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Abstract 

In this paper, an artificial intelligence approach has been employed to analyze 
the slump and compressive strength (CS) of high-performance concrete (HPC), 
focusing on its mechanical properties. The importance of assessing these critical 
concrete characteristics has been widely acknowledged by experts in the field, lead-
ing to the development of innovative methods for estimating parameters that typi-
cally require laboratory testing. These intelligent techniques improve the accuracy 
of mechanical property predictions and reduce the resource-intensive and costly 
nature of experimental work. The radial basis function neural network (RBFNN) 
is the foundational model for predicting the mechanical attributes of various HPC 
mixtures. To fine-tune the RBFNN’s performance in replicating the mechanical proper-
ties of HPC samples, two optimization algorithms, namely the Golden Eagle Optimizer 
(GEO) and Dynamic Arithmetic Optimization Algorithm (DAOA), have been employed. 
In this manner, both RBGE and RBDA models were trained using a dataset compris-
ing 181 HPC samples that included superplasticizers and fly ash. The results show 
that DAOA has significantly improved the base model’s predictive capability, achiev-
ing a higher correlation with a value R2 of 0.936 when estimating slump. Further-
more, RBDA exhibited a more favorable root mean square error (RMSE) in predicting 
compressive strength compared to RBGE, with a notable 16% difference. Ultimately, 
both integrated models demonstrated their effectiveness in accurately modeling 
the mechanical properties of HPC.

Keywords: Compressive strength, High-performance concrete, Slump flow, 
Optimization algorithm, Radial basis neural network

Introduction
Around the world, there are many more places where large-scale concrete construc-
tion is taking place. In general, related industries and businesses will be duplicated 
due to global trends in the construction industry towards reinforced concrete struc-
tures, the construction of tall buildings, and the development of construction tech-
niques [1]. The safety and durability of cast concrete is a fundamental issue when 
using much concrete for construction. To address these issues, a lot of work has gone 
into developing high-performance concrete (HPC) . HPC is made to offer properties 
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that are matched to workability, strength, longevity, and durability for particular 
material sets, uses, and exposure conditions [2–4].
HPC can be used for structures in harsh environments, including prefabricated 

buildings, highways, bridges, sidewalks, and nuclear structures [5–7]. The main dif-
ference between conventional concrete and HPC is the use of particular chemical and 
mineral admixtures. The water content and porosity of the paste of hydrated cement 
will both decrease with the addition of some chemicals. It is not advisable to use high 
doses of chemical admixtures to reduce the water content to too low levels. The effec-
tiveness of admixtures like superplasticizers, however, largely depends on the sur-
rounding temperature as well as the fineness and chemistry of the cement. In place of 
cement, mineral admixtures can be used as pozzolanic and fine-filling materials. This 
strengthens and densifies the hydrated cement’s microstructure. Incorporating fly ash 
or slag into concrete allows for a slow setting and subsequent hardening if durability 
is a top concern [8, 9]. Additionally, mineral mixtures are typically produced industri-
ally, so such applications at reasonable costs can result in significant economic ben-
efits. In light of this, it is possible to produce concrete using a superplasticizer and 
cement replacement materials to produce cost-effective construction materials with 
increased strength, workability, and durability [7, 10, 11].

Researchers have paid particular attention to determining the concrete slump flow 
(SL) and compressive strength (CS) factors as the mechanical properties, reflecting the 
quality of the materials. These procedures are primarily carried out through empirical 
experiments, and particular tools are used to assess the mentioned concrete features 
accurately. However, physical laboratory procedures are considered time-consuming 
and expensive, and some tools might not be available. As a result, experts are work-
ing to estimate the correlation between the SL and CS of HPC and the components 
of mixtures using algorithms and formulas [12–14]. Zhou et  al. [15] examined the 
impact of aggregates on the CS of high-performance concrete. In another study, Duval 
and Kadri [16] examined the impact of silica-fume on compressive strength of HPC 
using an empirical formulations and models.

