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Abstract 

Wind power prediction holds significant value for the stability of the electrical grid 
when wind power is connected to the grid. Using neural networks for wind power 
prediction may have some limitations, such as slow speed and low accuracy. This 
paper proposes to enhance the power prediction accuracy and speed by optimizing 
the neural network through health assessment wind turbines. Firstly, based on wind 
turbine actual operating data, a health assessment is conducted to obtain a health 
matrix of wind turbine. Then, by calculating the weights of the matrix, the power 
prediction strategy of the network is optimized. Following that, matrix approximation 
hyperparameters are utilized to expedite the optimization process. Finally, some tests 
are conducted on neural network power prediction, act as optimized back propagation 
(BP) neural network and whale swarm algorithm–support vector regression (WSA-SVR) 
neural networks are employed for wind power prediction. Results show noticeable 
optimization: after optimizing the BP network, power prediction accuracy increased 
by about 40%, and prediction speed rose by about 20%; after optimizing the WSA-SVR 
network, power prediction accuracy improved by 10%, and prediction speed surged 
by about 45%. Further analysis shows that this method can improve the accuracy 
and speed of most neural network wind power prediction algorithms.

Keywords: Wind power prediction, Health assessment, Health matrix, BP neural 
network, Whale swarm algorithm, Prediction optimization

Introduction
The fluctuation of wind energy may lead to the instability of wind electricity [1], affecting 
the operation of the electrical grid once connected. To ensure the safety of the electri-
cal grid, it is essential to predict wind power and adjust it in a timely manner. Hunan 
Province in China has a requirement for grid connected voltage of wind farms, with a 
monthly compliance rate of 98% for voltage control curves. The accuracy of short-term 
wind power prediction should not be less than 83%, and the accuracy of ultra short-term 
power prediction should not be less than 87%.

Early wind power predictions often employed some traditional methods such as 
numerical weather prediction (NWP), power curve graphs, and so on. Due to the low 
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measurement accuracy and significant transmission delay of NWP, the power prediction 
accuracy of this method is not high. Power curve graphs, derived from turbine condi-
tions, also see reduced power prediction accuracy when environmental changes affect 
wind turbine operation and actual power deviates from rated power [2, 3].

In fact, the impact of weather and terrain conditions in areas where the climate was 
changeable and the terrain was complex led to significant errors in NWP, resulting in a 
lot of forecasting errors. In recent years, with the development of artificial intelligence 
technology, many new neural network algorithms have emerged. To improve accuracy, 
neural networks are often used for data processing, such as power predictions. Neural 
networks can train network models using historical data to predict wind power. Com-
pared to similar methods, its predictive performance is significantly improved. Moreira 
et al. [4] used artificial neural networks (ANN) to establish forecasting models for photo-
voltaic generation that improve the information exchange capabilities and consequently 
enhancing the forecasting determination. Zhu et al. [5] established forecasting models 
based on the support vector machines (SVM) and Kalman filtering method that showed 
some efficacy in handling noise in wind power data. Sompop and Nawinda [6] design 
a modification of multivariable gray prediction model and states and parameters are 
sequentially estimated by means of the traditional Kalman filtering. But issues like slow 
prediction speed and high data costs persist. Thus, finding efficient optimization meth-
ods to enhance the predictive performance of neural networks has become a research 
hotspot in recent years.

Optimization algorithms can enhance network capabilities while improving predic-
tion speed and accuracy. Wang et al. [7] proposed a short-term wind power prediction 
method combining variational mode decomposition (VMD) and hybrid kernel extreme 
learning machine (HKELM) which enhanced neuron communication capabilities to 
reduce optimization time and speed up predictions. Moreira et al. [8] explored how to 
use cluster analysis to select the ANNs and how to combine them in in the ensemble. 
Zhang et al. [9] improved Bayesian parameter optimization machine learning algorithms 
for wind turbine fault diagnosis. Shi et al. [10] proposed wind power operation uncer-
tainty risk assessment based on sensitivity-layer hidden Markov model (HMM) which 
increased sampling tolerance to reduce data collection time, thereby increasing predic-
tion speed. Yang et al. [11] designed a convolutional neural networks–bidirectional long 
short-term memory (CNN-BiLSTM) wind power prediction method which adjusted the 
network weight allocation method to reduce rounding errors and improve prediction 
accuracy. Korprasertsak and Leephakpreeda [12] designed a weighting method combine 
the predicted values of the autoregressive moving average model, the artificial neural 
network model, and the gray prediction model for the wind power generation. Ye et al. 
[13] established the wind power reference and loss prediction models based on XGBoost 
and Transformer algorithms to quantify theoretical output and power shortage in cold 
weather. They adopted seasonal models to reduce modeling errors, improving prediction 
accuracy. Chenniappan et  al. [14] used the autoregressive integrated moving average 
(ARIMA) model for forecasting the future requirements of water supply. Lee and Park 
[15] forecasted housing submarkets trading volumes with the ARIMA model and the 
recurrent neural network (RNN). The trading volumes in adjacent areas are utilized as 
covariates and an ensemble prediction. They added a buffer module to improve gradient 
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smoothness, ensuring predictive accuracy. Zhang et al. [16] adopted the temporal con-
volutional network for wind power prediction. Liu Ying, et al. [17] propose a knowledge-
embedded graph neural network (K-GNN) model based on the general framework of 
multivariate time series graph neural network (MT-GNN) to predict the multivariate 
time series state data of wind turbines. Liu et al. [18] introduced attention mechanisms 
to reduce latency errors. However, currently, most optimization algorithms can only 
improve either accuracy or speed independently, and the outcomes are not ideal.

