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Introduction
The expense associated with foundation work typically constitutes a substantial por-
tion of the overall construction expenditure [1]. Consequently, selecting an appropriate 
foundation structure solution and determining the foundation’s load-bearing capac-
ity is significant in cost reduction within construction projects [2]. Pile foundations are 
among the prevalent foundation solutions employed today as one of the most favored 
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deep foundation options due to their inherent advantages. Piles represent a foundation 
type known for their elevated bearing capacity, broad applicability, and extensive histori-
cal use. As the field of infrastructure construction continues to evolve, piles find wide-
spread application in various domains, including high-rise buildings, ports, and bridge 
engineering. The ultimate bearing capacity ( Pu ) of a pile holds paramount importance 
in pile design, given its direct implications for the safety and cost-efficiency of engineer-
ing projects [3]. Particularly noteworthy is the pile foundation’s ability to transmit loads 
into deeper soil layers [4, 5]. Accurately determining the Pu of a pile facilitates the deter-
mination of the appropriate foundation dimensions and pile depth, aiding in the selec-
tion of the most suitable foundation solution. Various methods are available to assess 
Pu , including (PDA). and immobile pile burden examinations [6–11]. Furthermore, sev-
eral conventional formulas have been proposed, primarily founded on in situ soil testing 
results, such as cone penetration tests (CPT) and standard penetration tests (SPT) [6–8, 
10, 11]. Additionally, certain studies have utilized the limited component approach to 
assess the relationship between pile displacement and pile load [9, 12, 13].

In specific circumstances, the approaches mentioned above exhibit several advantages; 
however, it is crucial to acknowledge that numerous issues necessitate careful considera-
tion before widespread implementation in construction practices. For instance, the prac-
tical interactions between piles and soil are often oversimplified and assumed within 
theoretical analyses and numerical simulations. To illustrate, a study by Jesswein et al. 
[14] highlighted the unreliability of pile load capacity calculations based on the Standard 
Penetration Test (SPT) despite its cost-effectiveness and simplicity. Similarly, analytical 
methods are considered unfeasible due to their reliance on numerous assumptions and 
simplifications [4]. On an alternate note, Abu-Farsakh and Titi [15] argued that empiri-
cal and static analyses of piles are costly and offer limited accuracy due to the extensive 
use of safety factors. Regarding pile load testing, although it boasts a high level of reli-
ability, it is a laborious and expensive process, often involving cumbersome equipment 
[16]. The dynamic approach heavily relies on pile characteristics, the impact hammer, 
and pile positioning to predict Pu of pile, largely overlooking soil effects [12–17]. Finally, 
it is essential to note that numerical simulation methods, predominantly based on finite 
elements, remain essentially approximate, with results significantly contingent on the 
modeling process [18].

In recent research endeavors and academic investigations, researchers have increas-
ingly embraced a pioneering approach when addressing concerns related to building 
foundation issues. This innovative strategy harnesses the capabilities of (AI). As the field 
of computing knowledge has advanced, AI has consistently demonstrated its remarkable 
effectiveness across diverse domains, spanning construction [19], transportation [20], 
security [21], and medicine [22]. AI algorithms, fundamentally grounded in the fusion 
of mathematical principles, algorithms, and creative problem-solving, endow AI with 
the capacity to address complex challenges, particularly uncertainties. Consequently, AI 
finds a well-suited application for addressing intricate issues within the domain of geo-
technical engineering [23, 24].

In their research, Kumar et al. [25] introduced AI techniques for predicting shallow 
foundation-bearing capacity, comparing ELM-EO and ELM-PSO hybrid models with 
traditional ELM and MARS models. ELM-EO demonstrated remarkable robustness, 
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outperforming others with an R2 value of 0.995 and an impressively low RMSE of 0.01. 
In a related study, Kumar and Samui [26] focused on risk and reliability in geotech-
nical structures, proposing an efficient AI-based method for predicting pile-bearing 
capacity using MARS, GMDH, and GP models. Analysis of dynamic test data from 
Indonesian sites revealed GP and MARS as robust models for accurate bearing capac-
ity estimation, while GMDH exhibited comparatively less satisfactory performance. 
These studies underscore the efficacy of AI-based techniques, particularly showcasing 
the superiority of specific hybrid models in predicting foundation and pile-bearing 
capacities with high accuracy and reliability.

