

(23a)−→
X i(t + 1) = r1.(UB− LB)+ LB,when r1 < z

(23b)
−→
X i(t + 1) =

−→
X Gbest +

−→
stepa.

(

−→
U .

−→
X eq −

−→
X D

)

, when r2 < pi(t) and r1 ≥ z

(23c)−→
X i(t + 1) =

−→
stepb.

−→
X i(t),when r2 ≥ pi(t) and r1 ≥ z
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succinctly summarized in Table 1, with references provided for further scrutiny and 
validation [1, 39, 40]. Table  1 acquires data about the inputs requisite for predict-
ing rocks’ unconfined compressive strength (UCS), which necessitates a meticulous 
approach. The following procedures were meticulously executed to attain the essen-
tial dataset:

1. Bulk density (BD): Bulk density values were ascertained employing laboratory-based 
measurements. Rock samples, representative of the study scope, were subjected to a 
meticulous determination of mass and volume.

2. Brazilian tensile strength (BTS): Measuring Brazilian tensile strength requires spe-
cialized laboratory equipment. Rock specimens were carefully prepared and sub-
jected to tensile stress, with resulting values recorded.

3. Dry density (DD): Dry density data was obtained through systematic laboratory 
assessments. This involved accurately determining the mass and volume of rock sam-
ples post-desiccation.

4. P-wave velocity ( Vp ): P-wave velocity, a pivotal parameter, was derived from seismic 
investigations. Field-based seismic surveys were conducted, or existing seismic data 
conforming to the requisite rock types was employed.

5. Shear strength ( SRn ): Laboratory-based tests were performed to establish shear 
strength properties. This encompassed the application of controlled stress conditions 
on rock specimens, with meticulous recording of the outcomes.

6. Uniaxial compressive strength at 50% (Is (50)): The uniaxial compressive strength 
at 50% confining stress was determined via conventional uniaxial compression 
tests. These standardized tests subjected rock samples to axial loading until failure 
occurred, with precise measurement of strength values.

7. Unconfined compressive strength (UCS): The ultimate target variable, unconfined 
compressive strength (UCS), was obtained through rigorous unconfined compres-
sion tests. These tests involved the application of axial load until rock sample failure 
was observed, allowing for the precise determination of UCS values.

The data acquisition process adhered to stringent quality control measures to 
ensure the dataset’s integrity, consistency, and accuracy in Fig. 3. This comprehensive 
dataset, comprising diverse rock types and conditions, serves as the foundation for 
the subsequent development of a robust machine-learning model for UCS prediction. 
It is noteworthy to mention that the dataset utilized in this study is observable in 
Table 5 in Appendix.

Table 1 Statistical properties of the input variables and UCS

Features Dataset components

BD (kg/m3) BTS (MPa) DD (kg/m3) Vp (m/s) SRn (MPa) Is(50) (MPa) UCS (MPa)

Min 0 0 0 1247 0 0.1 5.5

Max 3.535 4.2 3011 6440 45.4 6.07 108.68

Mean 0.970 0.827 1669.7 4092.1 23.754 2.508 47.930

St.dev . 1.276 1.227 1308.1 1722.2 18.847 1.568 26.849
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Performance evaluators

In this section, an overview is provided regarding a range of metrics employed to assess 
the performance of hybrid models, with a specific emphasis on their ability to quantify 
errors and correlations. These metrics serve as valuable tools for evaluating the efficacy 
of hybrid models in diverse applications. The metrics under discussion include root-
mean-squared error (RMSE), coefficient of determination  (R2), mean-squared error 
(MSE), mean relative absolute error (MRAE), and the ratio of RMSE to standard devia-
tion (RSR). These metrics collectively form a comprehensive toolkit for evaluating and 
understanding the accuracy and reliability of hybrid models in real-world scenarios [41]. 
The accuracy and reliability of the proposed models (GPSC and GPES) in predicting 
UCS were validated using a variety of metrics and criteria beyond  R2 and RMSE val-
ues. Specifically, in addition to  R2 and RMSE, a range of supplementary metrics was 
employed to comprehensively assess the performance of the models. These included 
MSE, MRAE, and RSR. By utilizing this array of metrics, a holistic understanding of the 
predictive capabilities of the models was obtained, ensuring a thorough evaluation of 
their accuracy and reliability.

