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Introduction
The demographic projections suggest that the Central and Southern Asia are poised to 
emerge as the world’s most populous region by 2037 [1]. Furthermore, India surpassed 
China to become the most populous country in the year 2023, and prevailing indica-
tions anticipate the persistence of this demographic trend for several decades [2]. The 
unrestrained expansion of built-up areas is majorly propelled by a substantial increase in 
population which ultimately leads to land use land cover (LULC) changes [3–5].

The significant characteristics of urban sprawl are a rapid decrease in vegetated areas 
[6, 7], random and unplanned growth [8, 9], increased economic activities in higher ele-
vations [10–12], land cover change in agricultural areas [13–16], and increase in urban 
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heat island [17–19]. This has created environmental, ecological, economic, and social 
challenges [8]. The changes, geographical and climatic, occurring in Himalayan cities 
call for special attention due to the geo-morphological, topographical, and seismic con-
straints [7, 10, 20, 21]. Thus, the monitoring of spatio-temporal expansion of the cities 
and accurate prediction of LULC change is vital for ecosystem conservation and sustain-
able development management strategies to be implemented in these regions [22]. As 
per the year-wise records shared by the Department of Economics and Statistics, State 
Government of Himachal Pradesh in India, the class III cities having a population of less 
than 50,000 in the state were found to be more vulnerable to urban sprawl due to satura-
tion in capital city Shimla, and thus, there is a pressing need to balance economic devel-
opment with sustainable environmental practices.

The integrated use of remote sensing and GIS has helped immensely in the manage-
ment of land and natural resources and in understanding the complex linkages between 
spatial patterns and processes responsible for change [7, 23–25]. Thus, the modeling and 
accurate prediction of urban sprawl has been inviting the attention of various research-
ers [26, 27], and the use of modern self-learning algorithms has further improved the 
accuracy of these models [28–31]. The understanding of dynamic changes occurring in 
the region and the incorporation of driving factors also improves the accuracy of these 
models [26].

Cellular automata (CA)-based models are spatially explicit models (SEM) that work 
on a simple premise that the future state of a land cover type is dependent on the past 
local interactions between the different land covers [22, 26]. The model’s popularity in 
GIS grew immensely in the 1980s, catalyzed by pivotal contributions from Wolfarm [32], 
Michael Batty and Xie [33], and Batty et al. [34]. The accuracy of the model was depend-
ent upon the temporal scale of maps, neighboring cells, and transition rules [35, 36]. 
Batty [34], Leao [37], and Lagarias [38] found them to be powerful spatial dynamic mod-
els. The open structure, simplicity, good spatial resolution, and integration with other 
knowledge-driven models make it an appropriate choice for urban sprawl studies [22, 
26, 35, 39]. However, the model is dependent upon spatial data only and is limited in 
implementing driving forces which is important for complex processes and accurate 
simulation [22, 26]. The non-uniform cell space, dynamic neighborhood classes, and 
non-stationary transition rules offer opportunities for modification in the original CA 
structure to make it applicable for real-time complex urban sprawl studies [22, 35]. This 
makes it necessary to integrate CA with other models.

To address the inherent constraints in the individual models, various researchers 
have employed hybrid models like CA–Markov model [40] and CA-ANN model [41]. 
The integration of spatial patterns with the processes responsible for causing changes in 
landforms is imperative for the accurate prediction and modeling of land cover changes 
[24]. Artificial neural networks (ANN) can identify and analyze the complex inter-rela-
tionship between causative factors and complex patterns [26, 42]. The architecture of 
ANN simulates and behaves in a similar pattern as the human brain and nervous sys-
tem [43–45]. ANN can deal with incomplete data, does not assume the distribution of 
input data, and can detect potential inter-dependencies between driving factors [46, 
47]. Multi-layer perceptron (MLP)-ANN, consists of input layers, hidden layers, and an 
output layer, and is the widely used model in ANN because it is fast, accurate, and can 
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infer and forecast outcomes derived from inputs that it has not encountered previously, 
exhibiting the capacity for extrapolation and prognostication [48]. Researchers have 
adeptly employed CA-ANN models to address spatial-dynamic complexities and driving 
factors, enhancing the robustness and realism of modeling for accurate prediction and 
estimation of land cover changes [18, 39, 42, 49, 50].

