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Introduction
Increasing mobile traffic volume and spectrum shortage of traditional microwave cel-
lular network have highlighted the need to consider large spectrum in millimeter wave 
band for communication where hybrid precoding and combining architectures cascaded 
with RF chain and ADC as well as DAC are utilized at the receiver and the transmit-
ter. Previous research investigations have assumed hybrid precoder and combiner 
designs with large number of RF chains that is equivalent to the size of transmitting and 
receiving antennas and receiver with infinite bit [1–10]. A millimeter wave cellular sys-
tem requires large number of antenna arrays for directional transmission and for the 
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reduction of path loss associated with such high frequency communication. Using RF 
chains that are equal to the amount of transmitting and receiving antennas may not only 
increase hardware cost but also make the cellular system to be power hungry. An infi-
nite bit receiver implies that the received signal is not quantized at mobile station. This 
does not conform to modern communication architecture design which has low resolu-
tion ADC as an important component of receiver architecture for transforming analog 
received signal-to-digital format for further processing. Efficient hardware architectures 
with few RF chains and low resolution (≤ 6 bits) ADC [11] are therefore necessary for 
low power millimeter wave cellular communication. Hence, this work designs a millim-
eter wave cellular system with small amount of RF chains and few number of ADC bits. 
Specifically, millimeter channel estimation problem is addressed whose solution yields 
channel state information (CSI) which is effected via OMP, LS, CoSAMP, and DL. To the 
best we can ascertain, the use of CoSAMP and DL for obtaining CSI in a millimeter wave 
system with few ADC bits is receiving attention here for the first time.

Other research works reported in the literature include [12–15] which focus on esti-
mation of channel characteristics in multiple input multiple output (MIMO) system 
with 1-bit ADC receiver, wherein no aspect of millimeter wave problem is addressed.

In article [16], authors propose modified expectation–maximization (EM) and gen-
eralized approximate passing (GAMP) algorithms for estimating millimeter wave chan-
nel in MIMO system with 1-bit quantization. The two methods require long training 
sequence to converge. In [17], authors consider millimeter wave system with few ADC 
bits, but it is assumed that the receiver and the transmitter have perfect information 
about the channel which is not realistic in practical sense.

In article [18], a combination of EM, Stein’s unbiased risk estimate (SURE), and GAMP 
(EM-SURE-GAMP) is utilized for millimeter wave channel estimation using 1, 2, and 3 
bits at the receiver. It is assumed that the amount of RF chain is equal to the quantity of 
antennas at base station and mobile station.

Authors in [19] consider ACS for channel estimation using receiver with 1 bit, which 
performs poorly in noisy SNR values, while authors in [20, 21] estimate uplink channel 
in a MIMO system whose base station utilizes 1 and 2 bits at the ADC and spatial sigma 
delta architecture.

Overall, the following contributions are made in this paper:

(1) A hybrid millimeter wave architecture with small amount of RF chains and few 
ADC bits are proposed for millimeter wave channel estimation and cellular com-
munication.

(2) By using sparse property of millimeter wave channel, quantized millimeter wave 
channel estimation problem is formulated.

(3) CoSAMP and DL estimators are proposed for solving the quantized problem.
(4) As a validation, the methods are compared with models existing in the literature.

Notations: A scalar variable is represented by d, column vector is denoted by bold let-
ter d, and D is a matrix. (D)H , (D)T , ‖D‖F and (D)−1 indicate, respectively, conjugate 
transpose of D, transpose of D, Frobenius norm of D, and inverse of D. (D)* represents 
conjugate of D, and vec(D) is the vector form of D. The Euclidean norm of column 
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vector d is represented by ‖d‖2 , while the absolute value of d is symbolized by 
∣

∣d
∣

∣ . ⨂ 
is the symbol for Kronecker product, and diag(D) represents block diagonal matrix. 
M × M identity matrix is represented by  IM, and N(f,k) is the complex Gaussian random 
vector whose mean and covariance are f and k. E is the expectation operator, · · · . is the 
ellipsis operator which indicates continuation of an equation, while [D]m,n denotes (m,n) 
-th entry of D.

The rest of the paper is organized in such a way that the system model is described in 
the “Methods” section, discussion of simulation results is presented in the “Results and 
discussion” section, while concluding remarks are given in the “Conclusion” section.