Different coefficients of regression have been produced by the experimental formu-
las used to evaluate the SL or CS of concretes in order to show the effects of differ-
ent admixtures. As a result, the prediction processes of such formulas are uncertain, 
such as the relationship between the CS of concrete and highly nonlinear ingredients. 
Civil science fields have received highly accurate results from predictions made using 
artificial intelligence (AI) and machine learning (ML) techniques, particularly HPC 
with multiple components as opposed to traditional types. Over the past two dec-
ades, various ML algorithms with different mechanisms, such as decision trees, have 
been developed [7, 17]; artificial neural network (ANN) [6, 18] ensemble algorithm 
(EA) [19], and support vector machine (SVM) [20–22] have demonstrated that mod-
els working with ML approaches have better results compared to traditional ways in 
term of accuracy and time.

For predicting the ultimate strength of rectangular and square piles, Moodi et  al. 
(2022) used ML-based techniques such as radial basis function neural network (RBNN), 
multi-layer perceptron (MLP), and support vector regression (SVR) . The correlation 
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index of R2 for the MLP , RBF , and SVR procedures was calculated using experimental 
data from 463 samples, and it was 0.970 , 0.970 , and 0.91, respectively [23].
SVR technique was used by Saha et  al. (2020) to identify the properties of freshly 

poured and hardened self-compacting concrete (SCC). The exponential radial basis func-
tion (ERBF) and RBF , two different kernel functions, were used to create the SVR model. 
SVR− ERBF outperformed SVR− RBF in the training and testing phases after collecting 
115 experimental samples with fly ash, fine aggregate, water-powder ratio, coarse aggre-
gate and superplasticizer, and binder content as input parameters. Results showed a cor-
relation coefficient of 0.965 , 0.954 , 0.979 , and 0.9773 for the predicted slump flow, L-box 
ratio, V-funnel, and CS , respectively [24].

In order to achieve this, the current paper aims to model the CS and SL of HPC mix-
tures using RBFNN . For information on feeding inputs, 181HPC samples taken from rel-
evant literature gave information on the components of mixtures and the desired levels 
of CS and slump. Additionally, the main features of the RBFNN , namely the neurons, 
and spread, were tuned by two powerful optimization algorithms as the novelty of the 
current research. The algorithms that optimize these hyperparameters are Golden Eagle 
Optimizer (GEO) and Dynamic Arithmetic Optimization Algorithm (DAOA). Integrat-
ing RBF with GEO and DAOA enhances predictive accuracy by fitting complex patterns 
in concrete mix design parameters for compressive strength and slump. GEO efficiently 
explores the solution space, emulating golden eagles’ hunting strategy. DAOA’s adapt-
ability accommodates varying concrete conditions, ensuring model effectiveness amidst 
changes. The approach ensures robust, generalizable predictions, reduces overfitting, 
and accelerates convergence, which is vital for real-time decision-making in construc-
tion. Optimal resource utilization and iterative refinement capabilities further optimize 
the model for maximum accuracy and efficiency.

Methods
Radial basis function neural network

The RBFNN was first presented by Broomhead and Lowe [25] and recognized as a feed-
forward network trained via a supervised training algorithm. The input layer, hidden 
layer, and output layer are the three layers that make up the RBF , as depicted in Fig. 1. 
There are numerous RBF of various types, including sigmoid, polynomial, inverse poly-
quadratic, and Gaussian functions. One of the useful functions given by the spread rate 
and center is the Gaussian type. The first section of a neural network, the input layer, 
contains nodes without any processes, and the number of input layer neurons equals 
the number of variables [26]. The hidden layer, which is the second section, resembles a 
calculator. In order to form the answers within the predefined curves and find the best 
solutions, it contains a radial function. In order to perform a nonlinear mapping of input 
values, the hidden layer obtains a data set from the input layer. The inputs’ distance from 
a specific center point can be calculated using the symmetrical-based function used in 
this platform. With the concentrations of produced data using neurons of the hidden 
layer as a straightforward regression process in the output part, RBFNN on the input 
nodes can be applied to the output layer.

