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Introduction
Object detection is a fundamental task in computer vision that involves locating and 
identifying multiple objects within an image or video [4]. It plays a crucial role in various 
applications, ranging from security surveillance and autonomous vehicles to augmented 
reality and robotics [5, 13, 27]. The ability to accurately detect and recognize objects in 
real-time is essential for enabling smart cities to efficiently manage and optimize their 
resources.
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This paper thoroughly explores the role of object detection in smart cities, specifi-
cally focusing on advancements in deep learning-based methods. Deep learning 
models gain popularity for their autonomous feature learning, surpassing traditional 
approaches. Despite progress, challenges remain, such as achieving high accuracy 
in urban scenes and meeting real-time requirements. The study aims to contribute 
by analyzing state-of-the-art deep learning algorithms, identifying accurate models 
for smart cities, and evaluating real-time performance using the Average Precision 
at Medium Intersection over Union (IoU) metric. The reported results showcase vari-
ous algorithms’ performance, with Dynamic Head (DyHead) emerging as the top 
scorer, excelling in accurately localizing and classifying objects. Its high precision 
and recall at medium IoU thresholds signify robustness. The paper suggests con-
sidering the mean Average Precision (mAP) metric for a comprehensive evaluation 
across IoU thresholds, if available. Despite this, DyHead stands out as the superior 
algorithm, particularly at medium IoU thresholds, making it suitable for precise object 
detection in smart city applications. The performance analysis using Average Precision 
at Medium IoU is reinforced by the Average Precision at Low IoU (APL), consistently 
depicting DyHead’s superiority. These findings provide valuable insights for research-
ers and practitioners, guiding them toward employing DyHead for tasks prioritizing 
accurate object localization and classification in smart cities. Overall, the paper navi-
gates through the complexities of object detection in urban environments, presenting 
DyHead as a leading solution with robust performance metrics.
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In the context of smart cities, object detection serves as a critical technology that 
lays the foundation for numerous intelligent systems [12, 13]. By leveraging com-
puter vision and machine learning techniques [6, 20], smart cities can automate and 
enhance various aspects of urban life [21]. Object detection enables the monitoring 
of traffic flow, pedestrian movement, and vehicle identification, leading to more effi-
cient traffic management and improved safety [15, 30]. Additionally, it aids in waste 
management by optimizing garbage collection routes through the identification of fill 
levels in trash bins. Moreover, object detection is instrumental in public safety and 
security [9, 16], as it allows for the detection of suspicious activities and potential 
threats in crowded areas or critical infrastructure [3]. These applications demonstrate 
the indispensable role of object detection in making urban environments more effi-
cient, secure, and livable.

Over the years, significant progress has been made in object detection, driven 
mainly by advancements in deep learning techniques. Deep learning-based meth-
ods have garnered significant attention from researchers due to their ability to auto-
matically learn relevant features from raw data [28, 31]. Compared to traditional 
approaches that heavily rely on handcrafted features, deep learning models offer 
superior performance and generalization capabilities [24]. Convolutional Neural Net-
works (CNNs) have revolutionized the field within various applications [2, 7], leading 
to remarkable improvements in detection accuracy and real-time processing capabili-
ties. The development of Faster R-CNN [10], SSD (Single Shot Multibox Detector) 
[18], and YOLO (You Only Look Once) [25] are some of the milestone contributions 
that have paved the way for state-of-the-art object detection systems. Moreover, fea-
ture extraction methods like Region Proposal Networks (RPN) and Feature Pyramid 
Networks (FPN) have further improved the robustness and efficiency of object detec-
tion models.

While deep learning-based approaches have shown great promise in object detec-
tion, they still face several challenges, especially when applied to real-world smart city 
environments. One of the primary concerns is achieving high accuracy in complex and 
cluttered scenes with occlusions and varying lighting conditions. Additionally, meet-
ing real-time requirements without sacrificing accuracy remains a significant challenge, 
considering the vast amounts of data processed in smart applications [1, 14]. As a result, 
further research and analysis are crucial to improve the performance of deep learning-
based object detection algorithms and address these limitations.

This paper seeks to contribute to the field of deep learning-based object detection 
by conducting a thorough analysis of recent algorithms. It aims to identify the most 
accurate models for smart city applications, evaluate their real-time performance, and 
address the challenges they encounter. In this study, we explore each of the standard 
performance metrics involving Average Precision (AP), AP50, Average Precision Small 
(APS), Average Precision Medium (APM), and Average Precision Large (APL). Using 
these metrics helps us understand their significance in evaluating object detection algo-
rithms on the widely used COCO benchmark [17]. Moreover, we analyze by illustrating 
the mAP results of object detection algorithms from 2016 onwards, based on Multi-
scale, Single-scale, ResNet, FPN, DCN, and YOLO networks.