Methods
Figure  1 illustrates downlink millimeter wave cellular system with few ADC bits at 
mobile station (MS). The base station (BS) consists of NT antennas and FRF

T  RF chain 
to up convert spatial streams Bs to the carrier frequency. The baseband precoder at BS 
multiplexes the spatial streams which are attached to the transmitting antennas via 
analog phase shifter. The receiving MS receives the transmitted streams via NR antennas. 
The analog combiner at MS digitally controls the amplitude and phase of the transmitted 
spatial streams. These are down-converted to carrier frequency using FRF

T  RF chain. 
ADC is used to transform the received analog signal to digital format for further 
processing by the digital combiner.

The received signal at MS after quantization and combining assumes expression of the 
form:

in which x is the quantized received signal, Q(·) is the quantization operator, 
PRF ∈ CNT × FRF

T  is RF precoding matrix, and PBB ∈ C FRF
T ×Bs is the digital precoding 

matrix. QRF ∈ CNR × FRF
R  and QBB ∈ C FRF

R ×Bs , respectively, denote RF and baseband 
combining matrices, while t ∈ CBs×1 is the transmitted symbol vector whose covariance 
matrix satisfies E ttH = I

Bs
 . s ∈ CNR ×1 is the additive white Gaussian noise (AWGN) 

that distorts the received signal. H ∈ CNT × NR is the sparse millimeter wave channel of 
the form given by [5, 22, 23] as follows:

(1)x = QH
BBQ

(

QH
Rf H PRF PBB t + QH

Rf s
)

Fig. 1 Millimeter-wave hybrid precoding and combining system
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in which K ≪ min (NT , NR) is the channel path between BS and MS, ρk is the complex 
gain associated with kth path, and fR (θk) and fT (ϕk) represent array steering vectors 
at MS and BS. θk and ϕk are azimuth angle of arrival (AoA) at MS and azimuth angle of 
departure (AoD) from BS.

If the transmitting BS and receiving MS consist of uniform linear antenna arrays, then 
array steering vectors are expressible in forms given by Eq. (3) [24].

wherein � is the wavelength and da = �
/

2 is the spacing between antenna array 
elements.

Equation (2) assumes virtual representation as follows:

where α =
√

NTNR
K diag [ρ1, ρ2, . . . , ρk ]

T is a diagonal matrix with path gain ρk . FR 
and FT are array response matrices given by Eq. (5) as follows:

Neglecting grid quantization error, it is expected that H is equal to estimated quan-
tized counterpart represented by H̄q which consists of discretized AoA and AoD. This 
implies the following:

F̄R , F̄T are array steering matrices with AoA and AoD taken from discretized grids of 
sizes PR, PT , respectively, and γ is the K-sparse matrix containing the channel gain.

For the purpose of estimating parameters in (6), the transmitter sends identical symbol 
tm using Vm ∈ CNT ×M training precoder during M time instant, while the mobile sta-
tion employs Gm ∈ CNR × FR

RF combiner to construct the received signal as Eq. (7) [25].

in which ℘ is the average received power and m = 1, . . . , M is the number of training 
sequences.

Representation of Eq.  (7) in vector form by using vector identity, 
vec (ABC) = CT ⊗ Avec (B) , leads to Eq. (8) given by the following:

(2)H =
√

NTNR

K

K
∑

k=1

ρk fR (θk) f
H
T (ϕk)

(3a)

fT (ϕk) =

√

1

NT

[

1, ej
2π
�
da sin (ϕk ), ej

4π
�
da sin (ϕk ), . . . , ej(NT−1) 2π

�
da sin (ϕk )

]T

(3b)fR(θk) =

√

1

NR

[

1, ej
2π
�
da sin (θk ), ej

4π
�
dk sin (θk ), . . . , ej(NR−1) 2π

�
da sin (θk )

]T

(4)H = FR (α) FH
T

(5a)FR = [fR (θ1), fR (θ2), . . . , fR (θK ) ] ∈ CNR ×K

(5b)FT = [fT (ϕ1), fT (ϕ2), . . . , fT (ϕK ) ] ∈ CNT ×K

(6)H̄q = F̄R (γ ) F̄H
T

(7)zm = Q
(√

℘ GH
m H̄qVm + GH

m sm
)
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in which z is the vectorized quantized received signal and w = diag
[

Gm
Hvec(sm)

]

 is the 
noise vector.