The RBF stages can be started with (a) assigning input vector ( x ) and the center ( ci ) 
and their radial distance ( di ) for the nodes embedded in the hidden layer as well as 
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the outcomes ( hi ) appraised by the network of G using relations presented through 
Eqs. (1) and (2):

where σ is the node width of the hidden layer, and G denotes the RBF . Consequently, 
the results can be presented using Eq. (3):

in which, in the hidden layer, the number of layers equals one, and wi shows the 
weight among the neurons of output and hidden layers.

Dynamic arithmetic optimization

Two novel accelerator functions have been incorporated into the foundational arith-
metic optimization algorithm version to enhance efficiency. The dynamic version, 
which controls the ratio of exploration to exploitation behavior, modifies the candi-
date solutions and search phase during the optimization process. What sets DAOA 
apart is its ability to operate without requiring any preliminary adjustments to its 
parameters compared to the current state-of-the-art metaheuristic. The DAOA 
pseudo-code is shown in Algorithm  1, while the subsequent section delves into a 
detailed discussion of its novel dynamic features.

(1)di = �x − ci�

(2)hi = G(di × σi)

(3)y =

1

i

wihi

Fig. 1 Structure of RBFNN
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 Algorithm 1. Pseudo-Code of DAOA
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Dynamic accelerated function for DAOA

The arithmetic optimization algorithm’s dynamic component relies heavily on the essen-
tial role played by the dynamic accelerated function (DAF) during the search process. 
When using the AOA, it is necessary to fine-tune the initial min and max values of the 
accelerated function. However, employing an algorithm devoid of internally adjustable 
parameters is preferable, given that DAF is substituted with a fresh descending function. 
This adjustment factor in the optimization algorithm is presented as follows:

In this context, “Iter”represents the ongoing iteration count, “Itermax”, signifies the 
upper limit for iterations, and the value of “α” remains a constant. The function under-
goes a reduction with each successive iteration within the algorithm.

Dynamic DAOA candidate solution

The following dynamic qualities created for potential solutions in the DAOA are shown 
in this section. There are two main stages of metaheuristic algorithms: exploration and 
exploitation. Achieving a balanced balance between these stages is essential to the algo-
rithm’s performance. During the optimization process, each solution in the suggested 
dynamic adaptation which places a high emphasis on maximizing exploration and 
exploitation constantly adjusts its positions by making reference to the best-obtained 
solution. Equation (5) in the fundamental version is replaced with Eq. (6) in the dynamic 
candidate solution (DCS) function.

Introducing the DCS function directly responds to the decreasing proportion of candi-
date solutions. Its value continually reduces during each iteration, adhering to this estab-
lished pattern.

Golden eagle optimization

Golden eagles have a special relationship with humans, holding sacred positions in beliefs 
and being seen as signs of fortunate events. They hunt in Kazakhstan and Kyrgyzstan, using 
a unique spiral-shaped cruising and hunting motion. They balance their propensity to 

(4)DAF = (
Itermax

Iter
)
α

(5)xi,j(Citer + 1) =

{

best(xj)÷ (DCS + ǫ)× ((UBj − LBj)× µ+ LBj)), r2 < 0.5

best(xj)× DCS × ((UBj − LBj)× µ+ LBj))Otherwise

(6)xi,j(Citer + 1) =

{

best(xj)− DCS × ((UBj − LBj)× µ+ LBj)), r3 < 0.5

best(xj)+ DCS × ((UBj)× µ+ LBj)),Otherwise

(7)DCS(0) = 1−

√

Iter

Itermax

(8)DCS(t + 1) = DCS(t)× 0.99
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cruise and attack, making extensive circles around their territory. They alert other eagles to 
their best catch and continue to hunt throughout the flight, using both cruising and attack-
ing strategies.