This paper improves wind turbine power weight calculation methods and adjusts 
prediction strategies by employing health assessment to derive a wind turbine 
health matrix, thereby enhancing both the accuracy and speed of neural network 
predictions.

The first part of the paper introduces the health assessment algorithm and analyzes 
neural network algorithms. In the third part, a new optimization scheme is introduced 
to optimize the hyperparameter of two neural networks, and the fourth part simulation 
tests the algorithms.

Methods
The concept of health assessment was proposed by Lars Landberg in 2011 [19]. It lev-
erages the characteristics of the statistical probability distribution of model outputs, 
transforming a two-dimensional multivariate probability density function into a health 
matrix.

Wind speed and power generation efficiency are positively correlated. As wind speed 
decreases, the wind turbine rotates slower, resulting in lower power generation effi-
ciency. Conversely, as wind speed increases, the wind turbine rotates faster, leading to 
higher power generation efficiency. By applying a multivariate Gaussian distribution 
model to compute power generation efficiency, we can derive the health matrix. The 
specific process is illustrated in Fig. 1:

(1) Data collection: Collect data on wind speed, temperature, pressure, rotational 
speed, and power [20], among other metrics, via sensors and the SCADA system.

(2) Data cleaning: Address missing values, anomalies, and noise in the data to enhance 
its reliability [21].

To mitigate the order error of data at different magnitudes, a normalization process is 
first carried out. Given that some types of data can have negative values, the min–max 
normalization algorithm is as follows:

where xi represents the current data, xmin denotes the minimum data value, and xmax   
represents the maximum data value.

(3) Feature selection: From the cleaned data, select feature data to determine the 
dimensions of the health matrix [22], as well as the approximation hyperparameters 
for the neural network.

(1)ẋi =
xi − xmin

xmax − xmin
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(4) State classification: Based on the feature data, calculate the power generation effi-
ciency and categorize the wind turbine statuses into categories such as normal, 
minor fault, and major fault [23]. The power generation efficiency is defined as:

 

where i is the feature identifier, ranging from 1 to n, μ is the mean vector, and Σ is the 
covariance matrix.

(6) Matrix generation: Arrange the power generation efficiencies of the same status cat-
egories in order of value to form a matrix. Each matrix element represents the power 
generation efficiency of the wind turbine in that specific state [24].

(2)f (x;µ,�) =
1

(2π)
i
2 |�|

1
2

exp[
1

2
(x − µ)T�−1(x − µ)]

Fig. 1 Health assessment process diagram
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Arrange the computed power generation efficiencies in order of feature to get the effi-
ciency matrix Qn×1.

By applying factor analysis to the measurement data, we can obtain the power feature 
correlation matrix V1×n . After arranging it using QT , multiplying Q with V yields the 
health matrix A, defined as:

where n is the dimension of the health matrix, typically ranging from 6 to 12. When n 
exceeds 12, dimensionality reduction is required.

The existing health assessment algorithm has two shortcomings:

1. High data costs: To calculate power generation efficiency, various wind turbine data 
are required, increasing the cost of data collection, processing, and analysis [25].

2. High complexity: To enhance assessment reliability, the feature selection module is 
introduced, increasing the algorithmic complexity [26].

To reduce complexity, simplify the health matrix, and lower assessment costs, the fac-
tor analysis method is first used to simplify the feature selection module and reduce 
matrix complexity. Then, dimensionality reduction and decoupling are performed on the 
feature data to reduce data processing costs.