The study aims to model LULC change using MLP-ANN and cellular automation 
simulation in the city of Dharamshala, one of the fastest-growing cities in the state of 
Himachal Pradesh, India. The results are expected to act as a road map for urban plan-
ners and policymakers for sustainable development of the city. The research used the 
MOLUSCE plugin, as a tool to predict and assess the transformations occurring in each 
LULC type in the study area. In the study, LULC maps of 2016 and 2019 were used as 
independent variables in the model to simulate and validate the LULC map of 2022, and 
thereafter, LULC maps of 2025 and 2040 were predicted.

Study area
The research locale encompasses Dharamshala, situated in the state of Himachal 
Pradesh, India, as illustrated in Fig. 1. Positioned within the Western Himalayas, the city 
graces the southern inclines of the principal regional Dhauladhar mountain range (V. 
Gupta et al., [51]). Geographically, the study vicinity spans from 32° 9′ 52″ N to 32° 15′ 
58″ N in latitude and 76° 17′ 22″ E to 76° 23′ 09″ E in longitude, encompassing an 
expanse of 42.7  km2. Elevation within this area exhibits variability, ranging from 790 m 
in the southwest to an altitude of 2130 m above mean sea level (AMSL) in the north. The 
region has a humid subtropical climate and experiences a mean annual temperature of 
about 19.1 ± 0.5 °C. The zenith of temperature occurs in June with an average of 32 °C, 
while the nadir registers in January with an average of 10 °C. The northern parts of the 
region also receive heavy snowfall during winter. Geologically, the region forms a part of 

Fig. 1 Study area, Dharamshala city
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the Outer Himalayas with a predominant geological composition comprising sandstone, 
characterized by alternating bands of clays, shale, and siltstones (V. Gupta et al., [51]).

The city is the winter capital of the state of Himachal Pradesh and the headquarters of 
the Central Tibetan Administration. The city is a famous hill station destination, both for 
national and international visitors. Further, it is also the administrative headquarters of 
Kangra district. The city was declared a municipal corporation in the year 2015 by merg-
ing 9 adjacent villages and has ever since witnessed rapid urbanization. It is one among 
the 100 cities in India and the only city in the state of Himachal Pradesh chosen in the 
year 2016 to be developed under the National Smart Cities Mission by the Government 
of India.

A dramatic rise in urban spaces has been witnessed in the city from the year 2016 
onwards, and there exists an inherent imperative to address the recent alterations that 
have manifested within this geographical area through a scientific lens. The time scale 
chosen in the study corresponds to the maximum socio-economic changes occurring 
in the city due to the formation of municipal limits, hosting of international cricket 
matches and also serving as the residence of His Holiness Dalai Lama.

Methods
The simulation’s correctness is determined by the quality of the data and criteria used 
in the investigation [26, 35, 39]. The month of May is characterized by sunny days with 
no or little rainfall in the region; thus, all the temporal satellite imageries were chosen 
from this month to negate the impacts of phenological effects and cloudy pixels [52]. 
The ancillary data included a draft town and country planning (TCP) report of Dhar-
amshala city and ground truth points (using GPS) for assistance and validation in image 
classification.

The study incorporated LULC maps of 2016, 2019, and 2022 and digital elevation 
model (DEM), the details of which are given in Table 1. Multi-temporal Landsat 8 Oper-
ational land Imager (OLI) satellite imageries for the years 2016, 2019, and 2022 were 
used, the description of which is shown in Table 2. A hybrid approach involving a Maxi-
mum Likelihood Classifier (MLC) and thereafter adopting post-classificaton improve-
ment measures using vegetation indices was used in the research study to create LULC 
maps of 2016, 2019, and 2022 with each LULC map attaining an overall accuracy sur-
passing 85% and kappa hat showing substantial agreement. The selection of the Max-
imum  Likelihood Classifier was based on the topographical challenges and spectrally 
homogeneous attributes of the land cover classes under investigation. The correction of 
the land cover classes through visual interpretation becomes essential by utilizing high-
resolution satellite imagery obtained from Google Earth and Planet Scope [53, 54].

The riverine sources, in this part of the Himalayan region, are characterized by the 
presence of boulders and cobbles, and thus, the chances of overlapping spectral charac-
teristics for the built-up areas and water bodies were likely. The Strahler order algorithm 
available in SAGA was used to accurately delineate the water bodies.