The golden eagle’s balance between exploration and exploitation is reflected in its flight 
pattern. A metaheuristic algorithm, GEO, is developed based on this spiraling pattern, 
segmenting ROD images for precise examination and disease diagnosis. Consider a hypo-
thetical RGB image with dimensions M ∗ N  . The image element (pixel) at (x, y) is therefore 
equal to:

Assuming T  is the experimental image’s grey level and that the overall grey values are 
0, 1, 2, 3, ...,T − 1 , indicated by R , as follows:

The following is the definition of the image’s standardized histogram (bar chart):

The equation above can be expressed as follows using the geometrically active multi-con-
tours method:

Th∗ stands for the threshold of choice. The GEO technique uses the DRLS method to 
extract data from preprocessed images, requiring fewer initial parameters. The data is nor-
malized, used as training data for a vector machine model, and compared to expert obser-
vational images. The first step involves calculating image similarity metrics like GEOccard, 
Dice, FPR, and FNR by the articles. The mathematical formula is shown below:

Additionally, the following formulas are used to calculate the image’s statistical values, 
including sensitivity, specificity, and accuracy:

F
(

x, y
)

whilex ∈ {1, 2, 3, . . . ,M} and y ∈ {1, 2, 3, . . . ,N }

(9)F
(

x, y
)

∈ R∀(x, y) ∈ picture

(10)J = {j0.j1, . . . jR1}

(11)J (Th) = j0(th1)+ j1(th2), . . . , jR− 1
(

thk−1

)

(12)Th∗ = max{J (Th)}

(13)Jaccard
(

Ig , Im
)

= Ig ∩ Im/Ig ∪ Im

(14)Dice
(

Ig , Im
)

= 2
(

Ig ∩ Im
)

/
∣

∣Ig
∣

∣ ∪ |Im|

(15)FPR
(

Ig , Im
)

=
(

Ig/Im
)

/
(

Ig ∪ Im
)

(16)FNR
(

Ig , Im
)

=
(

Im/Ig
)

/
(

Ig ∪ Im
)

(17)Sensitivity =
TP

(TP + FN )
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TN , TP , FN , and FP stand for true negative, true positive, false negative, and false posi-
tive, respectively. Ig is equal to GT. Im is the extracted region.

Data gathering

The current study uses an experimental data set including 181HPC mixes [27] with con-
stituents: ratio of water to binder, fine aggregates to coarse aggregates ratio, fly ash, air 
entraining agent, and additive of superplasticizer which Fig. 2 has indicated symbol-line 
plot for the input and output. It is important to remember that the SL and CS measured 
magnitudes were performed on concrete that was 28 days old. Table 1 provides a general 
summary of the inputs to the models, including constituents (state variables) and geo-
technical characteristics of CS and slump flow.

Assessing the developed hybrid models

Several metrics have been used to investigate the RBDA and RBEO performance to esti-
mate the slump and CS rates of HPC mixes; they are introduced in Eqs. (20) through 
(24), where pn represents predicted values and tn represents measured values, and N  
represents the number of samples. Also, ntrain and ntest represent the number of concrete 
compounds for the training and testing steps, respectively.

(18)Specificity =
TN

(TN + FP)

(19)Accuracy =
(TP + TN )

(TP + TN + FP + FN )

(20)MAE =
1

N

N
∑

n=1

|pn − tn|

(21)VAF =

(

1−
var(pn − tn)

var(tn)

)

∗ 100

(22)RMSE =

√

√

√

√

1

N

N
∑

n=1

(pn − tn)
2

(23)

OBJ =

(

ntrain − ntest

ntrain + ntest

)

RMSEtrain +MAEtest

R2
train + 1

+

(

2ntrain

ntrain + ntest

)

RMSEtest −MAEtest

R2
test + 1

(24)R2 =









�N
n=1

�

tn − t
�

(pn − p)
�

�

�N
n=1(tn − p)2

��

�N
n=1(pn − p)2

�









2
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Fig. 2 Line symbol plot for the input and output
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Here, tn shows the measured numbers of CS and SL, and the means are indicated via 
t ; the estimated values have been indicated with pn with mean of p . The number of HPC 
mixtures for the training and testing phases is shown by ntrain and ntest, alternatively.