• Coefficient correlation  (R2):

Fig. 3 The scatter plot between input and output
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• Root-mean-square error (RMSE):

• Mean square error (MSE):

• Mean relative absolute error (MRAE):

• The ratio of RMSE to standard deviation (RSR):

Respectively, the variables can be articulated as follows:

• The predicted value is denoted as bi.
• m̅ and b̅ represent the measured and average predicted values, respectively.
• The recorded value is indicated as mi.
• n signifies the sample size.
• The critical value from the t-distribution relies on the selected confidence level and 

degrees of freedom, represented as t.

Results and discussion
Results of hyperparameters and convergence curves

In contrast to parameters, hyperparameters represent predefined specifications that are 
not inherently deduced from the dataset. These external configurations, incorporating 
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elements such as learning rates and regularization strengths, are instrumental in delin-
eating the behavioral characteristics of a model within the context of machine learning. 
Achieving optimal model performance relies significantly on the fundamental task of 
fine-tuning hyperparameters, necessitating rigorous experimentation and the utilization 
of sophisticated optimization methodologies. Table  2 intricately outlines the hyperpa-
rameter values linked with GPSC and GPES models, focusing particularly on n_restarts, 
length_scale, and alpha. As an illustration, the alpha hyperparameter value for GPSC 
was 0.2 and for GPES was 0.26.

Figure 4 depicts a graph demonstrating the evolution of RMSE across iterations. The 
horizontal axis signifies the iteration number, ranging from 0 to 200, while the verti-
cal axis denotes the corresponding RMSE values, which fall within the range of 0 to 10. 
The graphs started with a higher RMSE and progressively decreased with each subse-
quent iteration, finally converging to a lower RMSE value by the 200th iteration. Ana-
lyzing the convergence curves, the GPSC model commenced with an initial RMSE of 
9.1, whereas the GPES model started slightly lower at RMSE = 8.1. Throughout the con-
vergence process, both models demonstrated consistent reductions in RMSE, ultimately 

Table 2 Results of hyperparameter

Models n_restarts Length_scale Alpha

GPSC 128 467.0832 0.2

GPES 150 313 0.26

Fig. 4 Convergence of developed hybrid models
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reaching values below 4 by the 200th iteration. In summary, while both models exhibited 
improvement, the GPSC model outperformed with a final RMSE value of 2.6.

Comparison of models’ performance

In this section, a comparative analysis of the results produced by the proposed model 
was undertaken, employing two frameworks: single models and hybrid models. More 
precisely, hybrid variations are formulated by combining GPR with the sand cat swarm 
optimization (GPSC) and the equilibrium slime mould algorithm (GPES). For these 
models under consideration, 70% of the UCS inputs were designated for the training 
phase, with the remaining 30% split into 15% for validation and 15% for testing purposes. 
To comprehensively evaluate the outcomes and guarantee impartial results, a suite of 
metrics, including  R2, RMSE, MSE, MRAE, and RSR, were utilized. In the context of the 
 R2 metric, values nearing 1 signify excellent results. Conversely, for the error indicators, 
values approaching 0 indicate precise outcomes.

Table 3 presents the outcomes as assessed by the models using the specified metrics. 
The performance of the GPR model is considered subpar, as indicated by its RMSE val-
ues of 4.145 in training and 6.313 in testing. Nevertheless, the integration of optimizers 
has resulted in a notable enhancement in the precision of the GPR model. Among the 
hybrid models, the GPSC model stands out with the highest accuracy, achieving an  R2 
value of 0.995 and an RMSE value of 1.913 in training. Furthermore, the GPES model 
has produced moderate results, achieving an  R2 value of 0.988 in training. While both 
optimizers have improved the performance of the conventional GPR, the GPSC has 
yielded exceptionally accurate results.