Various researchers have included slope, elevation, and aspect, as geospatial param-
eters; population density as the socio-economic parameter; and spatial variables such 
as distance from the water bodies, roads, built-up areas, and from the center of town 
for simulation [18, 30, 31, 39, 42, 49, 50]. After checking different combinations of 
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socio-economic and physical factors, the simulated LULC map of 2022 showed the best 
performance by considering five parameters that included slope, distance from streams, 
distance from roads, distance from built-up areas, and distance from the center of town. 
The explanatory maps having the shp data format were converted to a raster and then 
Euclidean distance was calculated in QGIS to create a raster data type. The explanatory 
maps in GeoTIFF format were also created using Euclidean distance in QGIS.

The methodological workflow for the area under investigation is summarized in 
Fig. 2. The MOLUSCE plugin available in QGIS 2.18 was used for the simulation of 
land cover change in 2022.

The transition probabilities derived from MLP-ANN learning processes are fed into 
CA to predict and estimate the LULC changes in this hybrid model of CA-ANN [31, 49].

Table 1 Summary of datasets

Data Criteria LULC 
simulation

Year Description Source Data format

DEM Slope Explanatory 
map

2007 ALOS-PALSAR 
12.5-m radio-
metrically terrain 
cCorrected

ASF Data Search 
Facility and 
NASA Earth Data

GeoTIFF

DEM Distance from 
streams

Explanatory 
map

2016 Major streams in 
the region

Strahler order 
algoithm in 
SAGA of QGIS

shp

Road map Distance from 
roads

Explanatory 
map

2020 Major roads 
(including vil-
lage roads)

OpenStreetMap shp

Built-up areas Distance from 
built-up areas

Explanatory 
map

2016 Built-up areas in 
the region

Thematic map 
prepared for the 
year 2016 using 
maximum likeli-
hood classifier 
(MLC)

GeoTIFF

Commercial 
center of the 
region

Distance from 
the center of 
town

Explanatory 
map

2016 Center of town 
with the most 
population and 
commercial 
areas

Town and 
country plan-
ning report of 
Dharamshala 
(Govt. of HP, 
India) (mhttps:// 
tcp. hp. gov. in/ 
devel opmen 
tPlan/ devel 
opment- plan)

PDF

LULC map LULC Input map 2016 Thematic maps 
prepared by 
the use of MLC 
on satellite 
imageries

United States 
Geological 
Survey (USGS) 
(https:// earth 
explo rer. usgs. 
gov/)

GeoTIFF

2019

2022

Table 2 Description of satellite imageries used in the study (source: USGS Earth Explorer)

Satellite Sensor Path/row Date of acquisition

Landsat 8 OLI/TIRS 148/38 19–05-2016

Landsat 8 OLI/TIRS 148/38 12–05-2019

Landsat 8 OLI/TIRS 148/38 20–05-2022

https://tcp.hp.gov.in/developmentPlan/development-plan
https://tcp.hp.gov.in/developmentPlan/development-plan
https://tcp.hp.gov.in/developmentPlan/development-plan
https://tcp.hp.gov.in/developmentPlan/development-plan
https://tcp.hp.gov.in/developmentPlan/development-plan
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Image pre‑processing

The satellite imageries of 2016, 2019, and 2022 were transformed to spectral radiance 
values, and the Dark Object Subtraction (DOS) in the semi-automatic classification 
(SCP) plugin in QGIS was used for performing atmospheric correction. Thereafter, the 
images were mosaicked, and an image subset was performed using the shapefile of the 
municipal corporation limits of Dharamshala city. The shape file of municipal limits 
was geometrically corrected with the use of ground control points (GCP) selected using 
GPS. This was executed in a manner that ensured the Root mean Squared Error (RMSE) 
attained a value of less than half of a pixel [55].

Modified Anderson’s LULC classification system was adopted to produce thematic 
maps comprising five LULC classes, Protected areas (PA), Agricultural areas (AA), Built-
up Areas (BA), Barren land (BL), and Water bodies (WB), as shown in Table 3, for the 
years 2016, 2019, and 2022. Supervised classification using MLC was used for the cre-
ation of the five land cover classes [7, 20, 53, 56, 57]. The forests are protected under 
Indian Forest Act, 1927, and the tea plantations are protected under Himachal Pradesh 
Ceiling on Land Holdings Act, 1972, and thus were classified under the protected areas 
(PA).