Results and discussions
The primary objectives of the current study revolved around modeling the mechani-
cal properties of HPC samples. By integrating the optimization techniques employed in 
this research with the RBFNN model, two distinct models known as RBDA and RBGE 
were developed, showcasing their ability to predict the CS and SL of HPC mixtures with 
remarkable accuracy. Both models underwent comprehensive evaluation in terms of 
their performance in predicting CS and SL from multiple perspectives. Table 2 presents 
the results of developed models using the RBF to predict CS and HPC slump. The table 
comprises evaluation metrics such as R2, RMSE, MAE, VAF, and OBJ. The HPC features 
differentiate the models, the specific RBF-based model (RBGE or RBDA), and the evalu-
ation phase (train, test, or all, denoting a combined evaluation).

RBGE and RBDA models are evaluated in the training and testing phases to predict CS. 
In the training phase, RBDA demonstrates a higher R2 (0.928) than RBGE (0.911), indi-
cating better accuracy. In the testing phase, RBDA maintains a slightly higher R2 (0.922) 

Table 1 Summary statistical report of model inputs

Parameter Unit Code Max Min Ave St. Dev

Compressive strength (MPa) CS 123 38 74.17 26.64

Slump flow (mm) SL 260 95 202.73 25.93

Water/binder (%) W/B 45 18 31.17 8.77

Water (kg/m3) W 180 140 162.13 12.12

Fine aggregates/all aggregates (%) S/A 53 35 42.15 5.37

Fly ash (%) FA 20 0 5.8 8.03

Air entraining agent (kg/m3) AE 0.08 0 0.03 0.03

Silica-fume (%) SF 25 0 6.44 8.43

Superplasticizer (kg/m3) SP 36.5 1.89 10.93 8.63

Table 2 The result of developed models for RBF

HPC feature Model Phase Index values

R2 RMSE MAE VAF OBJ

Compressive strength RBGE Train 0.911 9.222 8.602 98.64 -

Test 0.898 8.506 7.003 96.70 -

All 0.896 8.551 7.234 97.51 7.13

RBDA Train 0.928 7.932 6.024 96.73 -

Test 0.922 7.411 6.165 97.61 -

All 0.923 7.380 6.070 97.51 8.64

Slump flow RBGE Train 0.911 9.222 8.602 98.64 -

Test 0.915 8.504 6.988 97.23 -

All 0.909 8.549 7.223 97.79 7.08

RBDA Train 0.928 7.932 6.024 97.28 -

Test 0.936 7.382 6.112 97.97 -

All 0.933 7.360 6.03 97.79 8.59
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and lower RMSE (7.411) compared to RBGE (R2 = 0.898, RMSE = 8.506). Overall, consid-
ering all data, RBDA consistently shows a marginally superior R2 (0.923) and lower RMSE 
(7.380) compared to RBGE (R2 = 0.896, RMSE = 8.551). Additionally, the OBJ values for 
RBDA in the combined evaluation are 8.64, suggesting optimization efficiency.

Similarly, RBGE and RBDA models undergo evaluation in the training and testing 
phases for predicting slump flow. RBDA exhibits a slightly higher R2 and lower RMSE 
than RBGE across the training, testing, and combined datasets. Notably, in the testing 
phase, RBDA achieves a higher R2 (0.936) and lower RMSE (7.382) compared to RBGE 
(R2 = 0.915, RMSE = 8.504). The overall evaluation reiterates RBDA’s marginally supe-
rior performance, with a higher R2 (0.933) and lower RMSE (7.360) compared to RBGE 
(R2 = 0.909, RMSE = 8.549). The OBJ values for RBDA in the combined evaluation are 
8.59, indicating efficient optimization. These results demonstrate that RBDA exhibits 
slightly better accuracy and lower error metrics than RBGE in predicting CS and slump.