In this study, the research contributions are as follows,
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1.	 Comprehensive analysis of deep learning algorithms: We conduct a detailed analy-
sis of the most recent deep learning-based object detection algorithms, focusing 
on popular architectures such as Multi-scale, Single-scale, ResNet, FPN, DCN, and 
YOLO networks.

2.	 Identification of the most accurate models: Through extensive experimentation and 
evaluation, we identify the most accurate deep learning models for object detection 
in smart city scenarios.

3.	 Performance assessment under real-time constraints: We evaluate the shortlisted 
models’ performance in real-time settings, considering the demanding requirements 
of smart city applications, to ascertain their feasibility and suitability for deployment.

Related works
This section reviews related works focusing on performance analysis studies on deep 
learning for object detection methods.

The paper in [22] provided a comprehensive examination of deep learning techniques 
for detecting small objects. The survey encompasses various state-of-the-art algorithms 
and evaluates their performance in this critical domain. The advantages of the paper 
lie in its thoroughness and systematic evaluation, which shed light on the strengths of 
different approaches in addressing the challenging task of detecting small objects accu-
rately. By focusing on deep learning methods, the paper showcases the potential for 
significant advancements in small object detection, making it a valuable resource for 
researchers and practitioners in the field. However, one limitation could be the exclusiv-
ity to deep learning approaches, as it may overlook potential synergies with traditional 
methods or hybrid solutions. Nonetheless, the paper’s contributions help advance the 
understanding and development of robust small object detection systems, facilitating 
applications in areas like surveillance, autonomous vehicles, and robotics.

In [19], a comprehensive exploration of various performance metrics was used to 
evaluate object detection algorithms. The survey encompasses a wide range of met-
rics, including Average Precision (AP), Intersection over Union (IoU), Precision-Recall 
curves, F1-score, and mAP (mean Average Precision). It provides a valuable resource 
for researchers and practitioners in the field, offering insights into the strengths and 
limitations of each metric and their applicability to different scenarios. By considering 
a diverse set of performance measures, the paper addresses the advantages of gaining a 
holistic understanding of an algorithm’s capabilities and robustness in detecting objects 
accurately. Moreover, the survey helps researchers in choosing appropriate evaluation 
criteria based on their specific application requirements. However, one limitation of the 
paper could be the absence of a unified evaluation standard, as various metrics may be 
favored in different contexts, leading to challenges in comparing results across studies. 
Nevertheless, the paper’s contributions serve to promote the development and bench-
marking of more reliable and effective object detection algorithms, aiding advancements 
in computer vision and related applications.

In [29], a comprehensive overview of state-of-the-art object detection models is pre-
sented based on deep learning techniques. The survey covers a wide range of contemporary 
architectures and methodologies, such as Faster R-CNN, SSD, YOLO, and RetinaNet, pro-
viding valuable insights into their strengths and limitations. The advantages of the paper lie 
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in its systematic analysis and comparison of various models, allowing readers to gain a deep 
understanding of their respective design choices, performance, and applicability in different 
scenarios. By consolidating information on these cutting-edge models, the paper serves as a 
valuable resource for researchers and practitioners in the field of computer vision, enabling 
them to make informed decisions when selecting or developing object detection systems. 
However, one limitation of the survey could be the dynamic nature of the field, with new 
models and techniques constantly emerging, potentially rendering some sections outdated 
over time. Nevertheless, the paper’s contributions aid in driving advancements in object 
detection research, fostering the development of more accurate, efficient, and robust deep 
learning-based models for various real-world applications.

Methods
In the realm of computer vision and machine learning, object detection algorithms play a 
crucial role in identifying and localizing objects within images or video frames. Evaluating 
the performance of these algorithms is essential to gauge their accuracy and efficiency. In 
this study, we analyze the performance of object detection algorithms on a standard dataset 
and benchmark named COCO. One effective way to achieve this is by utilizing various per-
formance metrics, such as Average Precision (AP), AP50, Average Precision Small (APS), 
Average Precision Medium (APM), and Average Precision Large (APL). In this study, we 
explore each of these metrics and understand their significance in evaluating object detec-
tion algorithms on the widely used COCO benchmark. Moreover, we analyze by illustrating 
the mAP results of object detection algorithms from 2016 onwards, based on Multi-scale, 
Single-scale, ResNet, FPN, DCN, and YOLO networks.

Average Precision (AP)

Average Precision (AP) is a fundamental metric used to measure the accuracy of an object 
detection algorithm. It calculates the average precision-recall curve over all classes in the 
dataset. Precision denotes the ratio of true positives to the sum of true positives and false 
positives, while recall represents the ratio of true positives to the sum of true positives 
and false negatives. AP provides an aggregate assessment of the algorithm’s ability to cor-
rectly identify objects across different classes, making it a valuable tool for benchmarking 
performance.