The detailed performance information provided in the upcoming figures can be 
consulted to perform a more comprehensive evaluation of the model’s predictive 
capability regarding UCS. Figure 5 illustrates a scatter plot representing the models’ 
performance, taking into account their  R2 and RMSE values. The scatter plot includes 
circular shapes of different colors, denoting the training, testing, and validation 

Table 3 The result of developed models for GPR

Model Phase Index values

RMSE R2 MSE RSR MRAE

GPR Train 4.145 0.975 17.184 0.163 0.292

Validation 4.988 0.969 24.882 0.205 0.453

Test 6.313 0.955 39.855 0.220 0.755

All 4.666 0.972 21.768 0.175 0.435

GPSC Train 1.913 0.995 3.661 0.075 0.144

Validation 3.096 0.985 9.585 0.127 0.201

Test 3.327 0.991 11.069 0.116 0.246

All 2.382 0.993 5.673 0.089 0.195

GPES Train 2.823 0.988 7.968 0.111 0.227

Validation 4.035 0.975 16.280 0.166 0.385

Test 4.215 0.982 17.764 0.147 0.695

All 3.271 0.985 10.701 0.122 0.332
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phases. These shapes are distributed around a central line, symbolizing an ideal out-
come with an  R2 value of 1. The GPR model exhibits noticeable data dispersion, high-
lighting its limited accuracy.

In contrast, the GPSC and GPES models display improved performance compared 
to the standalone GPR model. The data points for GPSC are closely grouped around 
the central line, suggesting a more favorable outcome. Nonetheless, some broader 
dispersions can be observed in the case of GPES.

Figure 6 demonstrates the relationship between the predicted and measured values 
of the GPR base models. In this illustration, the black lines represent the measured 
values. When the predicted values align precisely with these measured values, it sig-
nifies the model’s accuracy.

As shown in Fig. 6, there is a noticeable difference between the data produced by 
the GPR model and the measured values, especially during the testing phase. Con-
versely, the GPSC model demonstrates remarkably accurate results, with a nearly 
perfect alignment between its predicted and measured values, particularly during the 
testing phase. On the other hand, the GPES model shows a notable lack of precision 
between sample numbers 20 and 40, which renders it less accurate than the GPSC 
model.

Evaluating the error percentage of the proposed models can provide further insights 
into their performance and aid in identifying the most optimal one. Figure 7 illustrates 
the normal distribution of errors in the models. The GPR model exhibits the highest fre-
quency of errors within the range of − 80 to 80% error values. Nonetheless, the GPSC 
model demonstrates a pronounced skewness, with a substantial frequency of errors clus-
tering near 0%. Conversely, the GPES model exhibits a moderate performance relative to 
the others, with errors from around − 10 to 10%. Among these models, the GPSC model 
distinguishes itself for its precision and consistently reliable results.

To obtain a thorough grasp of the errors across the models, refer to the scatter 
interval illustrated in Fig.  8. The GPSC model’s accuracy is revealed by the closely 
grouped data points, predominantly falling within the error range of − 10 to 10%. This 
procedure stands in contrast to the dispersion noticed in the other models. It high-
lights the dependability of the GPSC model’s predictions, as clustering data points 
within a relatively narrow error range signify its consistent and precise performance. 
In contrast, the dispersion observed in the error distribution of the other models 
indicates a broader variability in their predictions.

Fig. 5 The scatter plot for developed hybrid models
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A comparison: present investigation versus prior studies

Table 4 meticulously elucidates the findings derived from a comprehensive array of pre-
vious studies focused on predicting UCS within the field. These collective outcomes fur-
nish an expansive groundwork against which the findings of our present study can be 
thoroughly evaluated and compared. Regarding this table, several models, such as ANN 
and RF, have been used to predict the UCS of rock samples. Among all these models, 
the RF model, which is related to a study by Hoque et al. [42], registered the least error 
value while registering the least R2 value as well. On the other hand, the study of Sharma 
and Singh [43] employing Model-I simultaneously registered the highest  R2 and RMSE 
values. Opposite of the previous study, in this study, GPSC model experienced a high  R2 
value of 0.995 and a low RMSE value of 1.913.

Conclusions
The prediction of the unconfined compressive strength (UCS) of rocks through machine 
learning has emerged as a promising and impactful area of research in the field of geo-
technical engineering. This endeavor has significant implications for a wide range of civil 

Fig. 6 The comparison of predicted and measured values
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Fig. 7 The error rate percentage for the hybrid models is based on normal distribution