Figure 3 illustrates the relationship between observed and projected CS and SL val-
ues in HPC using data points. It compares two models: RBDA, which combines an RBF 
model with DAOA optimization, and RBGE, which pairs an RBF model with GEO opti-
mization, for predicting CS and SL values. The graph includes an R2 evaluation, posi-
tioning training, validation, and testing data points around a central reference line 

Fig. 3 Correlation between the measured and predicted values
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(Y = X) for linear regression. Two boundary lines (Y = 0.9X and Y = 1.1X) indicate poten-
tial deviations from the central line, highlighting possible accuracy issues. The analysis 
shows that the RBDA hybrid model consistently outperforms the RBGE model in terms 
of R2 and RMSE, especially in the training phase for CS prediction and the testing phase 
for SL prediction.

The additional examination of Fig. 4, which contrasts the R2, RMSE, and MAE met-
rics of different models, strengthens the observation that the RBDA hybrid model’s pre-
dictions closely align with the actual test outcomes. Within the context of this figure, a 
notable trend can be observed: the lines connecting the R2 values of the RBDA across 
three distinct phases are positioned near the edges of the triangle. In sharp contrast, the 
lines representing the error values of the RBDA for these phases are clustered in the cen-
tral area of the triangle. This particular distribution pattern serves as a compelling signal 
of the model’s impressive precision.

In Figs. 5 and 6, the error percentages for CS and SL prediction in HPC are depicted 
in radial and line plots for both the RBGE and RBDA models. In the CS plots, maximum 
errors are recorded as approximately (− 0.25, 0.35) during the testing phase and (− 0.2, 
0.3) in the training phase for the RBGE model. As for the SL plots, maximum errors of 
approximately (− 0.2, 0.35) during the testing phase and (− 0.25, 0.22) in the training 
phase are observed for the RBGE model.

Fig. 5 The error percentage for the hybrid models is based on the radial plot
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Fig. 6 The line plot of errors among the developed models
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Conclusions
This paper employs an artificial intelligence approach to model the SL and CS of HPC , 
focusing on their mechanical properties. Recognizing the significance of accurately 
estimating these crucial concrete characteristics, experts have emphasized the need 
for novel, more efficient procedures that reduce reliance on laboratory experiments. 
These intelligent methods can enhance the precision of mechanical property predic-
tions and reduce the associated physical energy and experimental costs. In this pur-
suit, the RBFNN is the foundational model for predicting the mechanical properties 
of HPC mixtures. Furthermore, two optimization algorithms, namely the GEO and 
the DAOA , are employed to fine-tune the RBFNN’s operations in replicating the 
mechanical properties, specifically CS and SL , of HPC samples. The results obtained 
from both models in predicting CS and SL are similar, but the performance of the 
DAOA optimizer is demonstrated to be superior when coupled with the RBFNN . For 
instance, in the estimation of CS , the RBDA framework achieved an R2 coefficient of 
0.928 during the training phase, which is 2.74 % higher than that of RBGE . In the test-
ing phase, the correlation coefficients were calculated at 0.922 for RBDA and 0.898 
for the other model, affirming the effectiveness of the training stage in reducing error 
rates. The error margins for slump predictions range from −15 to +20%, while for CS , 
they span ±40% . Although RBDA exhibited weaker performance in the testing phase 
when estimating CS , error fluctuations became more pronounced during testing. 
However, RBDA ’s estimated SL values were superior to those of RBGE , with the high-
est errors observed in the testing phase when appraising SL and the training phase 
when estimating CS.

In conclusion, the results confirm the capabilities of both frameworks to simulate 
CS and SL , representing mechanical properties at acceptable levels. In most cases, 
DAOA proves to be a highly accurate optimizer for fine-tuning RBFNN compared to 
GEO . Utilizing such intelligent methods instead of costly experimental approaches 
can significantly improve the cost-effectiveness of research endeavors, especially in 
future studies where these models can be employed for sensitivity analyses of con-
crete mixture constituents.
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