Substitution of Eq. (6) in Eq. (8) leads to an expression of the form:

Vm and Gm in Eq. (9) are constructed with random entries expressed by Eq. (10) [9] as 
follows:

where kQ = 0, 1, 2, . . . , 2N
T
q − 1 and kR = 0, 1, 2, . . . , 2N

T
R − 1 , with NT

q ,NR
q , indi-

cating quantization bits in the phase shifter at BS and MS, respectively.
Equation (9) may be written in a form given as follows:

in which � =
(

Vm
T F̄∗

T ⊗ F̄R Gm
H
)

 is the sensing matrix and y = vec(γ ) is the 
unknown sparse channel gain.

Equation (11) is the quantized sparse problem whose only unknown is the channel gain. 
For solving the sparse problem, uniform mid-rise quantizer that is symmetrical about the 
origin with quantization step size � = f

/

2g−1 is utilized, in which f  is expressed by the 
following:

wherein ℜ(z), ℑ(z) are, respectively, real and imaginary parts of quantized received sig-
nal, while g is the number of bits in ADC. The channel gain is obtained via quantized 
versions of CoSAMP and OMP algorithms presented in the subsequent sections.

On the other hand, when infinite bit is invoked, Eq. (13) emerges which is the unquan-
tized version of Eq. (11) which assumes expression of the form:

in which r is unquantized received signal and other parameters remain as defined earlier.

(8)z = Q

((√
℘

(

VT
m ⊗ Gm

H
)

vec
[

H̄q
]

+ w
))

(9)z = Q

((√
℘

(

Vm
T ⊗ Gm

H
)

(

F̄∗
T ⊗ F̄R

)

vec(γ ) + w
))

(10a)[V ]i,k =
1

√
NT

e
j
kQ 2π

2
NT
q

(10b)[G]i,k =
1

√
NR

e
j
kR 2π

2
NR
q

(11)z = Q
(√

℘ � y + w
)

(12)f = max abs {ℜ(z), ℑ(z)}

(13)r = √
℘ � y + w
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Compressed sampling matching pursuit solution

Algorithm 1 Compressed matching pursuit

Orthogonal matching pursuit solution

Algorithm 2 Orthogonal marching pursuit

By invoking γ = vec−1
(

y
)

 in Eq. (6), CSI emerges which facilitates the design of com-
biner architecture which is considered later in this work.

Deep learning (DL) channel estimation

Moreover, in solving the sparse problem of Eq. (11), a deep neural network is trained, 
consisting of input layer through which data sets enter the network, three hidden lay-
ers, and output layer. As illustrated in Fig.  2, multilayer perceptron (feed forward) 
network model is adopted, where sigmoid linear function and softmax function are 
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employed as activation functions at hidden and output layers, respectively. Given an 
input argument a , the sigmoid and softmax functions assume forms given as follows:

The training data set consists of input c which is the correlation vector between the 
sensing matrix � and measurement vector z , and the target b , which is the channel 
amplitude of simulated millimeter wave environment. The target consists of CPT ·PR×1 
entries as given by the following:

The output of the network, represented by d, is the estimated channel amplitude 
which is obtained via Eq. (16) as follows.

where f (·) is the mapping function, � is the training data set, and w is the weight of the 
deep neural network which is updated by using back propagation algorithm where the 
error or loss is given by Eq. (17) as follows:

in which T  is the number of iterations.
∣

∣d
∣

∣ is sorted in descending manner to obtain the indices of the first h entries, where 
h represents the number of dominant entries in d and which corresponds to the spar-
sity level of simulated millimeter wave channel environment as used elsewhere [26]. 

(14a)sigmoid(a) =
1

1+ e−a

(14b)soft max (a) =
ea

∑

ea

(15)b =
[∣

∣b(1)
∣

∣,
∣

∣b(2)
∣

∣,
∣

∣b(3)
∣

∣ . . . ,
∣

∣b(PT × PR)
∣

∣

]T ∈ CPT PR ×1

(16)d = f (�, w)

(17)Loss =
1

T

T
∑

n=1

∥

∥b(n)− d(n)
∥

∥

2

2

Fig. 2 Deep neural network for channel estimation
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The dominant entries of channel gain are obtained by plucking in the columns of 
the sensing matrix with dominant indices and solving problem of Eq.  (18) given as 
follows:

where �J is the sensing matrix consisting of J  column indices with J ∈ Rh.
Once the channel gain is known, DL channel estimate is determined by using Eq. (19), 

written as follows:

wherein H̄q
dl is the DL channel estimate.