AP50 and AP75

AP50 and AP75 are variants of the Average Precision metric, focusing on specific ranges 
of IoU (Intersection over Union) thresholds. IoU measures the spatial overlap between 
predicted and ground-truth bounding boxes. AP50 considers a threshold of 50%, whereas 
AP75 uses a threshold of 75%. These metrics are particularly useful when fine-tuning an 
object detection model for specific applications where high precision or recall is paramount.

APS, APM, and APL

The APS calculates the average precision only for small objects in the dataset. This met-
ric provides insights into how well the algorithm handles small and challenging objects, 
which are often more difficult to detect accurately.
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APM (Average Precision Medium): APM focuses on objects of medium size, aiming 
to assess the algorithm’s performance on a different scale. Some objects might be rela-
tively straightforward to detect when large but become more challenging when their size 
decreases.

APL (Average Precision Large): APL measures the average precision for large objects. 
This metric is essential for evaluating how well an algorithm can detect and localize 
larger objects, which often exhibit more complex and diverse shapes.

Performance metrics for evaluation

When evaluating object detection algorithms on the COCO benchmark, employing the 
aforementioned performance metrics is crucial to gaining comprehensive insights into 
their strengths and weaknesses. By analyzing AP, AP50, AP75, APS, APM, and APL, 
researchers and developers can fine-tune their models and optimize them for specific 
use cases.

In this evaluation, if an algorithm achieves high APS but lower APL, it might excel at 
detecting small objects but struggle with larger ones. On the other hand, an algorithm 
with high APM and APL but lower APS might perform better with larger and medium-
sized objects but face difficulties in detecting smaller ones. Therefore, performance met-
rics such as Average Precision (AP), AP50, AP75, APS, APM, and APL are indispensable 
tools for evaluating the accuracy and efficiency of object detection algorithms. These 
metrics provide valuable insights into an algorithm’s strengths and weaknesses across 
various object sizes and complexities. When using the COCO benchmark, researchers 
and developers can leverage these metrics to refine their models and optimize them for 
real-world applications.

Results and discussions
This section presents the results and details of the performance analysis of different 
object detection algorithms are discussed. In this study, we selected the most popular 
object detection based on reported results from corresponding studies as Faster R-CNN 
[10], Mask R-CNN [11], D-RFCN + SNIP [26], NAS-FPN [32], DetectorRS [23], and 
DyHead [8] algorithms.

COCO benchmark

The choice of the COCO (Common Objects in Context) dataset as the preferred data-
set and benchmark for object detection is justified by its comprehensive and diverse 
nature. The COCO comprises a vast array of images spanning 80 object categories, cap-
turing complex real-world scenarios with multiple objects in intricate spatial relation-
ships. Its scale, diversity, and richness in contextual information make it an ideal testbed 
for evaluating the performance of object detection algorithms across various scenarios. 
Researchers widely adopt the COCO dataset due to its ability to challenge models with 
a wide spectrum of challenges, including occlusions, diverse object sizes, and crowded 
scenes, mirroring the complexities encountered in real-world applications. The popu-
larity of COCO as a benchmark ensures that results obtained on this dataset are widely 
recognized and comparable, fostering a standardized evaluation framework across the 
computer vision community. Therefore, leveraging COCO as a benchmark dataset for 
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object detection aligns with the need for a realistic and representative evaluation plat-
form, facilitating meaningful comparisons and advancements in the field.

Object detection performance results

In our study, we present the performance of the popular object detection algorithms: 
Faster R-CNN, Mask R-CNN, D-RFCN + SNIP, DetectorRS, and DyHead, using a com-
prehensive set of performance metrics. These metrics included Average Precision (AP) 
across various Intersection over Union (IoU) thresholds, specifically AP at IoU = 0.50 
(AP50), AP at IoU = 0.75 (AP75), AP for small objects (APs), AP for medium-sized 
objects (APm), and AP for large objects (APl). Our analysis revealed valuable insights 
into the algorithms’ capabilities in detecting objects of different sizes and achieving 
accurate localization. This multi-faceted evaluation not only showcased their overall 
object detection prowess but also their effectiveness in handling diverse object scales, 
providing a holistic view of their performance in real-world scenarios. The results of 
these performance metrics offer a comprehensive basis for comparing and selecting the 
most suitable object detection algorithm for specific applications and use cases.