In the context of predicting Pu , researchers have extensively investigated a diverse 
range of AI algorithms, underscoring the adaptability of artificial intelligence in geo-
technical applications. Prominent methodologies encompass artificial neural net-
works (ANN) [27–29], deep neural networks (DNN) [30–32], adaptive neuro-fuzzy 
inference systems (ANFIS) [33, 34], and random forests (RF) [28]. For example, Sha-
hin et  al. [27, 35–37] utilized an artificial neural network (ANN) model to forecast 
Pu in both driven piles and drilled shafts. Their approach involved integrating data 
from in-place burden tests and CPT outcomes, enriching their dataset with valua-
ble information. Similarly, Nawari et al. [38] developed a specialized ANN algorithm 
designed to predict settlement patterns in drilled shafts. This model utilized inputs 
derived from SPT data and various parameters related to shaft geometry, showcas-
ing the flexibility of AI in assimilating diverse information sources. Taking a different 
route, Pham et al. [28] incorporated an ANN algorithm alongside the random forest 
(RF) method to anticipate axial pile-bearing capacity. This hybrid strategy leveraged 
the strengths of both algorithms, potentially enhancing the precision and reliability 
of predictions. Furthermore, Suman et  al. [39] conducted a thorough assessment of 
the friction resistance of driven piles in clay using multivariate adaptive regression 
splines (MARS) and functional networks (FN). Their study not only outperformed 
existing models but also underscored the inherent predictive capabilities of these AI-
based models, affirming their potential to advance geotechnical engineering analyses.

A comprehensive overview of prior research endeavors within the same field (pre-
diction of Pu ) is concisely presented in Table  1. This table encapsulates and sum-
marizes the key findings and insights from earlier studies, offering a consolidated 
reference point for understanding the breadth and scope of the existing body of 
knowledge in the subject area.

Table 1 Briefly review published articles regarding the employment of ML in the prediction of Pu

Article Model Data size Models’ performance

R2 RMSE

Gnananandarao et al. [40] Sigmoid Symmetric 409 0.94 0.60

Onyelowe et al. [41] SVMRBF 121 0.99 0.043

Onyelowe et al. [42] ANN 121 0.99 0.14

Kumar et al. [43] ENN 212 1 0

Kumar et al. [44] ELM-PSO 300 0.88 0.08
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In prior research, ML-based models were employed for diverse predictive tasks, such 
as determining the ultimate bearing capacity of soil, assessing the compressive strength 
of concrete, and predicting various engineering-related outcomes. Notably, researchers 
have emphasized the beneficial utilization of the multi-layer perceptron (MLP) model, 
augmented by the integration of Gray Wolf Optimization (GWO), for approximating the 
ultimate load-carrying capacity of driven posts, as detailed in [45]. Despite this knowl-
edge, the combination of the MLP model with two distinct optimization systems for pre-
dicting pile-bearing capacity has not been explored. In light of this, the current study 
introduces an innovative design model suitable for comparative analysis. This is accom-
plished by optimizing MLP models using two alternative optimization algorithms: the 
Crystal Structure Algorithm (CSA) and Fox Optimization (FOX). CSA and FOX are rec-
ognized for their effectiveness in fine-tuning model parameters. When integrated with 
MLP, these optimization techniques aim to improve the performance of predictive mod-
els, ultimately contributing to more accurate estimates of Pu. The performance of the 
developed models has been evaluated using statistical metrics, and the optimal model 
has been identified.

Significance of the present study

This research stands out due to its creative application of machine learning, particularly 
the MLP technique, to address the intricate challenge of predicting pile-bearing capac-
ity using field trial data. The study introduces a novel hybrid approach by integrating the 
FOX and CSA methodologies, resulting in enhanced prediction accuracy. The models 
undergo thorough training and validation using a meticulously curated dataset compiled 
from diverse literature sources, establishing a solid foundation. The research methodol-
ogy yields highly precise results, highlighting the effectiveness of the proposed models.

Methods
Dataset description

In this study, a dataset comprising Pu test results for reinforced concrete piles were uti-
lized to train and evaluate predictive models. Initially, a comprehensive consideration 
of all pertinent factors influencing Pu was undertaken, guided by previous research [11, 
30], which indicated that a multitude of parameters influences Pu . These parameters 
encompass pile diameter (D), depths of soil layers (DES1, DES2, ADES3), pile top and 
tip elevations (PTE, Pe), ground elevation (Ge), additional pile top elevation (EPTE), and 
SPT (Standard Penetration Test) blow counts at both the pile shaft and tip (SPTs, SPTt). 
These key variables were employed in the development of the proposed models, with the 
dataset partitioned into training (70%), validation (15%), and testing (15%) subsets. The 
statistical analysis results, encompassing minimum, average, maximum, and standard 
deviation values for both input and output variables, are briefly summarized in Table 2.

The correlation plot in Fig. 1 visualizes the relationship between input and output 
variables. It provides valuable insights into the interdependencies and potential asso-
ciations among the various parameters under consideration. Through the correlation 
plot, patterns, trends, and the strength of relationships between inputs and the Pu 
of piles can be discerned. This analysis not only aids in identifying the most influen-
tial factors and informs the model-building process by highlighting variables that may 
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require special attention or feature selection. It was observed that SPTs and EPTE 
exerted the most significant and minimal influences on Pu outcomes, respectively. 
Conversely, Pe and DSE2 emerged as the primary contributors to variations in SPTs 
values.