The detailed procedure for obtaining channel gain and for constructing DL channel esti-
mate is presented in Algorithm 3 below.

Algorithm 3 Deep learning channel estimation

Least square (LS) solution

The quantized LS channel model is expressible from Eq. (8) as follows:

wherein H̄q
LS is the quantized LS channel estimate that assumes expression of the form 

given as follows:

where B = Vm
T ⊗ Gm

H

(18)y[J ] =
(

�H
J �J

)−1
�H

J z

(19)H̄
q
dl = F̄R vec

−1
(

y
)

F̄H
T

(20)z = Q

((√
℘

(

VT
m ⊗ Gm

H
)

H̄
q
LS + w

))

(21)H̄
q
LS =

1
√
℘

(

BH B
)−1

BHz
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Hybrid combiner design

The millimeter wave CSI obtained from OMP, CoSAMP, and DL as well as LS is 
employed to design hybrid combiner by solving Frobenius problem of Eq.  (22) in a 
manner similar to the one provided in [27].

where Q = QRF QBB is the combiner design. It is expected that Q is close to optimum 
unconstrained combiner, denoted by Qopt , and which corresponds to left singular 
matrix of the quantized millimeter wave channel estimate H̄q . That is Qopt = U , given 
that H̄q = U DVH , where V  is the right singular matrix. It is assumed that QRF is con-
strained to a set of array responses XT = [xt (ϕ1, θ1), xt (ϕ2, θ2), . . . , xt (ϕb, θb) ] , with 
b being the angular resolution.

Results and discussion
The performance of OMP, CoSAMP, DL, and LS methods for quantized millimeter wave 
channel estimation and combiner design is evaluated. It is considered that NT = 64,

NR = 32 , K = 7 , number of RF chains at BS and MS is 5, NT
q = NR

q = 2 , frequency 
of operation is 32  GHz, system bandwidth is 500  MHz, and M = 40 [25]. F̄T and F̄R 
matrices are constructed with AoD and AoA uniformly distributed on discretized points 
PT = NT and PR = NR . A geometric millimeter wave channel model H is constructed 
with AoA and AoD uniformly distributed over (0, 2π) , while the gain is Gaussian ran-
dom variable, identically and independently distributed. Complex Gaussian random dis-
tribution with entries N

(

0, σ 2
)

 is used to represent AWGN where σ 2 = c0 Bandwidth 
indicates total noise power and c0 is the noise power density. The received power 
℘ = SNR σ 2, in which SNR is the signal-to-noise ratio in decibel. CoSAMP and OMP 
algorithms are terminated when norm of residual is less than 10−10 , i.e., �r�2 < 10−10 
[25].

The DL neural network consists of single input layer, softmax output node, and three 
hidden layers, each with 512, 256 and 128 hidden sigmoid nodes. The network is trained 
over 1200 epochs with learning rate of 0.01 and 20% probability dropout of hidden 
neurons.

Normalized mean square error (NMSE) in decibel and spectral efficiency are used as 
performance indices and are expressed by Eqs. (23) and (24) as follows:

where all symbols remain as defined earlier.

(QRF , QBB) = arg min
QRF ,QBB

∥

∥Qopt − QRF QBB

∥

∥

F
subject to the following:

(22)|QRF | ∈ AT and �QRF QBB�2F = Bs

(23)NMSE(dB) = 10 log10

[
∥

∥H − H̄q
∥

∥

2

F

�H�2F

]

(24)Spectral efficiency = log2

∣

∣

∣

∣

IBs +
SNR

Bs

(

QHQ
)−1

QHH P PH HH Q

∣

∣

∣

∣
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It is worthy to mention that while NMSE reveals the error in the utilization of LS, 
OMP, CoSAMP, and DL for channel estimation, spectral efficiency indicates the rate 
at which spatial stream Bs is transmitted from BS to MS with ADC. Figure 3 portrays 
response behavior of NMSE of OMP, CoSAMP, DL, and LS to variation of SNR 
from − 20 to 20 dB wherein the number of bits in ADC g = 2, 3, 4 , and 6, respectively.