Figure  1 presents the performance result of the Faster R-CNN algorithm on differ-
ent backbones, as measured by various performance metrics. In terms of the Average 
Precision (AP) metric, the highest value is achieved by the LIP-ResNet-101-MD with 
FPN backbone, which recorded an impressive AP of 43.9, indicating its superior ability 
to accurately detect objects in the dataset. On the other hand, the Inception-ResNet-v2 
backbone achieved the lowest AP score of 34.7, suggesting comparatively less effective 
object detection performance. When considering AP50, which measures the precision at 
a stricter IoU threshold of 0.50, we observe a similar pattern.

As shown in Table 1, the LIP-ResNet-101-MD with FPN backbone leads the pack 
with an AP50 score of 65.7, highlighting its excellence in accurately localizing objects. 

Fig. 1  Performance result of the Faster R-CNN algorithm on different backbones
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In contrast, the Inception-ResNet-v2 backbone again obtains the lowest AP50 score 
of 55.5, indicating a comparatively lower precision in detecting objects at this IoU 
threshold. Moving on to AP75, which measures precision at a more stringent IoU 
threshold of 0.75, we see a similar trend. The LIP-ResNet-101-MD with FPN back-
bone outperforms all others with an AP75 score of 48.1, emphasizing its remarka-
ble ability to precisely locate objects. Conversely, the Inception-ResNet-v2 backbone 
achieves the lowest AP75 score of 36.7, indicating less robust performance at this 
high IoU threshold.

Regarding the AP scores for small (APs), medium (APm), and large (APl) objects, 
the LIP-ResNet-101-MD with FPN backbone consistently attains the highest scores 
in all categories. This suggests that it excels in detecting objects of varying sizes. In 
contrast, the Inception-ResNet-v2 backbone consistently obtains the lowest scores 
in these categories. Therefore, based on the obtained results in Fig.  1, it is evident 
that the LIP-ResNet-101-MD with FPN backbone consistently outperforms the other 
backbones across all performance metrics, demonstrating its superiority in object 
detection capabilities. On the other hand, the Inception-ResNet-v2 backbone con-
sistently ranks lower in performance, indicating that it may not be the best choice 
for tasks requiring precise and robust object detection. These findings highlight the 
importance of selecting an appropriate backbone when using the Faster R-CNN algo-
rithm, as it can significantly impact the algorithm’s performance in various scenarios 
and for objects of different sizes.

Figure 2 represents the performance results of the Mask R-CNN algorithm on dif-
ferent backbones, as evaluated by various performance metrics. Firstly, when examin-
ing the AP metric, it becomes apparent that the ResNeXt-101-FPN backbone attains 
the highest overall score of 39.8, indicating its exceptional ability to accurately detect 
objects in the dataset. Conversely, the Inception-ResNet-v2-TDM backbone records 
the lowest AP score of 36.8, suggesting comparatively less effective object detection 
performance.

For the AP50 metric, which measures precision at an IoU threshold of 0.50, we 
observe a similar trend. The ResNeXt-101-FPN backbone outperforms others with 
an AP50 score of 62.3, signifying its superior precision in detecting objects. On the 
other hand, the Inception-ResNet-v2-TDM backbone achieves the lowest AP50 
score of 57.7, indicating a comparatively lower precision in object detection at this 
IoU threshold. Moving on to AP75, which evaluates precision at an IoU threshold of 
0.75, the ResNeXt-101-FPN backbone continues to lead with an AP75 score of 43.4, 

Table 1  Result of algorithms on different backbones

Method AP AP50 AP75 APs APm APl

ResNet-101-C4 34.8 55.5 36.7 14.9 39.6 52.1

ResNet-101-FPN 36.2 59.1 39 16.6 39.8 49.4

Inception-ResNet-v2 37.4 55.5 35.8 13.6 38.7 53.6

Inception-ResNet-v2-TDM 38.8 56.2 39.3 16.8 40.1 53.8

LIP-ResNet-101 w FPN 32.5 64.9 45.4 23.2 46.7 54

LIP-ResNet-101-MD w FPN 43.8 65.7 47.2 25.8 47.8 56.7
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emphasizing its excellent performance in precisely locating objects. Conversely, the 
Inception-ResNet-v2-TDM backbone records the lowest AP75 score of 39.2, indicat-
ing a relative struggle to achieve high precision at this stringent IoU threshold.

Based on the reported results, the ResNeXt-101-FPN backbone consistently outper-
forms others in all categories, reaffirming its strength in detecting objects of varying 
sizes. In contrast, the Inception-ResNet-v2-TDM backbone consistently obtains the low-
est scores in these categories, suggesting limitations in handling different object scales. 
Therefore, based on reported, it is evident that the ResNeXt-101-FPN backbone consist-
ently outperforms the other backbones across all performance metrics, demonstrating 
its superiority in object detection capabilities when paired with the Mask R-CNN algo-
rithm. Conversely, the Inception-ResNet-v2-TDM backbone consistently ranks lower in 
performance, indicating that it may not be the best choice for tasks requiring precise and 
robust object detection. These findings emphasize the critical importance of selecting 
the appropriate backbone for the Mask R-CNN algorithm, as it can significantly impact 
performance across various scenarios and object characteristics.