Multi‑layer perceptron (MLP)

The multi-layer perceptron (MLP) is a vast, widely utilized neural network strategy 
generally trained with the backpropagation algorithm. The MLP is called the assess-
ment and training art because it is developed for asset processes and learning deriva-
tion. MLP neural networks are also called tools for nonlinear processes and modeling 
complicated and happening in the real world because of their conformable approxi-
mation capabilities [46]. The anatomy of MLP is separated into three attached layers: 
output, input, and hidden. Some nodes in the input layer show the predictor vari-
ables’ number.

In addition, a single hidden layer of MLP can suitably model involved functions with 
concealed neurons. A small number of neurons causes poor neural network function.

Against that, MLP neural nets are challenging to train but also inclined to overfitting. 
The output layer nodes are linked to the number of modeled variables.

Table 2 The statistic properties of the input variable of Pu

Variables Indicators

Category Min Max Avg St. Dev

D (mm) Input 300 400 376.5 42.51

DES1 (m) Input 3.4 5.4 3.961 0.486

DES2 (m) Input 1.72 8 6.698 1.756

ADES3 (m) Input 0 1.18 0.339 0.448

PTE (m) Input 1.95 3.4 2.66 0.575

Ge (m) Input 3.27 3.72 3.517 0.072

EPTE (m) Input 1.06 4.45 2.906 0.593

Pe (m) Input 8.52 15.58 13.66 1.893

SPTs Input 5.82 14.7 11.01 2.287

SPTt Input 4.57 7.73 7.012 0.756

Pu (KN) Output 407.2 1551 1069.4 360.6

Fig. 1 The correlation plot between input and output
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For the nonlinear function (h) generalization, the function modeling task with one 
prophesier uses an MLP neural net as X ∈ RD → Y ∈ R1 . X and Y are the input and 
output parameters, respectively. The function (h) is represented in Eq. (1):

Here
M2 and M1 displays the output and hidden layers’ weight matrixes alternatively.
s2 and s1 are the output and hidden layers’ bias vectors, respectively.
ka is the function of activation.
The log-sigmoid and tan-sigmoid activation functions are widely used. Their equations 

have been denoted, respectively, in the Eqs. (2) and (3):

where T  shows the input activation function

Crystal Structure Algorithm (CSA)

Solid minerals contain molecules, atoms, and origins that have crystallographic forms 
named crystals. Kepler in 1619, Hooke in 1665, and Hogens in 1690 discovered the par-
ticles inside the crystals [47]. Lattice is the underlying element of a crystal that shows 
a cyclical queue of atoms in preplanned spaces. Only the overall figure of the crystal 
is specified by the lattice so that different geometrical figures can be composed in the 
light of infinite geometrical figures discovered in nature. An intermittent structure of the 
crystal is determined taking into account a boundless grid figure where any grid point 
exists related to the position of its grid spot using a course like this [48]:

where mi is a whole number, di represents the briefest course along the primary crystal-
line axes, and i denotes the count of quartz vertices.

Within this part, the measured representation of CSA exists as given, wherein the 
main notions of crystalline structures are employed within essential alterations. Crystals 
numbers are random numbers for initialization.

(1)Y = h(X) = s2 +M2 × (ka(s1 +M1 × X))

(2)hb(T ) =
1

1+ exp(−T )

(3)hb(T ) =
exp(T )− exp(−T )

exp(T )+ exp(−T )

(4)r = midi

(5)Cr =
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Here, n and d are the number of crystals and the dimension of the problem, respec-
tively, And xji(0) determines the primary position of the crystals; xji,max and xji,min are the 
maximum and minimum allowable numerical amounts, correspondingly, for the jth choice 
parameter of the ith potential resolution; and ξ represents an arbitrary number within the 
range of [0, 1].

Due to the crystallography and the notion of ’foundation’ in it, the main crystallines, Crm , 
are all the crystals at the angles, and the primary crystallines are considered haphazardly 
from the primary-formed crystallines. By dropping the current Cr , the haphazard choice 
procedure for each phase is established Fc is the mean values of randomly selected crystals 
and Crb is the crystal with the best configuration.

Basic lattice principles are considered for updating the candidate solutions in four sorts of 
improving processes are specified as follows:

Cubicles;
Simple:

With the best crystals:

With the mean crystals:

With the best and mean crystals:

In the four equations above, Crn and Cro denotes the new position and the old position, 
respectively, also a, a1, a2 and  a3 are random numbers.

Exploitation and exploration from metaheuristics, as two crucial attributes, have been 
used in this procedure via the cubicle Eqs. (7) to (10). The maximum number of iterations 
is the terminating criterion, and the enhancement procedure is ended following a prede-
termined count of cycles. To address the resolution parameters xji transgressing the border 
situation of the parameters, a measured indicator is specified in which for the xji beyond the 
range of the parameters, the indicator prompts an adjustment to the limits for the trans-
gressing parameters.

