
Priority‑enabled MQTT: a robust approach
to emergency event messaging
P S Akshatha1,2* , S Divyashree3 and S M Dilip Kumar1

Introduction
IoT is one of the most essential and current technologies that has conquered all aspects
of human existence. It enables the connection and communication of devices without
human interaction. IoT has facilitated faster and easier access to remote applications
and information [1–4]. IoT expanded the Internet’s capabilities beyond the limitations
of standard computers by allowing smart devices to transmit and receive data remotely
from diverse settings and communication networks. Due to the heterogeneity of IoT
applications in various aspects of life, many IoT protocols are chosen based on the pro-
tocol’s essential function [5]. These protocols can handle message transmission between
sensing and processing nodes, transmit data, collect data from sensing nodes, and gather
data from sensing nodes. The MQTT protocol is most widely used in the IoT application
layer [6]. It is a networking protocol for M2M and IoT. It transmits messages between
devices via a publish/subscribe communication mechanism. It makes it easier to com-
municate with remote areas when network bandwidth is constrained.

Vehicle tracking, health status assessment, accident detection, and industrial machine
monitoring are among the most generic and representative IoT applications. Rapid and

Abstract

This paper presents priority support in the Internet of Things to support the reliable
and timely transmission of messages during emergencies. The Message Queuing
Telemetry Transport protocol is a widely used IoT messaging protocol. However, it
does not support the timely and fast delivery of emergency messages. In this regard,
this paper proposes to classify the messages into three different queues. The Rab-
bitMQ broker manages virtual queues based on the message type, such as First Come
First Served, Critical, and Urgent. In addition, the proposed approach stores the mes-
sages in the MySQL database for further analysis. To confirm its efficacy, we compare
the Urgent and Critical queues with the current First Come First Served technique
in an experimental implementation. Wireshark packet analyzer is used to record pack-
ets while messages are being transmitted between clients and the broker to examine
end-to-end latency, jitter, response time, and total time. The results show that the pro-
posed approach performs better for high-priority emergency messages.

Keywords: AMQP, Internet of Things, Message Queuing Telemetry Transport, Brokers,
RabbitMQ, Delay, Jitter, Response time

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.
If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Akshatha et al.
Journal of Engineering and Applied Science (2024) 71:67
https://doi.org/10.1186/s44147‑024‑00400‑2

Journal of Engineering
and Applied Science

*Correspondence:
akshatha.ps@gmail.com

1 University Visvesvaraya College
of Engineering, Bengaluru,
Karnataka 560 001, India
2 Dept of AIML, New Horizon
College of Engineering,
Bengaluru, Karnataka 560 103,
India
3 East West Institute
of Technology, Bengaluru,
Karnataka 560 091, India

http://orcid.org/0000-0003-1319-2753
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-024-00400-2&domain=pdf

Page 2 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

efficient message delivery is essential in many applications, especially in emergencies.
The MQTT standard maintains message transmission dependability by defining three
quality-of-service (QoS) levels, namely,

1. QoS-0: At most once,
2. QoS-1: At least once, and
3. QoS-2: Exactly once.

However, the current MQTT for IoT does not prioritize processing emergency mes-
sages. The transmission of information regarding a patient’s abFCFS state for medi-
cal purposes and an emergency requiring an emergency stop of related field facilities
when an abFCFSity occurs in a specific facility at a manufacturing site are representative
examples that should be handled first and foremost [7–10]. We also require historical
data for analytics and reporting. Most MQTT brokers do not include a built-in mecha-
nism for saving MQTT data to a database.

This paper provides a way to overcome the presented IoT protocols’ difficulties and
limitations. The MQTT protocol in the proposed approach coordinates the publishing
of messages between publishers based on specified priority queues, allowing emergency
messages to be sent on time and reducing message latency. The proposed method can
also save MQTT data from sensors to a MySQL database for later analysis and reporting.

RabbitMQ

RabbitMQ is open-source message broker software. The RabbitMQ MQTT plugin sup-
ports many MQTT clients and supports version MQTT 3.1.1. It also enables interop-
erability between (Advanced Message Queuing Protocol) AMQP 0-9-1, AMQP 1.0,
STOMP clients, and MQTT clients. The concept of multi-tenancy is supported (https://
www. rabbi tmq. com/ mqtt. html). It also supports various plugins and utilities, provid-
ing operational metrics, continuous integration, and integration with other enterprise
systems.