Fig. 2 Methodological workflow and data analysis

Table 3 Description of the different LULC categories

LULC class General description

Protected areas (PA) Includes forests and tea plantation

Agricultural areas (AA) Croplands

Built-up areas (BA) Settlements and roads

Barren land (BL) Unvegetated and uncultivable area

Water bodies (WB) Streams and lake
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Inputs

The LULC maps for 2016 and 2019 are taken as input and establish the spatio-tempo-
ral dynamics of the region. The MOLUSCE plugin was used to create a transition map 
between 2016 and 2019 showing the percentage change occurring in each of the five 
land cover types for the period from 2016 to 2019.

For using the CA model, the region should be a discrete grided area, with each cell 
specifying a land cover type. The driving factors could be categorized as having differ-
ent spatial attributes, such as distance parameters, physical properties, and neighbor-
hood relationships [58]. The distance parameter includes distance from the streams, 
roads, built-up areas, and from the center of town. Physical properties include slope and 
elevation. Neighborhood relationships involve the percentage area of a land cover type 
around the cell of interest. The explanatory maps are extracted in a raster format (Fig. 3).

The transition functions are non-linear and represent the relationship between driv-
ing factors and transformation probabilities of land cover type [26, 39]. ANN model is 
trained on explanatory maps, and then the transition probabilities are established for 
the CA model. The prediction of transition probabilities from the current land use type 
to different LULC categories at the subsequent time point, denoted as “t + 1,” was deter-
mined by taking into account the current LULC classification of a specific cell as well as 
the neighboring cells at time t.

Based on spatio-temporal dynamics and the impact of driving factors, the simulation 
is initially performed for the year 2022, and based on the performance of the model, the 
predictions are thereafter made for the years 2025 and 2040 in the iterative steps of two 
and six, respectively, in the model.

Evaluating correlation and transition analysis

The examination of correlation among the driving factors was executed using the 
Cramer coefficient, also known as the Cramer V method, particularly suitable for con-
tingency tables larger than 2 × 2. The outcomes span a range of 0 to 1, where elevated 
values signify a heightened correlation amid the driving factors. A coefficient surpassing 
0.15 indicates a substantial explanatory potency of variables [49]. The correlation matrix 
is shown in Table 4.

The changes (in area and percentage) occurring in the land cover classes for the period 
2016 to 2019 are shown in Table 5. The transition matrix, shown in Table 6, helps com-
pare and understand temporal transformations occurring in the region, without the 
impact of physical and socio-economic driving factors. Within the matrix’s diagonal, 
the constituent elements signify the magnitude of class constancy, portraying the persis-
tence of specific land cover categories. Conversely, the off-diagonal entries encapsulate 
the dimensions of shifts occurring between distinct classes [18]. The values proximate 
to 1 are present in the diagonal entries, signifying the stability of the corresponding land 
cover types for the chosen period.

Transition potential modeling

The transformations occurring in a region are a highly complex process dependent on 
spatio-temporal changes and driving factors responsible for the changes [26, 31]. The 
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Fig. 3 Explanatory map: slope, distance from streams, distance from roads, distance from built-up areas, 
distance from the center, and elevation

Table 4 Driving factors with Cramer’s V 

Distance from 
built‑up areas

Distance 
from 
roads

Distance from 
the center of 
town

Elevation Slope Distance 
from 
streams

Distance from built-up 
areas

– 0.3475 0.1284 0.2131 0.314 0.1929

Distance from roads – – 0.2599 0.006 0.2382 0.3653

Distance from the center 
of town

– – – 0.2878 0.2321 0.4231

Elevation – – – – 0.5143 0.4029

Slope – – – – – 0.366

Distance from streams – – – – – –
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geographical phenomenon although non-linear and stochastic but have fractal prop-
erties [59] and machine learning algorithms, like MLP-ANN, can be very useful in the 
identification of these changes [45, 60]. The transition function pertaining to the altera-
tion in LULC delineates the association linking the driving factors with the probabilities 
of conversion, specifically discerning whether cells will shift towards a particular land 
use/cover classification. The multi-layer feed-forward approach of the model is trained 
using the error back propagation, wherein the network parameters are modified as per 
the output error demands [48, 58, 61]. The learning curve for the ANN-MLP is shown in 
Fig. 4.