Figure  3 presents the results of the D-RFCN + SNIP algorithm’s performance across 
different backbone configurations, as measured by various performance metrics. In 
terms of the AP metric, the D-RFCN + SNIP algorithm with the DPN-98 backbone (with 
flip and multi-scale) emerges as the top performer, achieving an impressive AP score of 
45.7. This result indicates its exceptional ability to accurately detect objects in the data-
set. On the other hand, the D-RFCN + SNIP algorithm with the ResNet-101 backbone 
(multi-scale) achieves a slightly lower AP score of 43.4, suggesting a slightly less effective 
object detection performance in comparison. Examining the AP50 metric, which meas-
ures precision at an IoU threshold of 0.50, we again see the D-RFCN + SNIP algorithm 
with the DPN-98 backbone outperforming its counterpart with a score of 67.3, indicat-
ing superior precision in object detection. In contrast, the D-RFCN + SNIP algorithm 
with the ResNet-101 backbone obtains an AP50 score of 65.5, demonstrating a slightly 
lower precision at this IoU threshold.

Similarly, the D-RFCN + SNIP algorithm with the DPN-98 backbone leads in the 
AP75 metric with a score of 51.1, highlighting its remarkable precision at a more 

Fig. 2  Performance result of the Mask R-CNN algorithm on different backbones
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stringent IoU threshold of 0.75. Conversely, the D-RFCN + SNIP algorithm with 
the ResNet-101 backbone records a lower AP75 score of 48.4, indicating a slightly 
reduced ability to achieve high precision at this stringent IoU threshold. Therefore, 
the results demonstrate that the D-RFCN + SNIP algorithm with the DPN-98 back-
bone consistently outperforms its counterpart with the ResNet-101 backbone across 
all performance metrics, highlighting its superiority in object detection capabilities. 
This underscores the significance of selecting the appropriate backbone when imple-
menting the D-RFCN + SNIP algorithm, as it can significantly influence performance 
in various scenarios and object detection characteristics. Researchers and practition-
ers should consider the specific demands of their object detection tasks when choos-
ing a backbone, with the DPN-98 backbone showcasing exceptional performance for 
tasks requiring accurate and high-precision object detection.

Figure 4 presents the results of the DetectorRS algorithm’s performance with vari-
ous backbone configurations, as measured by different performance metrics. Similar 
to the previous interpretation, in terms of the AP metric, the DetectorRS algorithm 
with the ResNeXt-101–64 × 4d backbone stands out as the top performer, achiev-
ing the highest AP score of 48.5. This indicates its exceptional ability to accurately 
detect objects in the dataset. On the other hand, the DetectorRS algorithm with the 
ResNet-50 backbone records the lowest AP score of 44.4, suggesting comparatively 
less effective object detection performance. When examining the AP50 metric, which 
measures precision at an IoU threshold of 0.50, we again observe that the DetectorRS 
algorithm with the ResNeXt-101–64 × 4d backbone excels with an AP50 score of 72, 
indicating superior precision in object detection. In contrast, the DetectorRS algo-
rithm with the ResNet-50 backbone obtains a lower AP50 score of 67.7, signifying a 
comparatively lower precision at this IoU threshold.

Fig. 3  Performance result of the D-RFCN + SNIP algorithm on different backbones
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Similarly, the DetectorRS algorithm with the ResNeXt-101–64 × 4d backbone leads 
in the AP75 metric with a score of 53.3, emphasizing its remarkable precision at a 
more stringent IoU threshold of 0.75. Conversely, the DetectorRS algorithm with 
the ResNet-50 backbone records the lowest AP75 score of 48.3, indicating a slightly 
reduced ability to achieve high precision at this stringent IoU threshold.

As a result, the results indicate that the DetectorRS algorithm with the 
ResNeXt-101–64 × 4d backbone consistently outperforms its counterparts with 
other backbones across all performance metrics, highlighting its superiority in object 
detection capabilities. This underscores the significance of selecting the appropriate 
backbone when implementing the DetectorRS algorithm, as it significantly influences 
performance in various scenarios and object detection characteristics. Researchers 
and practitioners should consider the specific requirements of their object detection 
tasks when choosing a backbone, with the ResNeXt-101–64 × 4d backbone demon-
strating exceptional performance for tasks demanding accurate and high-precision 
object detection.