It is observed that LS exhibits the poorest behavior in all the results displayed 
in Fig.  3. This is in line with what has been consistently reported in the literature 
which is attributed to the inability of LS method to exploit the sparsity of millimeter 
wave channel for estimation. It is seen in Fig. 3a–d that OMP performs better than 
CoSAMP and DL when SNR is −5 dB and above, whereas CoSAMP and DL outper-
form OMP when SNR is below −5 dB.

Fig. 3 NMSE versus SNR for LS, OMP, COSAMP, and DL using a 2 bit, b 3 bit, c, 4 bit, and d 6 bit
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However, Table  1 presents the values of NMSE for OMP, CoSAMP, DL, and LS 
when 2, 3, 4, 6, and infinite bits are used for all values of SNR employed as candidate 
for investigation in this work.

A cursory look at Table  1 reveals that the values of NMSE for CoSAMP, DL, LS, 
and OMP using infinite bit at SNR of − 10 dB are, respectively, −2.2424 dB, 0.1988 dB, 
29.9541 dB, and 3.6425 dB, while those with 4 bit at − 10 dB are −2.2407 dB, 0.200 dB, 
30.100  dB, and 3.5572 dB, respectively. This implies that 4 bit has close values of 
NMSE with those of infinite bit at SNR of − 10  dB. On the other hand, NMSEs of 
DL, CoSAMP, LS, and OMP using infinite  bit at 20  dB are −1.5298 dB, 0.0166  dB, 
14.8914  dB, and − 6.5818  dB, respectively, whereas those for 6-bit are −1.5294 dB, 
0.0231 dB, 15.0763 dB, and − 6.5879 dB, respectively, which indicates also that ADC 
with 6-bit resolution has close values of NMSE as those of infinite bit at SNR of 20 dB.

By employing Eq. (24), where it is assumed that BS utilizes unconstrained precoder 
and MS utilizes ADC with g = 2, 3, 4 and 6 bit respectively, Fig.  4 illustrates the 
characteristic profile of spectral efficiency against SNR. It is noticed in all the results 
depicted in Fig. 4 that spectral efficiency rises with increase in SNR. The implication 
of which is that spectral efficiency increases as noise reduces in the channel which is 
consistent with what is expected.

Table 1 NMSE of LS, OMP, CoSAMP, and DL for 2, 3, 4, 6, and infinite bit

SNR(dB)