The pseudo-code of the CSA is as follows:

{

i = 1, 2, 3, . . . , n
j = 1, 2, 3, . . . , j

(6)x
j
i(0) = x

j
i,min + ξ

(

x
j
i,max − x

j
i,min

)

,

{

i = 1, 2, 3, . . . , n
j = 1, 2, 3, . . . , d

(7)Crn = Cro + aCrm

(8)Crn = Cro + a1Crm + a2Crb

(9)Crn = Cro + a1Crm + a2fc

(10)Crn = Cro + a1Crm + a2Crb + a3Fc
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Fox Optimization (FOX)

One of the new optimization algorithms, the Red Fox Optimization Algorithm (FOX), 
originated from the hunting lifestyle of the red fox. FOX has two sections: exploitation 
and exploration. The exploitation section of the model happens by getting the fox close 
to the victim to attack it, and the exploration section depends on the distance between 
the fox and the victim. The population of a constant number of foxes is represented 
below [49]:

For recognizing each fox xt in repetition, the notation 
(

X
i
j

)t
 is introduced, i represents 

the number of the foxes, and as per the measurements of the resolution area j denotes 
coordinates. The notation (x)(i) =

[

(x0)
(i), (x1)

(i), (x2)
(i), . . . , (xn−1)

(i)
]

 represents every 
fact in the solution planetary < a, b >n and a, b ∈ R , also according to the solution space 

(11)x = (x0, x1, . . . , xn−1)
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functions, let f ∈ R
n be the standard function of n variables. If function f

(

(x)(i)
)

 amount 
is a worldwide maximum and minimum on < a, b > , then 

(

(x)(i)
)

 is the optimal solution.
When the foxes cannot find prey to hunt, members of a family travel in search of food. 

They send the location to others when they find a better area. By the cost amount, the 
population is provided. Euclidean distance square is used for this goal:

Here 
(

xb
)

 means 
(

xbest
)

 , and individuals in the population move toward the best one:

Here α ∈

(

0, d

(

(

xi
)t
,
(

xb
)t
))

 is randomly selected. The random value β ∈< 0, 1 > 

is implemented, set once in the repetition for all individuals in the population, which 
describes the action of the fox as:

An advanced Cochleoid equation is used to visualize the action of each individual if β 
displays to move the population in this repetition. The fox radius is represented by two 
items: to model the fox observation angle, φ0 ∈< 0, 2π > is chosen for all individuals 
at the inception of the algorithm, and α ∈< 0, 0.2 > is a grading variable group previ-
ously in the repetition for all members in the populace to simulate altering proximity 
randomly away from the victim throughout dodger getting closer.

Here δ ∈< 0, 1 >, and it is a random value established previously at the inception of 
the procedure, which is dependent on the conditions of weather. The movement model 
for the population of individuals is as follows:

ac in xac0  represented actual, and φ1,φ2,φ3, . . . ,φn−1 ∈< 0, 2π > .

For modeling this action in each repetition, 5% of the worst applicants are selected 
in line with the amount of function of criterion. This value is utilized as a personal pre-
sumption for simulating minor variations among the group. In iteration t , for an alpha 
couple, the two best individuals are selected:
(

x(1)
)t and 

(

x(2)
)t , and the center of the habitat is calculated as following equation, and 

the habitat is the square of the Euclidean distance between the couple, respectively:

(12)d

(

(

xi
)t
,
(

xb
)t
)

=

√

�
(

xi
)t

−

(

xb
)t
�,

(13)
(

xi
)t

=

(

xi
)t

+ α ∗ sign ∗

(

(

xb
)t

−

(

xi
)t
)

{

Stay and masquerade if β ≤ 0.75

Move closer if β > 0.75

(14)r =

{

a sinφ0
φ0

if φ0 �= 0

δif φ0 = 0

(15)



























xnew
0

= ar ∗ cos(φ1)+ xac
0

xnew
1

= ar ∗ sin(φ1)+ ar ∗ cos(φ2)+ xac
1

xnew
2

= ar ∗ sin(φ1)+ ar ∗ sin(φ2)+ ar ∗ cos(φ3)+ xac
2

· · ·

xnewn−2
= ar ∗

�n−2

q=1
sin

�

φq
�

+ ar ∗ cos(φn−1)+ xacn−2

xnewn−1
= ar ∗ sin(φ1)+ ar ∗ cos(φ2)+ · · · + ar ∗ sin(φn−1)+ xacn−1
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A random parameter q ∈< 0, 1 > is taken for each iteration, which specifies 
replacements in the repetition following:

Two best candidates 
(

x(1)
)t and 

(

x(2)
)t combined with a new candidate 

(

x(rep)
)t , rep 

means reproduced, as:

The pseudo-code of the FOX optimization algorithm is as follows:

(16)(

Habcntr
)t

=

(

x(1)
)t

+
(

x(2)
)t

2

(17)
(

Habdiamtr
)t

=

√

�
(

x(1)
)t

−
(

x(2)
)t
�

(18)
{

ReproductionOf The AlphaCouple if q < 0.45

NewNomadic Individual if q ≥ 0.45

(19)
(

x(rep)
)t

= q

(

x(1)
)t

+
(

x(2)
)t

2
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Application of CSA and FOX algorithms in the training of MLP model

In this section, the application of the FOX and CSA optimizers is illuminated in the training 
of the MLP. These optimization algorithms are important in fine-tuning the MLP’s parame-
ters, leading to enhanced predictive performance. The discussion encompasses the specific 
adaptation of FOX and CSA to the MLP architecture, detailing their impact on weight and 
bias adjustments, convergence behavior, and overall model optimization.