Contributions

The contributions of this paper are listed below:

1. Introducing a prioritized MQTT emergency message delivery system to ensure high-
priority transmission.

2. Implementing a message storage mechanism in the MySQL database, enabling com-
prehensive analysis of stored data.

3. Estimating and comparing the end-to-end delay between the proposed prioritized
approach and the conventional FCFS approach, providing insights into latency
improvements.

4. Assessing and comparing the total time required to publish messages via Urgent,
Critical, and FCFS queues, highlighting the efficiency of the proposed prioritization.

5. Evaluating and comparing the mean response time of messages, offering a compre-
hensive understanding of the performance differences between the proposed and
FCFS approaches.

https://www.rabbitmq.com/mqtt.html
https://www.rabbitmq.com/mqtt.html

Page 3 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

6. Analyzing and comparing mean jitter at the subscriber end in both the proposed pri-
oritized approach and the FCFS approach, contributing to a thorough examination of
message delivery stability.

Paper organization

The rest of the paper is formulated as follows: The related works to improve the pri-
ority mechanism for the MQTT protocol are discussed in the “Related work” section.
The “Problem statement” section discusses the problem statement and objectives.
The “Proposed system” section discusses the proposed system with architecture and
analytical analysis of queues. In the “Results and discussion” section, Results and Dis-
cussions for existing and proposed approaches are compared and analyzed. Finally, in
the “Conclusions” section, the conclusion of the paper and future work is presented.

Related work
This section discusses related works that use MQTT communication to improve the pri-
ority feature.

The authors of [11] proposed an algorithm to prioritize messages using a multi-
scanned priority message sorting algorithm, with Mosquitto broker and smart factory
applications in IoT as examples. To reduce the latency of the data packets needed for
time-sensitive applications, the authors of [12] described the prioritization of the traffic
information gathered using sensors in a gateway for the MQTT-SN. To reduce uplink
traffic load, the developers of [13] suggested the Backoff method, which applies an expo-
nential delay factor to suspect publishers. Additionally, depending on the recently deter-
mined frequency rate, a priority scheduling algorithm is offered to classify publishers as
high or low priority.

In [14], a technique for detecting out-of-order notifications on top of an existing topic-
based Event Notification Service is presented. The results demonstrate that events pub-
lished on various subjects are either sent in the same sequence to all subscriber clients
of those topics or labeled as out-of-order. The authors of [15] suggested a novel way to
enhance the capabilities of MQTT by transmitting Urgent messages first. The Mosquitto
broker is modified to build a “U-Mosquitto” broker capable of processing emergency
messages.

The paper [16] explores existing literature on methods for assigning priority to MQTT
messages and introduces an approach for identifying and processing Urgent messages in
MQTT applications. The focus is prioritizing specific messages from Critical sources in
IoT environments. The work in [17] utilizes Software Defined Networking, particularly
the OpenFlow protocol, to enforce temporal behavior through network reservations.
Extensive emulation and implementation results demonstrate the approach’s feasibility,
showcasing adequate segregation and prioritization of time-sensitive MQTT traffic.

Uchida et al. [18] introduced assigning priority values to IoT data based on abFCFSity,
storing them in broker node priority queues. The experiments with a prototype system
demonstrate the effectiveness of the Enhanced MQTT method.

The conventional methods to enhance MQTT communication priority involve modi-
fications to the MQTT protocol packet structure or broker configuration. Some papers

Page 4 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

propose approaches without experimental validation. In contrast, the proposed method
introduces a priority enhancement mechanism in MQTT communication without alter-
ing the standard structure. The practical approach validates the proposed method across
parameters such as delay, jitter, response time, and total time taken. Results demonstrate
that the proposed method responds rapidly to emergencies, showcasing its effectiveness
in real-world scenarios. The approach not only preserves the integrity of the MQTT pro-
tocol but also ensures a reliable and swift response in Critical situations, addressing the
limitations of existing methods.

Problem statement
The problem statement of this work is to enhance the MQTT message delivery between
publisher and subscriber in emergency events by supporting priority support. The objec-
tives of this work include:

1. To provide priority support by creating virtual queues to enhance message delivery.
2. To compare average response time and total time taken by Critical, Urgent,

and FCFS queues.
3. To compare end-to-end delay and mean jitter of Critical and FCFS queues.