-20 -15 -10 -5 0 5 10 15 20

ADC bits NMSE (dB) for LS

 Infinite 42.5159 35.3573 29.9541 21.1436 21.0443 21.1026 19.1538 16.4678 14.8914

 2 43.3190 37.5576 31.9095 23.1951 25.2676 21.7531 19.8947 17.5118 18.5020

 3 42.6157 36.1318 30.3873 21.9043 22.9805 21.3230 19.0149 16.9698 16.0480

 4 42.6912 35.5571 30.1225 21.1948 21.3375 21.0678 18.7741 16.7218 15.2454

 6 42.5771 35.3500 29.8977 21.1635 21.2097 21.2097 19.0711 16.5086 15.0763

NMSE (dB) for OMP

 Infinite 14.7068 8.6693 3.6425 -2.5419 -4.9715 -7.1623 -7.4314 -7.1858 -6.5818

 2 16.2074 9.2391 4.4341 -1.0789 -3.3246 -5.8134 -6.0406 -6.1267 -5.9366

 3 15.4232 8.6686 3.6225 -2.1872 -4.1170 -6.6021 -7.2015 -6.6603 -6.5540

 4 14.6998 8.6054 3.6572 -2.0559 -4.6165 -7.1768 -7.2337 -7.0883 -6.6251

 6 14.6364 8.470 3.5550 -2.5889 -4.8918 -7.1178 -7.4249 -7.1804 -6.5879

NMSE (dB) for CoSAMP

 Infinite 4.4097 1.5478 -2.2424 -1.7109 -1.6673 -1.7447 -1.7807 -1.7576 -1.5298

 2 4.8346 1.6636 -2.3607 -1.7739 -1.6613 -1.7763 -1.7724 -1.8129 -1.5613

 3 4.5107 1.6896 -2.2797 -1.7061 -1.6570 -1.7430 -1.7654 -1.7483 -1.5286

 4 4.7273 1.6324 -2.2407 -0.17084 -1.6888 -1.7472 -1.7748 -1.7554 -1.5261

 6 4.4463 1.6465 -2.2443 -1.7107 -1.6666 -1.7469 -1.7821 -1.7564 -1.5294

NMSE (dB) for DL

 Infinite 2.8343 0.7922 0.1988 0.0395 0.0216 0.0355 0.0303 0.0180 0.0166

 2 3.1492 1.1588 0.4645 0.0776 0.0603 0.0164 0.0284 0.0312 0.0170

 3 3.2380 0.6147 0.3343 0.1088 0.0281 0.0173 0.0106 0.0060 0.0153

 4 2.3565 0.5187 0.2424 0.0426 0.0424 0.0155 0.0262 0.0175 0.0209

 6 1.5489 0.5060 0.2750 0.0402 0.0233 0.0182 0.0249 0.0214 0.0231
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In Fig. 4a, it is observed that DL has the highest spectral efficiency when the receiver 
utilizes 2-bit and is closely followed by OMP, while for 3, 4, and 6 bits, OMP has the 
highest spectral efficiency as evidenced in Fig. 4b–d.

Effect of varying RF chain on NMSE and spectral efficiency

Figure  5 typifies graphical illustrations of response of NMSE to variation of SNR 
from − 20 to 20 dB wherein RF chains at the receiver and transmitter are 4, 6, 8, and 10, 
respectively, while using 4 bit at MS.

It is evident in Fig. 5 a and b that LS exhibits the worst performance over SNR of − 20 
to 20 dB. It is however observed in Fig. 5d that LS improves drastically and has lower 
error than others when SNR is above 7 dB which indicates that the increase in amount 
of RF chain impacts positively on the performance of LS. The results in Fig. 5 also show 
that OMP performs better than CoSAMP when SNR is above − 6 dB, while below − 6 dB, 

Fig. 4 Spectral efficiency against SNR for LS, OMP, COSAMP, and DL using a 2 bit, b 3 bit, c 4 bit, and d 6 bit
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CoSAMP has lower errors than OMP. DL however outperforms OMP when SNR is 
below − 5 dB.

Figure 6 typifies spectral efficiency against SNR of all the channel estimation methods 
by using 4 bit and 4, 6, 8, and 10 RF chains at MS and BS. It is noticed in Fig.  6 that 
spectral efficiency increases with SNR. Furthermore, DL has the highest spectral 
efficiency in Fig. 6a, where 4 RF chains are utilized. OMP has better spectral efficiency 
when 6, 8, and 10 RF chains are utilized as observed in Fig. 6 b − d.

Effect of varying channel path on NMSE and spectral efficiency

Figure 7 depicts computational results for NMSE of LS, OMP, CoSAMP, and DL against 
SNR, where K varies from 4 to 10 and by employing 4-bit ADC at the receiver.

It is observed in Fig. 7 that the performance of OMP is better than other methods at 
higher values of SNR. LS exhibits the worst performance in all cases considered.

In Fig. 8a − d, it is seen that spectral efficiency increases with SNR for all the channel 
paths considered with OMP exhibiting the highest spectral efficiency when K = 4 and 6, 

Fig. 5 NMSE against SNR for LS, OMP, CoSAMP, and DL with 4 bit and number of RF chains at the receiver and 
transmitter is a 4, b 6, c 8, and d 10
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while DL outperforms others when more channel paths of K = 8 and 10 are introduced 
into the design.

Validation

Here, the performance of OMP, CoSAMP, DL, and LS is compared with ACS of [23] 
existing in the literature. In the said work, hierarchical multi-resolution beam-forming 
vector is built for the training precoding and combining vector. And to facilitate compu-
tational evaluation with ACS, a millimeter-wave cellular system equipped with NT = 64 
and NR = 32 , operating at 32  GHz, is considered. The number of quantization bits 
employed at the phase shifter is 7, in order to be consistent with what is done in the 
publication. An infinite bit is employed in all the simulation data obtained here as there 
is no indication of quantization of the received signal at MS in the published work. The 
number of beam-forming vectors for ACS and training overhead (M) for implementing 
LS, OMP, CoSAMP, and DL are 32.

Fig. 6 Spectral efficiency versus SNR for LS, OMP, CoSAMP, and DL with 4-bit ADC, and number of RF chains 
at the receiver and transmitter is a 4, b 6, c 8, and d 10
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In addition, the number of uniform grid point assumed for ACS is 64, quantized grids 
employed in LS, OMP, CoSAMP, and DL are PT = NT and PR = NR , while K = 2 . 
Figure 9 compares NMSE of LS, OMP, CoSAMP, DL, and ACS where RF chains at BS 
and MS are set as 4 and 6.