Fox Optimization Algorithm in MLP training

The integration of the FOX algorithm into the training process of the MLP allows for cap-
italization on its unique optimization principles. Emphasis is placed on how the weights 
and biases of the MLP are dynamically adjusted by FOX, fostering efficient convergence. 
Detailed insights into the convergence curves and the adaptive nature of the algorithm 
during the training iterations are provided. The thorough examination focuses on the 
FOX optimizer’s influence on the MLP’s capability to capture intricate patterns within the 
dataset.

Crystal Structure Algorithm in MLP training

Similarly, the employment of the CSA contributes to the refinement of the MLP’s param-
eters, thereby enhancing the model’s adaptability and predictive accuracy. In this section, 
the specific application of CSA in MLP training is delved into, with an emphasis on its role 
in guiding the optimization process. The interaction between CSA and MLP is elucidated, 
shedding light on how CSA optimally configures the MLP’s architecture to achieve superior 
performance. Detailed discussions on convergence behaviors and the impact on the MLP’s 
generalization capabilities are included.

Performance evaluation metrics

Various metrics are utilized to assess the predictive ability of the developed model in a 
quantitative manner. The determination coefficient ( R2 ) gauges the strength of the linear 
association among the observed and predicted outcomes. The root mean squared error 
(RMSE) measures the magnitude of the differences between the predicted and the observed 
values, and MSE is the mean square error. SI is the Scatter Index, and WAPE represents 
weighted absolute percentage error.

(20)R2 = 1−

∑r
i=r(Pi − Ti)

2

∑r
i=r(Ti − T )

2

(21)RMSE =

√

∑r
i=r(Pi − Ti)

2

r

(22)MSE =
1

r

∑r

i=r
(Pi − Ti)

2

(23)SI =
RMSE

Ti
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where Pi and Ti represent predicted and tested values, respectively. T  is the average of all 
the tested results, while r represents the number of samples in the analyzed dataset.

K‑fold cross‑validation

In the process of applying k-fold cross-validation, the dataset is first divided into ‘k’ equal 
folds or subsets. Subsequently, the model undergoes training ‘k’ times, where each itera-
tion utilizes a different fold as the test set while the remaining folds are used for train-
ing. This iterative process persists until each of the ‘k’ folds has been employed as the 
test data precisely once. In this particular study, a fivefold cross-validation approach was 
employed, leading to the dataset’s segmentation into five subsets. The model experiences 
five training sessions, with each session utilizing four folds for training and one fold 
for testing. This meticulous approach guarantees a thorough evaluation, assessing the 
model on each segment of the data and providing a robust appraisal of its performance. 
Table 3 and Fig. 2 present the results of k-fold validation for three primary metrics (R2, 
RMSE, and MAE). From these findings, the outcomes of the third fold are recognized as 
the optimal choice, yielding values of 0.953 for R2 and 77.851 for RMSE.

Research methodology

The approach to research methodology can be outlined as follows:

Introduction

This study introduces the examination of a pivotal issue, emphasizing the necessity for 
improved performance in the MLP model. The emphasis is on advancing the domain 
of machine learning, specifically in practical implementations within geotechnical engi-
neering projects. The urgent requirement for heightened efficiency in the MLP model is 
discussed, making a valuable contribution to the broader realm of machine learning and 
its practical application to real-world issues in geotechnical engineering.

Hybridization procedure

This study introduces a novel machine learning methodology, incorporating the 
fusion of two sophisticated optimization techniques. The intricate details outline the 
amalgamation of optimization approaches employed to improve the effectiveness of 
MLP models. By strategically integrating these advanced optimization techniques, a 

(24)WAPE =
1

r

∑r

i=r

|Ti − Pi|

Pi

Table 3 The result of the developed K-fold

Model Indicator Number of K‑fold

K1 K2 K3 K4 K5

MLP R2 0.920 0.893 0.953 0.798 0.888

RMSE 101.769 117.467 77.851 161.844 120.727

MAE 79.230 92.269 58.887 115.415 85.891
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pioneering perspective is introduced to the field of machine learning, with the pri-
mary aim of boosting the efficiency of MLP models.

Optimizers utilized

This study presents a thorough introduction and detailed explanation of two dis-
tinct optimizers utilized in the hybridization method: the CSA and the FOX. The 
unique strengths of each optimizer and the reasoning behind their inclusion in the 
hybrid model are comprehensively elucidated. This contributes to a comprehensive 
understanding of the strategic integration of these optimizers within the research 
framework.