Proposed system
This section presents the proposed system to enhance MQTT message delivery in
emergency events using priority support. Figure 1 shows the proposed architecture for
MQTT communication. This work is implemented using an application where users
can publish the messages in the three provided topics: Urgent, Critical, and FCFS. The
highest priority is the Urgent queue to transmit the messages immediately. Messages
in the Critical queue are less Urgent than those in the Urgent queue but still demand
high reliability. Messages saved in the FCFS queue are the same as in the current
MQTT standard. Figure 2 depicts the flow of the proposed architecture. The MQTT
publisher client can publish messages on Urgent, Critical, and FCFS topics. Upon
receiving messages, the RabbitMQ broker classifies the messages based on topics and
assigns respective predefined priority queues. The published messages are stored in a
database for further analysis. Due to the highest priority, the Urgent queue messages are
published to the consumers first, followed by the Critical and then the FCFS queue.

The proposed approach has the following benefits:

1. Delivery of MQTT messages in emergency events: When managing emergencies in
IoT and messaging apps, it is crucial to prioritize and consider some vital messages.
This is fixed by establishing distinct virtual queues for various message types depend-
ent on the importance of the message.

2. Resolving Bottleneck problems: Some applications may use an exceptionally high vol-
ume of messages; under these circumstances, the brokers may experience bottleneck
issues. This circumstance typically occurs in publisher-subscriber-based applications
when a single client subscribes to several topics (using wildcard topics). In these situ-
ations, we might observe a decline in the network’s processing power and bandwidth

Page 5 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

Fi
g.

 1
 P

ro
po

se
d

ar
ch

ite
ct

ur
e

of
 M

Q
TT

 c
om

m
un

ic
at

io
n

Page 6 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

in the computers that host these MQTT clients. The MQTT data to the RabbitMQ
broker’s AMQP queue is temporarily transferred to fix this.

3. Storing MQTT data into database: For Sensors to publish data to their Subscribers,
MQTT is an excellent protocol. However, historical data is necessary for analytics
and reporting. Most MQTT brokers do not have any built-in functionality for sav-
ing MQTT data to databases. The suggested method enables the database storage of
MQTT data. Figures 3 and 4 depict the messages stored in the Urgent and Critical
queues for further analysis.

Analysis of queues

Consider an M/G/1 queue where the messages are divided into three priority classes:

• Class 1 has the highest priority, and class i has the lowest priority.
• The arrival rates of different classes are �1, ..., �i (Poissonian)
• The service time of different classes are µ1, ...,µi.

The notations used in the analysis are listed below in Table 1. In the same method, we
deduce the Pollaczek-Khinchinin mean findings for the Urgent (highest priority) queue
as expressed in Eq. (1).

Fig. 2 Flowchart of MQTT message delivery with priority support

Page 7 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

Fi
g.

 3
 U

rg
en

t q
ue

ue
 m

es
sa

ge
s

st
or

ed
 in

 d
at

ab
as

e

Page 8 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

Fi
g.

 4
 C

rit
ic

al
 q

ue
ue

 m
es

sa
ge

s
st

or
ed

 in
 d

at
ab

as
e

Page 9 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

By Little’s law, we have,

For Critical priority class, we get

where µ̄uC̄u + µ̄cC̄c indicates the time needed to serve the Urgent and priority messages
ahead in the queue and µ̄u�uW̄c indicates the time needed to serve those messages in
higher queues that arrive during the waiting time for Critical messages. By Little’s law
again, we get,

By substituting the expression W̄u in W̄c formula, we get

We obtain the overall result by applying the same strategy to lower priority classes
(higher values of i) as in Eq. (6).

The total time in the system of queue-i messages is, on average, expressed in Eq. (7).

The mean residual service time R̄ in W̄i can be calculated as in the Pollaczek-Khin-
chinin mean value formula expressed in Eq. (8):

(1)W̄u = R̄+ µ̄uC̄u

(2)C̄u = �uW̄u =⇒ W̄u = R̄+ ρuW̄u =⇒ W̄u =
R̄

1− ρu

(3)W̄c = R̄+ µ̄uC̄u + µ̄cC̄c + µ̄u�uW̄c

(4)C̄c = �cW̄c =⇒ W̄c = R̄+ ρuW̄u + ρcW̄c + ρuW̄c =⇒ W̄c =
R̄+ ρuW̄u

1− ρu − ρc

(5)W̄c =
R̄

(1− ρu)(1− ρu − ρc)

(6)W̄i =
R̄

(1− ρ1 − ...− ρ(i−1))(1− ρ1 − ...− ρi))

(7)T̄i = W̄i + µ̄i

Table 1 Notations

Symbol Description

C̄(i) Mean number of waiting queue-i mes-
sages in the queue.