Validation
In LULC simulation, the cross-tabulation matrix, also referred to as a contingency table, 
error matrix, or confusion matrix, stands as an extensively utilized approach for the 
evaluation of outcomes [62]. Cross-tabulation facilitates a comparative analysis between 

Table 5 LULC change from 2016 to 2019

LULC class 2016 (sq. km) 2019 (sq. km) Δ (sq. km) 2016 (%) 2019 (%) Δ (%)

Protected areas (PA) 29.37 26.26  − 3.11 69.1 61.79  − 7.31

Agricultural areas (AA) 6.88 6.97 0.09 16.19 16.41 0.22

Built-up areas (BA) 4.41 7.51 3.10 10.38 17.66 7.28

Barren land (BL) 0.27 0.19  − 0.08 0.64 0.45  − 0.19

Water bodies (WB) 1.57 1.57 0.00 3.69 3.69 0

Table 6 Transition probability matrix for LULC change from 2016 to 2019

PA AA BA BL WB

PA 0.8524 0.0732 0.0733 0.0012 0.0000

AA 0.1736 0.6912 0.1330 0.0022 0.0000

BA 0.0000 0.0000 1.0000 0.0000 0.0000

BL 0.1291 0.2517 0.1059 0.5132 0.0000

WB 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 4 Neural network learning curve
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the outcomes projected by the model and the observed outcomes [63]. In this matrix, 
each row corresponds to the anticipated category, while each column signifies the fac-
tual category, thereby showcasing discrepancies in the cells, often expressed as errors 
represented in percentages or areas [27, 64].

The assessment of accuracy was conducted utilizing overall accuracy and kappa hat 
statistics as the metrics of evaluation. Both metrics use the confusion matrix for cal-
culation purposes. The determination of overall accuracy involves the consideration of 
diagonal elements only within the confusion matrix, while the kappa hat also consid-
ers non-diagonal elements and thus incorporates omission and commission errors [64]. 
Kappa hat evaluates the land modeling performance excluding chance agreement [65], 
with values ranging from 0.41 to 0.60 categorized as “moderate agreement” and 0.61 to 
0.80 as “substantial agreement” [27, 66].

Several simulations with different combinations of exploratory maps were performed, 
as shown in Table 7. The combination consisting of the parameters distance from built-
up areas, distance from roads, distance from the center of town, elevation, slope, and 
distance from streams showed the maximum accuracy and was chosen in the research 
study to prognosticate the LULC for the year 2022. The simulated and actual maps were 
compared with the accuracy metric kappa having a value of 0.77 denoting a notable con-
cordance between both the maps and accuracy was found to be 86.83%. It can be con-
cluded from these that the explanatory variables chosen had a great influence on the 
prediction of LULC classes. The maps for the years 2025 and 2040 were predicted after 
running two and seven iterations in CA, respectively.

Results and discussion
The LULC distribution for the years 2016, 2019, and 2022 is shown in Table 8. Table 9 
shows the transition undergoing area-wise and percentage-wise for each LULC class 
from 2016 to 2019 and 2019 to 2022. The positive values show the increase in that land 
cover class, while the negative values indicate the decrease for a particular land cover 
class. The spatio-temporal distribution of LULC classes for the years 2016, 2019, and 
2022 are shown in Fig.  5. It can be observed that protected areas had undergone the 
maximum transition from the year 2016 to 2022 with a reduction of 11.85% and a 
decrease of 5.04  km2 in area. The built-up areas had increased considerably by 14.54% 
and 6.18  km2 in area. The agricultural areas had also decreased by 2.73% and 1.16  km2 
in area and a slight increase in barren land is also observed. This signifies the impact of 

Table 7 Simulation results for different combinations of exploratory maps

S. no Spatial variable combination Accuracy (%) Kappa 
coefficient

1 Distance from built-up areas, distance from roads, elevation, slope, aspect, 
distance from streams

86.29 0.77

2 Distance from roads, slope, distance from streams, aspect, elevation 86.77 0.77

3 Distance from agricultural areas, aspect, distance from built-up areas, eleva-
tion, slope, distance from streams, distance from roads

86.62 0.77

4 Distance from built-up areas, distance from roads, distance from the center 
of town, elevation, slope, distance from streams

86.83 0.77
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anthropogenic and socio-economic activities in the city and the rapid conversion of this 
hill station into a concrete jungle. The results also indicate widespread encroachments 
and abeyance of legislation.