Analysis of neural network algorithm
There are shortcomings in the current optimization neural network algorithms: firstly, 
the improvement in prediction speed after optimization is not significant; secondly, 
there is not much change in accuracy after optimization. Li et al. [27] optimized the BP 
neural network for wind power prediction, enhancing the network’s adaptability, non-
linear mapping, and parallel processing capabilities. However, the quality of power 
weight was not improved, resulting in limited enhancement in prediction accuracy. Hei-
dari [28] used the optimized SVR network for photovoltaic power prediction, strength-
ening SVR’s mutation handling capability. However, the optimization process was not 
improved, and the prediction speed remains slow.

Power weight has a significant impact on BP’s prediction accuracy [29]. Using the 
health matrix to improve power weight calculation can enhance BP prediction accu-
racy. The prediction speed of SVR is significantly affected by parameter optimization 
[30]. To accelerate the optimization process, WSA is introduced as SVR’s optimization 
algorithm.

WSA is a new group intelligence algorithm [31] which is used to solve the merit-seek-
ing problem by imitating behaviors such as searching and hunting among whale popula-
tions using ultrasonic waves as information carrier. The position iterative formula of the 
whale swarm algorithm is:

(3)An×n = Qn×1V1×n

(4)
xt+1
i = xti + β yti − xti

β = rand 0, ρ0e
−ηdX ,Y
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where η is the ultrasonic attenuation factor; dxy is the distance between X and Y; ρ0 rep-
resents the initial ultrasonic intensity; ytiindicates the position of whale yi at step t; xti
and xt+1

i are the position of whale xi at step t and t + 1, respectively; and β is a random 
number of [0, ρ0e−ηdX ,Y ].

The approximate hyperparameters of the health matrix are used as the starting value for 
WSA, accelerating the SVR optimization process and improving prediction speed.

New optimization scheme
Through health assessment, the health matrix is obtained. After calculating the 
improved power weight, the power is predicted using the neural network output. With-
out increasing data processing costs, the prediction error is reduced, and the accuracy 
and speed of network prediction are enhanced.

The neural network optimization scheme is shown in Fig. 2.

1. Health assessment: Based on feature data, perform health assessment to obtain the 
health matrix and neural network approximate hyperparameters.

2. Power prediction: Using matrix approximate hyperparameters and speeding up the 
optimization process, the neural network is used for power prediction, obtaining the 
original predicted power.

From Eqs. (2) and (3), we know that n features correspond to health matrix An×n . 
Arrange the current time data according to the order of matrix Q into feature matrix 
Bn×1.

Firstly, matrices A and B are multiplied to get the weight matrix Cn×1 , i.e.:

Then, the original predicted power Pi is expanded into power matrix D1×n . All ele-
ments in D are the original predicted power Pi.

Next, matrices D and C are multiplied, the result is multiplied by the correction factor 
λ, and added to Pi , obtaining the reconstructed predicted power Pi , i.e.:

where λ is related to the feature data and turbine operating conditions, with values rang-
ing from 0.01 to 0.1.

The optimization process of BP network is as follows:
For the BP network, the hidden layer error can be represented as:

where δh represents the hidden layer error; δo represents the estimated system error, a 
given value; f ′ is the derivative of the activation function; x is the hidden layer input; ω 
is the power weight, identical to the elements of weight matrix C; and Σ denotes summa-
tion over the output layer nodes.

The update calculation of BP power weight is as follows:

(5)Cn×1 = An×nBn×1

(6)Pi = � · |D × C| + Pi

(7)δh = f ′(x)×�(ω × δo)

(8)�ω = α × δ × xi
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where �ω represents the change in weight, α is the learning rate, δ is the error of the 
current node, and xi is the input of the current node.

In Eq.  (7), ω is calculated using the health matrix to reduce interference in ω, mak-
ing the value of ω × δo significantly reduced, lowering δh , reducing prediction error, and 
enhancing BP prediction accuracy.

Using the health matrix as xi , Eq.  (8) can reduce the update calculation amount and 
accelerate weight convergence to obtain an approximate optimal learning rate. After 
optimization, the prediction time of the BP network is significantly reduced.

The optimization process of SVR is as follows:
Suppose the input of the ith data is xi , the output is yi , and the predicted value is f(xi ). 

Define the error variable ei to represent the gap between the actual value and the pre-
dicted value, which is:

Fig. 2 Neural network optimization scheme based on the health matrix



Page 8 of 13Xie et al. Journal of Engineering and Applied Science           (2024) 71:96 

During the optimization process, while minimizing the sum of squares of errors, limit 
each ei to not exceed the given threshold ε , resulting in Eqs. (10) and (11):

wherein, ω is the power weight, the same as the elements of weight matrix C. T1 is a 
regularization parameter, and ωT is the transpose of ω. The WSA algorithm is used to 
optimize T1.