Assessment of models

This study conducts a thorough assessment of both conventional and hybridized MLP 
models, employing established performance metrics like R2 and RMSE. The selection 
of these metrics is justified to ensure an unbiased evaluation of model performance, 
thereby enhancing the reliability and objectivity of the assessment process.

Fig. 2 Obtained fivefold result
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Comparing the applicability of predictive models

This study meticulously contrasts the performance of hybridized models with conven-
tional MLP counterparts, underscoring the superiority of the proposed methodology. 
The incorporation of rigorous statistical analyses or visual representations of results 
enhances the credibility and precision of the comparative evaluation between these two 
model types.

Result, discussion, and conclusion

This section encapsulates a concise summary of the research’s significant findings and 
their implications, providing a brief overview of the study’s outcomes. Furthermore, it 
explores the study’s limitations and proposes potential avenues for future research, aim-
ing to stimulate further exploration in related domains.

Figure 3 offers a visual representation that illustrates the procedural steps taken in this 
study. This graphical depiction complements and improves the understanding of the tex-
tual insights.

Results and discussion
Hyperparameter and convergence

In the field of machine learning, external configurations called hyperparameters, 
including factors like learning rates and regularization strengths, exert influence on 

Fig. 3 Flowchart related to research methodology
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the behavior of a model. Unlike parameters, hyperparameters are predetermined and 
are not learned directly from the data. Importantly, the optimization of model per-
formance relies on the crucial step of tuning hyperparameters, which necessitates 
experimentation and the application of optimization techniques [50–52]. Table  4 
meticulously outlines the hyperparameter values associated with MLFO and MLCS 
models within the three layers of the MLP. This detailed presentation significantly 
enhances the transparency and replicability of models in the field of machine learn-
ing research, providing crucial insights for a deeper understanding and accurate 
reproduction of model configurations.

Figure 4 presents a graph illustrating the progression of RMSE during iterations. 
The x-axis denotes the iteration number, while the y-axis represents RMSE. The line 
graph commences with a high RMSE, gradually decreasing with each iteration and 
ultimately converging to a low RMSE after about 150 iterations. Among all the mod-
els, the MLFO model, resulting from the integration of the FOX optimizer into the 
MLP model’s second layer, demonstrated the most favorable performance in the con-
vergence process. It initiated with an RMSE of 230 in the first iteration and reached 
the optimal RMSE value of approximately 40 after 150 iterations.

Table 4 The results of hyperparameters for MLP

Models Hyperparameter

Neuron Neuron Neuron

MLFO (1) 3 – –

MLCS (1) 13 – –

MLFO (2) 25 19 –

MLCS (2) 15 19 –

MLFO (3) 19 25 27

MLCS (3) 16 20 20

Fig. 4 Convergence of developed hybrid models
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Comparison of models’ performance

In the current research study, MLP comprising three layers is augmented by integrat-
ing CSA and FOX optimizers to create two distinct hybrid models, MLCS and MLFO. 
These hybrid models serve the purpose of comparing experimentally measured results 
with predicted values of Pu . The dataset employed in constructing these hybrid models 
is partitioned into three phases: training, validation, and testing, constituting 70%, 15%, 
and 15% of the overall model data, respectively. The outcomes of the comparative analy-
sis between the MLP single model and the two hybrid models across the three layers of 
MLP are succinctly summarized in Table  5. This analysis involves a meticulous layer-
by-layer evaluation of the models, with a focused examination of the contributions and 
characteristics unique to each layer.

MLP single model

During the testing phase, the MLP model demonstrated its highest R2 value at 0.973, 
underscoring the effectiveness of the training process. However, this peak R2 value was 
accompanied by error-based metrics that revealed certain limitations. The recorded 