The increase in built-up areas and barren land for the period 2016–2022 is primar-
ily related to the increasing human population and tourist inflow in the city, leading to 
additional need for residential and commercial spaces. This led to high pressure on the 
protected areas and agricultural areas, which had suffered maximum depreciation for 
this period.

The region lying at an altitude of less than 1500 m remained the most critical with max-
imum changes in LULC classes being witnessed there. The built-up areas, agricultural 

Table 8 LULC distribution for the years 2016, 2019, and 2022

LULC 2016 2019 2022

Class Area  (km2) % age area 
covered

Area  (km2) % age area 
covered

Area  (km2) % age area 
covered

PA 29.36 69.10 26.26 61.79 24.33 57.25

AA 6.88 16.19 6.97 16.41 5.72 13.46

BA 4.41 10.38 7.51 17.66 10.59 24.92

BL 0.27 0.64 0.19 0.45 0.29 0.69

WB 1.57 3.69 1.57 3.69 1.57 3.69

Table 9 LULC change analysis for the years 2016, 2019, and 2022

LULC 2016–2019 2019–2022 2016–2022

Category Area  (km2) % age change 
in area

Area  (km2) % age change 
in area

Area  (km2) % age 
change in 
area

PA  − 3.11  − 7.31  − 1.93  − 4.54  − 5.04  − 11.85

AA 0.09 0.22  − 1.25  − 2.95  − 1.16  − 2.73

BA 3.10 7.28 3.08 7.25 6.18 14.54

BL  − 0.08  − 0.19 0.10 0.24 0.02 0.05

WB 0.00 0.00 0.00 0.00 0.00 0.00

Fig. 5 LULC maps for the years 2016, 2019, and 2022
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areas, and protected areas showed maximum transition in this region. The main reason 
for this could be attributed to the better transportation facilities, road connectivity, suit-
able climatic conditions for living and agricultural practices, commercial establishments, 
and more population concentration in this region. Higher altitude regions, because of 
terrain and other geographical constraints, are less vulnerable to built-up areas. Thus, 
the city requires greater concern and attention from policymakers and environmental-
ists to pave the way for a balanced, holistic, and sustainable development model.

The simulation and accurate prediction of LULC become necessary to understand 
the trend and direction of urban sprawl. The LULC maps of 2025 and 2040 were pre-
pared using CA modeling, and the spatial distribution of these LULC maps is shown in 
Fig.  6. Six driving factors, distance from built-up areas, distance from roads, distance 
from the center of town, elevation, slope, and distance from streams, were chosen for the 
modeling.

The LULC change analysis of the maps from 2016 to 2025 and 2016 to 2040 is shown 
in Tables 10 and 11. The results indicate the continuation of the trend of increase in the 
built-up areas and a decrease in protected areas for the year 2025. However, the increase 
in built-up areas will saturate after 2025, and the percentage increase in built-up areas 

Fig. 6 Predicted LULC maps for the years 2025 and 2040

Table 10 LULC change analysis from 2016 to 2025

LULC 2016 2025 Change (2016–2025)

Category Area  (km2) % age Area  (km2) % age Area  (km2) % age

PA 29.36 69.10 23.10 54.36  − 6.27  − 14.75

AA 6.88 16.19 5.69 13.39  − 1.19  − 2.81

BA 4.41 10.38 11.99 28.22 7.58 17.84

BL 0.27 0.64 0.15 0.35  − 0.12  − 0.29

WB 1.57 3.69 1.57 3.69 0.00 0.00
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for 3 years will be reduced as compared to the previous 3-year transition. This could be 
attributed to the fact that most of the usable and productive areas for construction will 
be exhausted.