The calculation of SVR predicted values is:

where αi is the Lagrangian multiplier, obtained by solving the Lagrangian function equa-
tion of SVR; K (xi, x) represents the inner product kernel function; and ei is the error 
variable.

The approximate regularization parameter of the health matrix allows WSA to start 
optimization near the global optimum, reducing the optimization time, accelerating the 
prediction process, and improving the prediction speed of SVR.

Simulation tests and optimization analysis
Error metrics

Three types of error metrics are used: coefficient of determination (R2), mean squared 
error (MSE), and mean absolute error (MAE), as given in Eqs. (13, 14, and 15):

where yi is the actual value, ŷi is the predicted value, and yi is the average of the actual 
values. R2 indicates prediction accuracy; the closer the value is to 1, the higher the pre-
diction accuracy. MSE and MAE represent the degree of error dispersion; the smaller 
the value, the smaller the prediction error.

Simulation tests

Using Baidu KDD CUP 2022, test data set 1# unit for a total of 40 days [32]. BP and 
WSA-SVR networks were selected for optimization testing. Data preprocessing uses for-
ward and backward interpolation to ensure input data consistency.

(9)ei = f (xi)− yi

(10)minimize : 0.5× ωT × ω + T1 ×�ei

(11)subject : |ei| ≤ ε, i = 1, 2, . . . , n

(12)f (xi) = �αi × K (xi, x)+ ei

(13)R2 = 1−

∑n
i=1

(

ŷi − yi
)2

∑n
i=1

(

yi − yi
)2

(14)MSE =
1

n

∑n

i=1

(

ŷi − yi
)2

(15)MAE =
1

n

∑n

i=1

∣

∣yi − yi
∣

∣



Page 9 of 13Xie et al. Journal of Engineering and Applied Science           (2024) 71:96  

The BP network’s pre-optimization and post-optimization prediction effects are 
shown in Figs. 3 and 4.

The pre-prediction and post-optimization prediction effects of the WSA-SVR net-
work are shown in Figs. 5 and 6.

The comparison of prediction errors before and after optimization is shown in 
Table 1.

From Table 1 and Figs. 3 and 4, it can be seen that after optimizing the BP network, 
the prediction accuracy increased by about 40%, and the prediction time was reduced 
by about 20%. From Table  1 and Figs.  5 and 6, after optimizing the WSA-SVR net-
work, the prediction accuracy increased by about 10%, and the prediction time was 
reduced by about 45%.

Fig. 3 BP prediction effect without optimization

Fig. 4 BP prediction effect after optimization
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Results and discussion
The optimization algorithm significantly improved the lag of the prediction and 
enhanced the quality of the BP network’s power weight. After optimization, the 

Fig. 5 WSA-SVR prediction effect without optimization

Fig. 6 WSA-SVR prediction effect after optimization

Table 1 Neural network prediction error comparison

R2 MSE MAE Time

BP network 0.9510 0.0054 0.0627 60.02 s

Optimized BP network 0.9732 0.0030 0.0496 48.02 s

WSA-SVR 0.9685 0.0035 0.0536 108.9 s

Optimized WSA-SVR 0.9729 0.0031 0.0503 58.4 s
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BP network’s prediction accuracy noticeably improved. Simultaneously, using the 
matrix’s approximate regularization parameter as the starting value for optimization 
can improve the optimization efficiency and reduce the prediction time of BP.

Hyperparameter optimization accounts for about 70% of the total SVR prediction 
time [33]. In the WSA-SVR optimization process, by passing the approximate reg-
ularization parameter of the health matrix to the WSA-SVR network and allowing 
WSA to start optimization from an approximate global optimum, the WSA-SVR pre-
diction time can be reduced. After optimization, the accuracy of WSA-SVR signifi-
cantly improved.

Conclusions
Here it employed health assessment to derive a wind turbine health matrix, thereby 
enhancing both the accuracy and speed of neural network predictions. The optimiza-
tion algorithm designed based on health assessment can simultaneously improve the 
wind power prediction accuracy and speed of neural networks. Compared with existing 
optimization algorithms, the neural network optimization algorithm based on the health 
matrix has a smaller data cost and better prediction performance. From the principle 
and process of the algorithm, it can be concluded that it can improve the accuracy and 
speed of most neural network wind power prediction algorithms.
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