Table 5 The result of developed models for MLP

Model Phase Index values

RMSE R2 MSE SI WAPE

MLP Train 73.947 0.958 5467.267 0.068 0.052

Validation 102.375 0.908 10480.576 0.095 0.072

Test 66.336 0.973 4400.528 0.066 0.055

All 77.851 0.953 6059.253 0.073 0.055

MLFO(1) Train 60.497 0.971 3660.633 0.056 0.049

Validation 43.777 0.983 1916.407 0.041 0.036

Test 49.634 0.984 2463.503 0.050 0.042

All 56.737 0.975 3219.429 0.053 0.046

MLCS(1) Train 69.496 0.962 4830.148 0.064 0.049

Validation 73.419 0.953 5390.290 0.068 0.046

Test 43.980 0.988 1934.221 0.044 0.035

All 66.932 0.965 4479.780 0.063 0.047

MLFO(2) Train 36.665 0.990 1344.348 0.034 0.028

Validation 23.992 0.995 575.592 0.022 0.015

Test 24.884 0.996 619.231 0.025 0.020

All 33.470 0.992 1120.267 0.031 0.025

MLCS(2) Train 52.308 0.978 2736.144 0.048 0.041

Validation 41.486 0.985 1721.120 0.038 0.029

Test 35.395 0.992 1252.771 0.035 0.030

All 48.594 0.982 2361.385 0.045 0.038

MLFO(3) Train 46.222 0.983 2136.444 0.043 0.033

Validation 29.642 0.993 878.622 0.027 0.023

Test 41.627 0.989 1732.803 0.042 0.030

All 43.442 0.986 1887.225 0.041 0.031

MLCS(3) Train 56.381 0.975 3178.861 0.052 0.037

Validation 46.237 0.981 2137.902 0.043 0.031

Test 40.957 0.991 1677.480 0.041 0.031

All 52.891 0.978 2797.510 0.049 0.036
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values include 102.375 for RMSE, the highest among all seven models (comprising both 
the single model and hybrid models), along with 10480.576 for MSE, 0.095 for SI, and 
0.072 for WAPE. When collectively considering these metrics, the MLP single model 
occupies the lowest position in the superiority ranking among the evaluated models. 
This suggests that, despite achieving a notable R2 value, the MLP single model faces 
challenges in terms of error-based performance metrics compared to the other models 
in the study.

First layer

The maximum R2 value of 0.975 occurred in this layer for MLFO, indicating that this 
model fits the data well and that the selected input variables are good predictors of the 
expected output. Minimum error values of 56.737, 3219.429, and 0.046 for RMSE, MSE, 
and WAPE confirm the accuracy of MLFO in Pu prediction. SI offers insights into data 
spread, outlier identification, and overall dataset consistency. Minimum SI = 0.053 rep-
resents low data variability and high accuracy of MLFO.

Second layer

For MLFO, it is noteworthy that this specific layer exhibited exceptional performance, 
with the maximum R2 value reaching an impressive 0.992 and the lowest RMSE recorded 
at 33.470. MLFO demonstrated a noteworthy advantage when considering SI values, 
showcasing approximately a 31% reduction in SI compared to its counterpart, MLCS. 
This substantial reduction in SI suggests that MLFO offers superior predictive accuracy 
and minimized data variability in its estimations.

Third layer

MLFO exhibited superior efficiency compared to MLCS. When comparing this specific 
layer to the two preceding layers, it becomes evident that MLFO(3) displayed a com-
mendable performance, characterized by an R2 value of 0.986, an RMSE of 43.442, and 
a SI of 0.041. It is worth noting that MLFO(3) outperformed MLFO(1) but fell short of 
matching the performance of MLFO(2).

Figure 5 indicates scattered representations of the correlation between predicted and 
measured values of Pu . The reported numbers are related to their two evaluation sets of 
RMSE and R2. Generally, the RMSE functions as a distributed controller, so the lower 
the amount of this evaluator, the higher the density. In addition, the R2 evaluator moves 
the testing and training points near the centerline. The figure contains several other vari-
ables; for instance, the centerline at coordinate Y = X and two lines are drawn below and 
above the centerline for 10% underestimation and 10% overestimation. This figure com-
prises a total of seven scatter plots designed to facilitate a comparison between meas-
ured and predicted values of Pu. Each plot corresponds to a specific model: one for the 
MLP single model and six additional models created by integrating the MLP method 
with two optimizers during the training, validation, and testing phases. When conduct-
ing a comprehensive comparison across all layers, it becomes evident that the R2 val-
ues for both MLFO(2) and MLCS(2) reside in a favorable region. This is discerned by 
observing that the data points associated with these models are situated close to the cen-
tral line and are confined within the boundaries of two threshold lines. Such a placement 
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Fig. 5 A Scatter plot has points that show the relationship between three sets of data
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within this region suggests that MLFO(2) and MLCS(2) models exhibit a more robust 
and desirable performance than other models considered in this study. It is noteworthy 
to highlight that the MLP single model exhibited the weakest performance among all the 
models, characterized by the lowest R2 value and the highest error values. This observa-
tion underscores the relative inferiority of the MLP single model in comparison to the 
other models evaluated in the study.

Figure  6 evaluates the match between the predicted and measured Pu values for 
a single MLP model and two types of hybrid models in three layers. Each diagram is 
separated into training, validation, and testing models. MLFO has the most optimal per-
formance in predicting Pu values, especially in the second layer (MLFO(2)), where the 
difference between the predicted and measured points was less or coincided precisely.

Upon a meticulous examination of the visual representations of error values in Fig. 7, a 
discernible pattern emerges. Specifically, during the training phase, the MLCS(1) model 
stands out for exhibiting the highest error value, surpassing 20%. In contrast, the other 
models demonstrate error ranges that are approximately half as large. Noteworthy is 
the performance of the MLFO(2) model, acknowledged for its superior accuracy, which 
showcases error fluctuations predominantly within the range of [10, − 10] percent. 
Remarkably, the results from the validation and testing phases consistently reveal robust 
performance across all model layers, emphasizing the efficacy of training the models 
with the provided input parameters.