Fig. 8 The box of errors among the developed models

Table 4 Comparison between the present and published article

Article Model Evaluator

R2 RMSE

Sharma and Singh [43] Model-I 0.96 25.89

Ceryan et al. [11] LM-ANN 0.884 1.11

Hoque et al. [42] RF 0.894 0.25

Present study GPSC 0.995 1.913
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engineering projects, including tunneling, mining, and foundation design, where an accu-
rate assessment of UCS is crucial for ensuring the safety and stability of structures. The 
study emphasizes machine learning’s crucial role, particularly hybrid models, in enhancing 
the accuracy and reliability of UCS predictions. Conventional methods face difficulties in 
capturing complex rock data relationships, leading to slow convergence and local minima 
issues. Machine learning techniques, such as Gaussian process regression (GPR) coupled 
with advanced optimizers like sand cat swarm optimization (GPSC) and equilibrium slime 
mould algorithm (GPES), effectively tackle these challenges. Furthermore, evaluating these 
models using various performance metrics, including  R2, RMSE, MSE, MRAE, and RSR, 
provides a comprehensive understanding of their capabilities. Based on the results, it can be 
concluded as follows:

• The integration of SCSO and ESM optimization algorithms into the unified GPR model 
led to notable enhancements in  R2 values. In particular, SCSO contributed to a 2.1% 
improvement, and ESM contributed to a 1.3% increase. This underscores the effective-
ness of incorporating these optimization techniques into the GPR framework to boost 
the accuracy of UCS predictions.

• Among all the models assessed, the GPR model exhibited the least favorable perfor-
mance. This was apparent from its recording of the highest error value, notably 6.313 
for RMSE during validation, and the lowest  R2, which was at 0.955 during validation. 
Taken together, these metrics suggest that the GPR model lacks accuracy in predicting 
UCS values.

• The findings unquestionably highlight the outstanding precision of the GPSC model 
in contrast to the GPR and GPES models. This superiority is notably apparent in its 
remarkable performance, marked by an RMSE value of 1.913 and the highest  R2 value of 
0.995.

• Based on the findings obtained from the analysis, it can be inferred that the prediction 
models utilized for estimating the UCS were developed incorporating the parameters 
under investigation. Upon comparing the experimental findings with the prognostica-
tions generated by the proposed models, it was discerned that these models exhibited 
a notable level of accuracy in forecasting the UCS values. These results strongly imply 
that the proposed models demonstrate efficacy in predicting UCS and hold promise for 
diverse applications in geotechnical engineering. However, it is imperative to acknowl-
edge that the applicability of these models across varying soil conditions might be 
delimited by the specificity of the dataset employed in their development. Furthermore, 
the intricate nature introduced by the utilization of multiple models and the sensitiv-
ity to the selection of meta-heuristic algorithms necessitates careful consideration when 
evaluating their interpretability and practical utility.
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Appendix

Table 5 Test dataset

BD BTS DD Vp SRn Is(50) UCS

0.00 0 2922 5757 31.6 4.14 83

0.00 0 2696 5843 36.3 2.54 66.74

0.00 0 2846 6070 38.7 5.23 100.68

0.00 0 2682 6013 37.4 2.1 58.51

0.00 0 2620 4650 44.7 2.56 58.2

0.00 0 2620 3923 43.6 5.61 85.15

3.42 4.1 0 2910 0 3.6 51.4

0.00 0 2573 2797 31.8 2.17 56.91

2.65 1.6 0 1417 0 0.6 9.9

0.00 0 2518 3543 33.8 0.69 30.59

0.00 0 2573 3420 35.9 2.11 58.32

0.00 0 2664 5923 37.2 3.68 35.72

0.00 0 2701 6003 38.8 3.68 57.85

0.00 0 2887 5630 34.9 3.27 84.62

0.00 0 2952 6070 44.3 4.87 102.99

0.00 0 2669 5393 43.1 3.15 78.56

0.00 0 2703 5720 36.5 2.41 41.8

2.33 1.3 0 1330 0 0.5 9.9

0.00 0 2825 6363 40 2.66 108.68

0.00 0 2637 3790 44.2 3.21 102.99

0.00 0 2719 5590 34.7 2.33 54.24

0.00 0 2516 3643 28.2 0.58 24

0.00 0 2737 5870 38.6 2.09 35.25

0.00 0 2622 5857 35.8 3.62 50.32

2.72 2.9 0 2275 0 2.3 34.7

0.00 0 2670 5430 40.2 3.57 32.01

0.00 0 2620 5263 43.6 4.57 68.67

0.00 0 2688 5073 34.2 2.2 26.83

0.00 0 2606 4333 42.6 2.75 56.14

0.00 0 2600 4813 38.9 6.07 82.79

2.23 1.9 0 1928 0 0.1 8.5

0.00 0 2715 6200 34.4 2.36 53.14
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