W̄(i) Mean waiting time of queue-i messages.

ρi The load of queue i, ρi = �iµ̄i.

R̄i The mean residual service time in the
broker upon arrival of messages.

u Urgent queue

c Critical queue

Page 10 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

Let us compute the average stay time Ti of class − i messages. It is split into three parts.

1. The customer’s own mean service time µ̄i.
2. The average time it takes to serve messages in classes 1, ..., i ahead in the queue:

R̄i
1−ρ1−...−ρi

.
3. The mean-time it takes to serve messages in higher classes 1, ..., (i − 1) that comes

while the class-i message is still in the system.

We obtain the equations below using the Pollaczek-Khinchinin mean value formula and
Kleinrock’s conservation theorem.

Therefore, T̄u =
(1−ρu)µu+R̄u

1−ρu
 and T̄i =

(1−ρ1−...−ρi)µ̄i+R̄i
(1−ρ1−...−ρ(i−1))(1−ρ1−...−ρi)

Experimental

Wireshark [19] is crucial in measuring the end-to-end delay between MQTT publish and
AMQP received timing. The study involves the transmission of messages through three
different queues with priority support and a single queue using the FCFS approach. Wire-
shark, a packet analyzer, captures and analyzes the packets exchanged between clients and
the broker during message transmission. By inspecting the packet data, Wireshark enables
the calculation of end-to-end delay for each scenario. Specifically, ten messages are pub-
lished to each topic under both prioritized and FCFS conditions, allowing for a detailed
examination of the impact of the proposed prioritization approach on the temporal aspects
of message delivery. This explicit use of Wireshark ensures accurate and comprehensive
data collection, contributing to a more detailed analysis of the experimental results.

1. Time T1 is the mqtt publish(mqtt ping request) timing in the wireshark.
2. Time T2 is the amqp receive(amqp connection start with ack) timing in the wireshark

Considering the Adapter for loopback traffic transmit(wireshark capture) timestamps T1
and T2 , end-to-end delay for each message is measured as:

Results and discussion
The experimental findings of this paper are described in this section. The experimental
results show the importance of separate queues for emergency events. Figure 5
depicts the total time taken via three queues. It is evident that the time taken by the

(8)R̄ =
1

2

i

i=1

�iµ̄i

(9)
i−1∑

n=1

µ̄n�nT̄i =

i−1∑

n=1

ρnT̄i, k > 1

(10)T̄i = µ̄i +
R̄i

1− ρ1 − ...− ρi
+ (

i−1∑

n=1

ρn)T̄i

(11)Delay = T2 − T1

Page 11 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

FCFS approach is more. For more extended communication, it is always better to have
separate queues to avoid delay at the receiver end. Figure 6 depicts the mean end-to-
end delay in publishing messages through three queues. The delay is more for FCFS in
comparison to Urgent and Critical queues. Figure 7 depicts the mean variation in delay
in publishing messages via three queues. The mean jitter is more for the FCFS approach
as bandwidth is depleted, then data packets must be reassembled at the receiver’s end,
adding to the amount of jitter. Figure 8 depicts the mean response time of publishing
messages through three queues. FCFS requires more time to publish messages. The
Urgent and Critical queues outperform the FCFS queue in all the results. This is because
all messages are published via the FCFS queue, which requires more computation,
bandwidth, and adding more to the jitter. Because of all these reasons, a separate queue
for emergency events is necessary for extended MQTT communication.

Fig. 5 Total time taken to publish messages by Urgent, Critical, and FCFS queues

Fig. 6 Mean end-to-end delay of Urgent, Critical, and FCFS queues

Page 12 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

Conclusions
In a publish/subscribe system, prioritizing the emergency messages across topics is a
challenging issue that, if not addressed, could negatively influence several application
types that depend on it. This paper described a new strategy for supporting high-pri-
ority messages in IoT for fast and reliable delivery of messages without modifying the
MQTT standards. The proposed method queued communications based on priority
levels, such as Urgent, Critical, and FCFS. Furthermore, the proposed method saves
the messages in the MySQL database for later analysis. We experimentally imple-
mented the proposed approach using the RabbitMQ message broker, Wireshark,
and Python to evaluate its performance. We compared the proposed method and the
existing system based on end-to-end delay, total time, response time, and jitter. The
outcome shows that the proposed approach performs better than the current FCFS
approach.