The hilly areas offer geographical and topographical constraints for construction, 
and thus, the ideal locations for construction are usually those located at mid-altitudes 
and having less slope. The seismicity of the area is another challenge. All these factors 
will lead to construction in high seismic and landslide-prone areas, which would pre-
sent a significant impediment to the well-being and security of the inhabitants. Another 
important observation from the findings was that the transition of built-up areas on the 
temporal scale is usually restricted to mid and south-eastern regions of the study area. 
The region has witnessed urban sprawl in these pockets and will remain a critical region 
in the future.

The swift expansion of urbanized regions, stemming from demographic expansion and 
the influx of tourists, emphasizes the critical significance of implementing sustainable 
urban planning strategies. Effective land-use management strategies should be imple-
mented by policymakers and urban planners involving the promotion of efficient land 
use, reducing urban sprawl, and preserving green spaces, contributing to the attainment 
of Sustainable Development Goal (SDG) 11, which focuses on creating sustainable cities 
and communities.

The decline in protected areas is a matter of concern as it poses a threat to biodiversity 
and ecosystems. Strict implementation of legislation, with the involvement of environ-
mentalists and policymakers, can help protect and restore these areas, thus preserving 
biodiversity and ensuring the long-term sustainability of natural resources. This effort 
directly relates to SDG 15, which focuses on maintaining and enhancing life on land.

Land-use planning plays a crucial role in fostering responsible consumption and 
production patterns. By optimizing land use and preventing further encroachment on 
protected areas, policymakers can contribute to sustainable resource management and 
reduce the environmental impact of human activities, which aligns with the objectives of 
SDG 12, aiming to ensure responsible consumption and production.

The increasing population and tourists will remain the major driving factors for the 
change. The decrease in agricultural areas indicates a shift in agriculture practice, which 
lately has been the preferred occupation of the residents. Further, the decrease in pro-
tected areas indicates the persistent encroachments and abeyance of legislation. In order 
to address the decreasing agricultural areas, it is crucial to promote sustainable farming 
practices and increase agricultural productivity to address the escalating requirements 

Table 11 LULC change analysis from 2016 to 2040

LULC 2016 2040 Change (2016–2040)

Category Area  (km2) % age Area  (km2) % age Area  (km2) % age

PA 29.36 69.10 22.28 52.44  − 7.08  − 16.66

AA 6.88 16.19 5.72 13.47  − 1.16  − 2.72

BA 4.41 10.38 12.78 30.07 8.37 19.69

BL 0.27 0.64 0.14 0.33  − 0.13  − 0.31

WB 1.57 3.69 1.57 3.69 0.00 0.00
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of sustenance. This can be accomplished through the implementation of innovative tech-
niques, support for small-scale farmers, and ensuring food security for all, thereby work-
ing towards achieving Zero Hunger (SDG-2).

Conclusions
The study applied ANN-based CA approach for prediction of land cover classes which 
showed substantial agreement between the simulated and the actual LULC map, with 
the accuracy metric kappa showing a value of 0.77. The model incorporated six driving 
factors, out of which four were socio-economic spatial parameters, distance from built-
up areas, roads, center of town, and streams; while two were geospatial parameters, 
elevation, and slope. These criteria combinations performed the best in the CA-ANN 
model showing the highest value of accuracy of 86.83%.

The selection of these factors was based on their potential influence on the study’s 
outcomes. For instance, proximity to built-up areas may impact pollution levels and 
development rates, while distance from roads may correlate with traffic noise and urban-
ization patterns. Elevation and slope could affect water resource accessibility, and prox-
imity to streams might indicate water source quality.

The study predicts that the built-up areas will increase by 17.84% in the year 2025 and 
19.69% by the year 2040. The protected areas will decrease by 14.75% and 16.66%, agri-
cultural areas by 2.81% and 2.72%, and barren land by 0.29% and 0.31% for the years 
2025 and 2040, respectively.

The rapid increase in population and tourism has led to a significant rise in built-up 
areas, creating an urgent demand for more land and putting undue pressure on pro-
tected areas and agricultural areas. Strict implementation of legislation is necessary to 
prevent further encroachments in the protected areas. Studying the critical land-use 
classes in terms of socio-ecological and environmental concerns is valuable for balanc-
ing environmental pressures and conservation interventions. The findings can offer 
guidance to administrators, policymakers, agricultural practitioners, and urban planners 
in formulating methodologies for sustainable land-use planning and management, fos-
tering the optimal utilization of natural resources.
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