Figure  5 demonstrates the results of the DyHead algorithm’s performance 
across different backbone configurations. The DyHead algorithm with the 
ResNeXt-64 × 4d-101-DCN backbone emerges as the top performer, achieving the 
highest AP score of 54.0. This indicates its remarkable ability to accurately detect 
objects within the dataset. Conversely, the DyHead algorithm with the ResNet-50 
backbone records the lowest AP score of 43.0, suggesting a comparatively less effec-
tive object detection performance. When considering the AP50 metric, which meas-
ures precision at an IoU threshold of 0.50, we observe a similar trend. The DyHead 
algorithm with the ResNeXt-64 × 4d-101-DCN backbone excels with an AP50 score 
of 72.1, signifying superior precision in object detection. On the other hand, the 
DyHead algorithm with the ResNet-50 backbone again records the lowest AP50 score 
of 60.7, indicating a relatively lower precision at this IoU threshold.

Fig. 4  Performance result of the DetectorRS algorithm on different backbones
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Furthermore, the DyHead algorithm with the ResNeXt-64 × 4d-101-DCN back-
bone leads in the AP75 metric with a score of 59.3, emphasizing its outstanding preci-
sion at a more stringent IoU threshold of 0.75. In contrast, the DyHead algorithm with 
the ResNet-50 backbone records the lowest AP75 score of 46.8, indicating a somewhat 
reduced ability to achieve high precision at this stringent IoU threshold.

As a result, the results represent that the DyHead algorithm with the 
ResNeXt-64 × 4d-101-DCN backbone consistently outperforms other backbone con-
figurations across all performance metrics, demonstrating its superiority in object detec-
tion capabilities. This highlights the importance of selecting the appropriate backbone 
when implementing the DyHead algorithm, as it plays a pivotal role in influencing per-
formance across different scenarios and object detection characteristics. Researchers 
and practitioners should consider the specific demands of their object detection tasks 
when making backbone choices, with the ResNeXt-64 × 4d-101-DCN backbone show-
casing exceptional performance for tasks demanding precise and high-precision object 
detection.

Performance analysis based on the mAP metric

As mentioned earlier, one commonly used metric for performance evaluation of object 
detection algorithms is mean Average Precision (mAP). The mAP measures the accuracy 
of the model in localizing and classifying objects within an image. It takes into account 
precision and recall values at various intersection over union (IoU) thresholds, which 
determine how well the predicted bounding boxes overlap with ground-truth bounding 
boxes.

In short description, Faster R-CNN is a well-known two-stage object detection frame-
work that uses a Region Proposal Network (RPN) to generate candidate object regions, 
followed by classification and bounding box regression. Mask R-CNN extends Faster 
R-CNN by adding a mask prediction branch, enabling instance segmentation along 

Fig. 5  Performance result of the DyHead algorithm on different backbones
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with object detection. D-RFCN + SNIP is a method that combines the advantages of 
D-RFCN, which dynamically adjusts the receptive field size, and SNIP, a network prun-
ing technique, to achieve better efficiency and accuracy. NAS-FPN stands for Neural 
Architecture Search for Feature Pyramid Network, a method that automatically searches 
for the optimal architecture of the feature pyramid used in object detection models. 
DetectorRS is an algorithm that focuses on enhancing object detection in remote sens-
ing images. Lastly, DyHead refers to Dynamic Head, which dynamically predicts the 
number of object instances in an image without fixed anchor priors. Figure 1 shows the 
performance comparison using the mAP metric for the object detection algorithms.

As illustrated in Fig. 6, the reported results in the graph show the performance evalu-
ation of various object detection algorithms in terms of box mAP. The mAP values for 
each algorithm are as follows: Faster R-CNN achieved 34.90, Mask R-CNN obtained 
39.80, D-RFCN + SNIP scored 45.70, NAS-FPN achieved 50.70, DetectorRS attained 
55.70, and DyHead obtained the highest score of 60.60.

Based on the obtained mAP values, it is evident that DyHead is the superior algorithm 
among the compared ones. With a box mAP of 60.60, DyHead outperforms all other 
algorithms, achieving the highest accuracy in localizing and classifying objects within 
images. NAS-FPN also performs well, obtaining the second-highest mAP score of 50.70, 
followed by DetectorRS at 55.70. D-RFCN + SNIP and Mask R-CNN have mAP scores 
of 45.70 and 39.80, respectively, indicating moderate performance. Faster R-CNN trails 
behind the others, achieving the lowest mAP score of 34.90.

Therefore, based on the reported results and the mAP metric, DyHead is the most 
effective algorithm for object detection, offering the highest accuracy and precision 
among the compared models. Researchers and practitioners looking for state-of-the-art 
performance in object detection tasks should consider using DyHead as their preferred 
choice.