Fig. 7 Mean jitter of Urgent, Critical, and FCFS queues

Fig. 8 Mean response time for Urgent, Critical, and FCFS messages

Page 13 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

Future enhancement

However, this work can be extended in the following ways:

1. To analyze the stored messages using machine learning techniques.
2. To implement a dynamic priority messaging approach.
3. To overview potential problems arising from QoS-1 and queuing messages for guar-

anteed delivery.

Abbreviations
AMQP Advanced Message Queuing Protocol
FCFS First Come First Served
IoT Internet of Things
MQTT Message Queuing Telemetry Transport
MQTT-SN MQTT for Sensor Networks
QoS Quality of service

Acknowledgements
Not applicable.

Authors’ contributions
P S Akshatha: conception and design of study, acquisition of data, analysis and/or interpretation of data, writing — origi-
nal draft, Writing — review and editing. S Divyashree: conception and design of study, analysis and/or interpretation of
data, writing — original draft. S M Dilip Kumar: writing - original draft, analysis and/or interpretation of data, writing —
review and editing. All authors read and approved the final manuscript.

Authors’ information
P S Akshatha: Ms. Akshatha P S received a B.E. degree in 2005 and an M.Tech degree in 2013 from Vishweswaraiah Tech-
nological University, Belgaum, and Lingaya’s University, Haryana, respectively. She has been pursuing a full-time Ph.D.
from Bangalore University since October 2020. All three degrees are in the field of Computer Science and Engineering.
She has around 12 years of teaching experience, she has authored over 25 papers published in international journals and
conferences, including one that received the Best Paper Award at an international conference. She has also contributed
two book chapters to the Springer series. Currently, she is working as a Senior Assistant Professor in the Department of
Artificial Intelligence and Machine Learning at New Horizon College of Engineering, Bengaluru. Her current research
focuses on Computer Networks, Genetic Algorithms, Internet of Things.
S Divyashree: Ms. S Divyashree received the B. E and M. Tech degrees in 2020 and 2023 respectively in Computer Science
and Engineering discipline. She is currently working as an Assistant professor in the Department of Information Science
and engineering, East West Institute of Technology, Bengaluru. She is pursuing phd at Vishweswaraiah Technological
University, Belgaum in Machine learning and Artificial intelligence.
Dr. S. M Dilip Kumar: Dr. S. M Dilip Kumar is presently serving as a Professor in the Department of Computer Science and
Engineering, University of Visvesvaraya College of Engineering (UVCE), Bengaluru, India. He is also heading the Training
and Placement Office at UVCE. Dilip Kumar has been teaching Computer Science for the past 26 years and pursuing
research for 20 years. He has guided eight Ph.D candidates and six are pursuing Ph.D under his guidance. Dilip Kumar has
published 132 papers in International Journals including IEEE, Elsevier, Springer, etc. and Conferences, and has received
six best paper awards at International Conferences. More than 30 papers have appeared in best quartile SCI Rank Jour-
nals out of which 6 papers have appeared in Q1 Journals and the number of Google Scholar citations is 969 till date. He
has published two Indian Patents. He has delivered more than 50 technical talks in National level seminars, workshops,
short-term courses and faculty development programs. He has completed two research projects, both sponsored by the
Science and Engineering Research Board, Department of Science and Technology (SERB-DST), Government of India in
the areas of grid computing and Internet of Things. He has completed two consultancy projects in the areas of mobile
governance and e-FMS sponsored by the Government of Karnataka. He has served in over 100 technical commit-
tees of the State Government, Universities and Colleges. His area of interest includes Internet of Things, Edge and Fog
Computing.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Declarations

Competing interests
The authors declare that they have no competing interests.