In obtaining simulation results for ACS, simulation code provided by authors [28] is 
utilized. It is seen in the results displayed in Fig.  9 that LS exhibits the worst perfor-
mance across SNR regime of − 20 to 20 dB. It is also observed that DL and ACS are at 
par in the two cases considered. Furthermore, it is observed in Fig. 9a that CoSAMP is 
better than ACS within SNR range of − 10 to 20 dB. OMP is better than ACS within SNR 
range of − 5 to 20 dB which is consistent with what is reported by [2].

However, it is noticed in Fig.  9b that the range of SNR for which the NMSE of 
CoSAMP is better than ACS increases when RF chain increases to six.

Figure 10 compares spectral efficiency of analytical models used in this work with 
that of ACS using 4 and 6 RF chains. It is evident in Fig.  10a and b that spectral 
efficiency of OMP is higher than those of CoSAMP, DL, LS, and ACS. It is also 

Fig. 7 NMSE versus SNR for LS, OMP, CoSAMP, and DL using 4-bit ADC, and the number of channel paths is a 
4, b 6, c 8, and d 10
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observed in Fig. 10a that spectral efficiency of CoSAMP is better than that of ACS 
in the SNR regime of − 20 to 15 dB, and the performance gap between CoSAMP and 
ACS widens when 6 RF chains are utilized as observed in Fig. 10b.

In terms of computational complexity, LS requires O (MFR
Rf N 2

T N 2
R) computa-

tional operations, resulting from matrix multiplication of BH  and B in Eq. (21). The 
computational complexity of OMP and CoSAMP having the same stopping criterion 
scales as O

(

MFR
Rf PT PR

)

 and which results from the inner product of quantized 

received signal z and sensing matrix � [25]. The complexity of DL is based upon the 
number of epochs used for training the weight. For ACS, the computational com-
plexity is O

(

2K N 3
T log t

(

KAM

/

K
))

 [29], where t and KAM are, respectively, num-
bers of beam-forming vector, and quantized grid and other quantities remain as 
defined earlier. It is therefore seen that LS has the highest computational operation, 
closely followed by ACS, while DL is implemented with the least computational 
effort and has computational edge over OMP and CoSAMP.

Fig. 8 Spectral efficiency against SNR for LS, OMP, CoSAMP, and DL channel using 4-bit ADC and aK = 4, 
bK = 6, cK = 8, and dK = 10
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Conclusions
This work utilized LS, OMP, CoSAMP, and DL neural network for estimating millimeter 
wave channel in millimeter wave cellular system whose receiver has ADC with 2, 3, 4, 
and 6 bit, respectively, as well few RF chains at both the transmitter and the receiver. 
Numerical results for normalized mean square error revealed that LS exhibited the worst 
performance across SNR regime of − 20 to 20 dB except when number of RF chains was 
10 with SNR of 6 dB and above.

Fig. 9 NMSE against SNR for LS, OMP, CoSAMP, DL, and ACS, and the number of RF chains is a 4 and b 6

Fig. 10 Comparison of spectral efficiency of LS, OMP, CoSAMP, DL, and ACS for a 4 RF chains and b 6 RF 
chains
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It was however found that CoSAMP and DL exhibited better performance than OMP 
in noisy SNR regime of − 30 to − 5 dB, while above − 5 dB, OMP exhibited the best per-
formance. It was found that uniform mid quantizer with 4 bit at SNR of − 10 dB and 6 bit 
at SNR of 20 dB produce similar results with infinite bit.

It was also observed that DL has the highest spectral efficiency when the number of 
RF chains at MS and BS was 4, while the spectral efficiency of OMP outperformed oth-
ers when RF chain was more than 4. It was observed that the spectral efficiency of DL 
outperformed others when 4 and 6 channel paths were utilized, while OMP had highest 
spectral efficiency when 8 and 10 channel paths were employed.

In addition, DL compared favorably well with ACS method in the literature, while 
OMP and CoSAMP performed better than ACS, suggesting that OMP and CoSAMP 
were better channel estimation tools than ACS. Finally, it was seen that DL, OMP, and 
CoSAMP have computational advantage over ACS and LS.
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