Performance analysis based on AP50

AP50 is an intersection over union (IoU) threshold of 50%, which measures the accuracy 
of the algorithms in localizing and classifying objects with a moderate overlap between 
predicted bounding boxes and ground-truth bounding boxes. The algorithms compared 
in the chart are Mask R-CNN, D-RFCN + SNIP, Cascade Mask R-CNN, DetectorRS, 

Fig. 6  Performance comparison using the AP50 metric
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and DyHead. By analyzing the AP50 scores for these algorithms, we can gain insights 
into their effectiveness in detecting objects accurately when there is a reasonable over-
lap between the predicted and actual bounding boxes. Figure 2 shows the performance 
comparison using the AP50 metric for the object detection algorithms.

As shown in Fig. 7, the reported results in the graph show the performance evaluation 
of different object detection algorithms using the AP50 metric. The AP50 values for each 
algorithm are as follows: Mask R-CNN achieved 62.30, D-RFCN + SNIP obtained 67.30, 
Cascade Mask R-CNN scored 71.90, DetectorRS achieved 74.20, and DyHead obtained 
the highest score of 78.50.

Based on the reported results, it is evident that DyHead is the superior algorithm 
among the compared ones. With an AP50 score of 78.50, DyHead outperforms all other 
algorithms, achieving the highest accuracy in localizing and classifying objects when 
there is a moderate overlap between predicted bounding boxes and ground-truth bound-
ing boxes. DetectorRS also performs well, obtaining the second-highest AP50 score of 
74.20, followed by Cascade Mask R-CNN at 71.90. D-RFCN + SNIP and Mask R-CNN 
have AP50 scores of 67.30 and 62.30, respectively, indicating moderate performance.

Performance analysis using APM and APL

The performance evaluation metrics APM and AP are commonly used in the context 
of object detection to assess the accuracy and robustness of different algorithms. These 
metrics measure the performance of the algorithms at different intersection over union 
(IoU) thresholds, which determine the extent of overlap between predicted bounding 
boxes and ground-truth bounding boxes. APM focuses on medium IoU thresholds, typi-
cally ranging from 0.5 to 0.75. This range represents a moderate level of overlap, where 
the predicted bounding boxes are considered accurate if they have a reasonable match 
with the ground-truth bounding boxes. APM evaluates how well the algorithms can 
accurately localize and classify objects with moderate spatial agreement. It is especially 
useful in scenarios where precise localization is essential but allowing some flexibility 
in the bounding box predictions. On the other hand, APL considers large IoU thresh-
olds, usually greater than 0.75. This higher threshold requires a much closer alignment 
between the predicted and ground-truth bounding boxes. APL evaluates the per-
formance of the algorithms in detecting and classifying objects with a high degree of 

Fig. 7  Performance evaluation using the AP50 metric
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precision. It is particularly relevant in scenarios where precise localization is crucial, and 
the algorithm needs to be robust to variations in object positions and sizes.

As shown in Fig. 8, the reported results in the graph present the performance evalua-
tion of various object detection algorithms using the APM (Average Precision at Medium 
IoU) metric. The APM values for each algorithm are as follows: Mask R-CNN achieved 
43.20, D-RFCN + SNIP obtained 48.80, PANet scored 51.70, NAS-FPN achieved 55.50, 
DetectorRS attained 58.40, and DyHead obtained the highest score of 64.00.

Based on the reported results and the APM metric, DyHead is the superior algorithm 
among the compared ones. With an APM score of 64.00, DyHead outperforms all other 
algorithms in accurately localizing and classifying objects with a moderate level of over-
lap between predicted and ground-truth bounding boxes. It achieves the highest preci-
sion and recall at medium IoU thresholds, indicating robustness and accuracy in object 
detection tasks. While DyHead is the superior algorithm based on APM, it is essential 
to consider its performance in relation to the mAP metric, which provides a more com-
prehensive evaluation across different IoU thresholds. mAP is generally a more widely 
used and informative metric for object detection models. If the reported mAP values 
are available for these algorithms, it would be more appropriate to analyze and compare 
their performance using that metric.

Nonetheless, based on the reported APM results, DyHead stands out as the top-per-
forming algorithm for object detection at medium IoU thresholds. Its higher APM score 
compared to other algorithms, such as DetectorRS and NAS-FPN, demonstrates its 
superior ability to accurately detect and classify objects under moderate spatial agree-
ment. Researchers and practitioners may consider using DyHead for tasks that prior-
itize precise localization and classification of objects in object detection applications. As 
reported in the performance analysis using APM, the APL presented a similar result that 
indicates the DyHead presents better results compared to others as shown in Fig. 9.