Page 14 of 14Akshatha et al. Journal of Engineering and Applied Science (2024) 71:67

Received: 28 November 2023 Accepted: 24 February 2024

References
 1. Chekired DA, Khoukhi L, Mouftah HT (2018) Industrial IoT data scheduling based on hierarchical fog computing: A

key for enabling smart factory. IEEE Trans Ind Inf 14(10):4590–4602
 2. Rayan A, Taloba AI, Abd El-Aziz RM, Abozeid A (2020) IoT enabled secured fog based cloud server management

using task prioritization strategies. Int J Adv Res Eng Technol 11(9):01–12
 3. García-Magariño I, Sendra S, Lacuesta R, Lloret J (2018) Security in vehicles with IoT by prioritization rules, vehicle

certificates, and trust management. IEEE Internet Things J 6(4):5927–5934
 4. Akshatha PS, Dilip Kumar SM (2023) MQTT and blockchain sharding: An approach to user-controlled data access

with improved security and efficiency. Blockchain Res Appl 4(4):100158–100171
 5. Ferrari P, Flammini A, Sisinni E et al (2018) Delay estimation of industrial IoT applications based on messaging

protocols. IEEE Trans Instrum Meas 67(9):2188–2199
 6. Akshatha PS, Dilip Kumar SM, Venugopal KR (2022) MQTT Implementations, Open Issues, and Challenges: A Detailed

Comparison and Survey. Int J Sensors Wirel Commun Control 12(8):553–576
 7. Safara F, Souri A, Baker T et al (2020) Prinergy: A priority-based energy-efficient routing method for IoT systems. J

Supercomput 76(11):8609–8626
 8. Wadhwa H, Aron R (2023) Optimized task scheduling and preemption for distributed resource management in fog-

assisted IoT environment. J Supercomput 79(2):1–39
 9. Zunino C, Cena G, Scanzio S, Valenzano A (2023) Adaptive Seamless Redundancy to Achieve Highly-Dependable

MQTT Communication. IEEE Trans Ind Inf 20(1):984–994
 10. Hintaw AJ, Manickam S, Aboalmaaly MF, Karuppayah S (2023) MQTT vulnerabilities, attack vectors and solutions in

the internet of things (IoT). IETE J Res 69(6):3368–3397
 11. Oh SC, Kim YG (2019) A Study on MQTT based on Priority Topic for IIoT. J Inst Internet Broadcast Commun

19(5):63–71
 12. Tabinda Pathania N, Jain R, Malik N (2019) Traffic Prioritization in Message Queue Telemetry Transport Protocol. Think

India J 20(30):1006–1014
 13. Al Enany MO, Harb HM, Attiya A (2021) A New Back-off Algorithm with Priority Scheduling for MQTT Protocol and

IoT Protocols. (IJACSA) Int J Adv Comput Sci Appl 12(11):1–10
 14. Baldoni R, Bonomi S, Platania M, Querzoni L (2012) Dynamic message ordering for topic-based publish/subscribe

systems. In: IEEE 26th international parallel and distributed processing symposium. IEEE, Shanghai, p 909–920.
https:// doi. org/ 10. 1109/ IPDPS. 2012. 86

 15. Hwang K, Lee JM, Jung IH, Lee D-H (2019) Modification of mosquitto broker for delivery of urgent MQTT message.
In: 2019 IEEE Eurasia conference on IOT, communication and engineering (ECICE). IEEE, Yunlin, p 166–167. https://
doi. org/ 10. 1109/ ECICE 47484. 2019. 89428 00

 16. Puthiyidam JJ, Joseph S (2022) Prioritization of MQTT Messages: A Novel Approach. Commun Comput Inf Sci
1894:40–52

 17. Shahri E, Pedreiras P, Almeida L (2022) Extending MQTT with real-time communication services based on SDN.
Sensors 22(9):3162–3181

 18. Uchida N, Endo S, Ishida T, Yuze H, Shibata Y (2022) Enhanced MQTT Method with IoT Data Priority Controls for
Scalability and Realiability on Early Landslide Warning System. In: International Symposium on Mobile Internet
Security. Springer, South Korea, p 257–267. https:// doi. org/ 10. 1007/ 978- 981- 99- 4430-9_ 19

 19. Wireshark (1998) GPL-2.0-or-later. https:// www. wires hark. org/. Accessed 25 Oct 2023

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/IPDPS.2012.86
https://doi.org/10.1109/ECICE47484.2019.8942800
https://doi.org/10.1109/ECICE47484.2019.8942800
https://doi.org/10.1007/978-981-99-4430-9_19
https://www.wireshark.org/

	Priority-enabled MQTT: a robust approach to emergency event messaging
	Abstract
	Introduction
	RabbitMQ
	Contributions
	Paper organization

	Related work
	Problem statement
	Proposed system
	Analysis of queues
	Experimental

	Results and discussion
	Conclusions
	Future enhancement

	Acknowledgements
	References