Figure 8 illustrates a half-violin plot that presents error percentages for the analyzed 
models. In the training phase, MLFO (2) exhibited exceptional performance, showcas-
ing an average error rate of 0% and maintaining error distribution consistently below the 
5% threshold. The data depicted minimal spread, forming a tightly clustered, normally 
distributed pattern. Notably, the error percentage of the MLFO (2) model remained con-
fined within the 5% limit. In contrast, the MLP model demonstrated greater dispersion 
and fewer close-to-zero errors, indicative of a broader range of error percentages span-
ning from − 20 to 35%.

Sensitivity analysis

The analysis of the frequency behavior of the model output, necessary for revealing indi-
ces like the First-Order Sensitivity Index (S1) and Total-Order Sensitivity Index (ST), is 
conducted through the utilization of the Cosine Amplitude Method (CAM) with sinu-
soidal functions. Assessing the significance of parameters, aiding in model calibration, 
and quantifying uncertainty, these indices hold a pivotal role. Figure 9 visually captures 
the influence of each input parameter on predicted Pu values, revealing distinct patterns. 
Remarkably, the SPTs parameter has been identified as the most influential, marked by 
its elevated ST and S1 values. Conversely, all other inputs show negligible impacts on the 
Pu values.

Limitations of utilized methodology

Integrating the MLP model with CSA and FOX optimizers to predict the Pu introduces 
certain limitations. Firstly, the performance of the model heavily relies on the quality and 
representativeness of the training dataset. Inadequate or biased data may lead to subop-
timal predictions. Additionally, the complexity of the MLP architecture and the interplay 
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Fig. 6 The comparison of measured and predicted values
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with two different optimization algorithms (CSA and FOX) may result in longer training 
times and increased computational demands. Moreover, the effectiveness of the model 
could be influenced by the choice of hyperparameters and the potential need for fine-
tuning, which may pose challenges in achieving optimal performance across diverse 
datasets.

Comparative analysis: current study vs. previous research

Table 6 presents the outcomes of previous studies in the field of Pu prediction, facili-
tating a comprehensive comparison with the findings of the current study. As detailed 
in Sect. 3.2, the investigation highlights the superior performance of the MLFO model 
in the second layer of MLP, achieving remarkable metrics with an R2 value of 0.996 

Fig. 7 The error percentage of the hybrid models is based on the line plot
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Fig. 8 The half-violin plot for the error percentage of the developed models
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and an RMSE of 24.88. This simultaneous excellence in both metrics positions the 
MLP model in the present study as outperforming others in the comparison, empha-
sizing its effectiveness in Pu prediction.

Conclusions
This study introduces an innovative methodology by incorporating a multi-layer 
perceptron (MLP) to estimate pile-bearing capacity in the field of foundation engi-
neering, specifically addressing the challenges posed by the resource-intensive and 
time-consuming nature of conventional in situ load tests. The proposed approach lev-
erages a dataset derived from actual field-based pile load tests, providing a realistic 
foundation for analysis. To further elevate the prediction accuracy of the MLP model, 
two distinct optimizers, the Crystal Structure Algorithm (CSA) and Fox Optimiza-
tion (FOX), have been deliberately chosen for integration with the MLP architecture, 
resulting in the creation of hybrid models, namely MLFO and MLSC. The ensuing 
comparative analysis, contrasting the Single MLP model against these hybrid coun-
terparts, reveals insightful findings that can be summarized as follows:

• The MLP single model demonstrated the least effectiveness in predicting Pu, show-
casing the poorest performance with the highest error values (RMSE = 102.375) 
and the lowest R2 value (0.908) when compared to the hybrid models. This sub-

Fig. 9 The results of CAM-based Sensitivity analysis for the input parameter’s impact on Pu

Table 6 Comparing the results of the present study with previous studies

Article Model Data size Models’ performance

R2 RMSE

Gnananandarao et al. [40] Sigmoid Symmetric 409 0.94 60

Onyelowe et al. [42] ANN 121 0.99 14

Kumar et al. [44] ELM-PSO 300 0.88 8

Present work MLP-CSA-FOX 200 0.996 24.88
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optimal performance underscores the necessity for an optimization process to 
enhance predictive accuracy.

• Among the hybrid models, the MLFO consistently outperforms MLSC in all layers, 
with MLFO (2) showcasing remarkable results: an  R2 value of 0.992, RMSE of 33.470, 
and a minimal SI of 0.031, emphasizing its superior predictive accuracy in estimating 
pile-bearing capacity.

• The integration of the CSA and FOX algorithms into the single MLP model yielded 
notable enhancements in MLP’s performance, particularly evident in the improve-
ment of R2 values. Specifically, there was a 2.36% increase in performance when 
utilizing the CSA algorithm and a commendable 1.95% improvement with the FOX 
algorithm. This signifies the positive impact of integrating these optimization algo-
rithms, contributing to the overall predictive capabilities of the MLP model.
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