Discussions and considerations
It is imperative to acknowledge potential biases within the COCO dataset, as its com-
position may not perfectly mirror the diverse range of demographic and environmen-
tal conditions found in real-world smart city applications. Biases, whether in terms of 
object representation or contextual scenarios, could impact the generalizability of the 

Fig. 8  Performance evaluation using the APM metric
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study’s findings. Researchers should be mindful of these limitations to ensure that the 
insights gained from object detection algorithms on COCO are appropriately inter-
preted and applied to the complexities of varied urban environments.

The computational demands of advanced algorithms, exemplified by DyHead, must 
be highlighted, considering their potential limitations for real-time deployment on 
resource-constrained devices commonly found in smart city infrastructures. Practicality 
is a crucial aspect of algorithm selection for urban applications, and understanding the 
computational resource requirements helps manage expectations regarding the feasibil-
ity of implementing such algorithms in real-world settings.

While widely accepted metrics like Average Precision (AP) and mean Average Preci-
sion (mAP) provide valuable benchmarks for assessing object detection algorithms, it 
is essential to recognize that these metrics might not capture all aspects of performance 
in the intricacies of complex urban environments or specific scenarios. Supplementary 
metrics or context-specific evaluations may be necessary to provide a more nuanced 
understanding of algorithmic effectiveness in diverse smart city contexts.

Addressing the limitations of chosen algorithms or architectures with respect to cer-
tain types of objects or environmental conditions is crucial. An analysis that considers 
the scope of each algorithm’s applicability provides a more accurate portrayal of their 
strengths and weaknesses. Understanding which scenarios or object types a particular 
algorithm excels or struggles with enhances the practicality of its implementation in 
smart city contexts.

Bridging the gap between research findings and the challenges of real-world imple-
mentation in smart cities is paramount. Scalability, real-time responsiveness, and inte-
gration complexities should be discussed to elucidate the practical implications of 
deploying object detection algorithms in dynamic urban environments. Acknowledging 
these challenges ensures a more holistic understanding of the algorithm’s utility and fea-
sibility for actual smart city applications.

As a result, while the study offers a comprehensive exploration of object detection 
algorithms in the context of smart cities, it is crucial to acknowledge several poten-
tial drawbacks in the approach taken. Firstly, the reliance on the COCO dataset, while 
widely accepted, introduces biases that may limit the generalizability of the findings to 
diverse urban environments. The dataset’s representation might not fully encapsulate 

Fig. 9  Performance evaluation using the APL metric
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the complexities of specific smart city scenarios, raising questions about the algorithms’ 
adaptability to a broader range of real-world situations. Additionally, the computational 
demands of advanced algorithms, exemplified by DyHead, may pose practical challenges 
for real-time deployment in resource-constrained smart city infrastructures. This con-
sideration is vital for ensuring that the proposed solutions are not only effective but also 
feasible for implementation in practical settings. Moreover, while established metrics 
like AP and mAP provide valuable benchmarks, they might not comprehensively cap-
ture the intricate challenges posed by complex urban environments, emphasizing the 
need for additional context-specific evaluations to holistically assess algorithmic perfor-
mance. The study’s scope may also have limitations in analyzing the applicability of the 
chosen algorithms to specific types of objects or environmental conditions, potentially 
overlooking critical factors that influence their effectiveness. Finally, there is a need to 
address the gap between research findings and real-world implementation challenges in 
smart cities, considering issues like scalability and integration complexities. Recognizing 
these potential drawbacks is essential for a nuanced understanding of the study’s limita-
tions and for guiding future research toward more robust and applicable solutions for 
enhancing object detection in smart city environments.

Conclusions
This conclusion paper provides significant contributions to the field of deep learning-
based object detection by conducting a thorough analysis of recent algorithms. It aims 
to identify the most accurate models suitable for smart city applications, evaluating their 
real-time performance and addressing challenges. The study explores standard perfor-
mance metrics such as Average Precision (AP), AP50, APS, APM, and APL to assess 
object detection algorithms using the COCO benchmark. Additionally, it analyzes the 
mAP results of object detection algorithms from 2016 onwards, focusing on popular 
architectures like Multi-scale, Single-scale, ResNet, FPN, DCN, and YOLO networks. 
The research offers comprehensive insights into the strengths and limitations of these 
algorithms, contributing to the advancement of intelligent urban infrastructures and 
safety through improved object detection systems. Future work suggestions include 
optimizing models for even faster real-time inference and deploying them efficiently 
on resource-constrained devices. Additionally, there is potential in developing adaptive 
models to address dynamic changes in smart city environments, ensuring the continued 
effectiveness of object detection systems as cities evolve. This research contributes to 
advancing intelligent urban infrastructures and safety through improved object detec-
tion capabilities.
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