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Abstract 

The design process for pile foundations necessitates meticulous deliberation of the cal-
culation pertaining to the bearing capacity of the piles. The primary objective of this 
work was to investigate the potential use of Coot bird optimization ( CBO ) techniques 
in predicting the load-bearing capacity of concrete-driven piles. Despite the avail-
ability of several suggested models, the investigation of Coot bird optimization 
( CBO ) for estimating the pile-carrying capacity has been somewhat neglected in this 
research. This work presents and validates a unique approach that combines the Coot 
bird optimization ( CBO ) model with the Multi-layered perceptron ( MLP ) neural net-
work and adaptive neuro-fuzzy inference system ( ANFIS ). The findings of 472 different 
driven pile static load tests were put in a database. The proposed framework’s build-
ing, validation, and testing stages were each accomplished utilizing the training set 
(70%), validation set (15%), and testing set (15%) of the dataset, respectively. According 
to the findings, MLPCBO and ANFISCBO both offer remarkable possibilities for accurately 
predicting the pile-bearing capacity of a given structure. The R2 values for ANFISCBO 
during the training stage were 0.9874, while during the validating stage, they were 
0.9785, and during the testing stage they were 0.987. After considering various kinds 
of performance studies and contrasting them with existing literature, it has been con-
cluded that the ANFISCBO model provides a more appropriate calculation of the bear-
ing capacity of concrete-driven piles.
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Introduction
To sustain superstructures with enormous loads or those situated on unstable ground, 
deep foundations are a typical and essential form of foundation [1]. Driven piles com-
posed of wood, steel, precast concrete, and composite are another cost- and quality-effi-
cient alternative to drilled shafts. The axial pile-bearing capability is considered the most 
significant factor when designing a pile foundation. As a result, many theoretical and 
empirical geotechnical research has focused on calculating this value.

The pile-bearing capability may be assessed using five primary techniques: static anal-
ysis, dynamic analysis, dynamic testing, pile load test, and in-situ testing [2–5]. It is often 
suggested to use the essential depth idea in design recommendations according to static 
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analysis. The crucial depth, nevertheless, is an idealization that defies physical principles 
and lacks theoretical or trustworthy empirical evidence.

The hammer-pile-soil system is subject to dynamic analysis using wave mechanics as a 
foundation. Uncertainties in calculating bearing capability are brought on by the hammer 
impact effect’s ambiguity and also by variations in soil power due to environmental factors 
at the time of pile drive and loading. The measurement of velocity and force close to the 
pile head during driving is the foundation of dynamic testing techniques. Nevertheless, a 
skilled individual is able to interpret the evaluations. The capability estimate is also not 
known until the pile is driven, which is a significant restriction [6]. The full-scale pile settle-
ment under a static load is measured in the field in a pile load test, which is thought to con-
vey the most precise findings. This approach, nevertheless takes a lot of time and money 
[7]. So, it is crucial to create a straightforward, cost-effective, and precise procedure.

Since the 1970s, in  situ test techniques for measuring soil parameters have progressed 
quickly. This advancement is being accompanied by an increase in the estimation of pile-
bearing capability using data from in-situ tests. Standard penetration test ( SPT ), cone pen-
etration test ( CPT ), flat dilatometer test ( DMT ), pressuremeter test ( PMT ), plate loading 
test ( PLT ), dynamic probing test ( DP ), press-in and screw-on probe test ( SS ), and field vane 
test ( FVT ) are a few examples of typical tests. In an effort to assess the material properties, 
every test employs several loading techniques to quantify the related soil reaction. The SPT 
is often utilized to forecast the piles’ bearing capability between these in-situ test data [8, 9].

In the research, many SPT data-based approaches for calculating pile-bearing capaci-
ties have been developed. Direct and indirect techniques are the two categories into 
which they fall. Because of their simplicity in calculation, the direct techniques are pre-
ferred by field engineers. For instance, SPT direct approaches for sandy or clayed soil 
were presented in [10–15]. The researchers used the limited component approach to 
assess the pile for a case investigation in Iran [15] and contrasted the results with four 
distinct SPT direct techniques to arrive at an accurate forecast of the pile’s bearing capa-
bility. Nevertheless, every one of these experimental formulations have certain short-
comings, based on [4]. As a result, scholars have started searching for various techniques 
to forecast pile-bearing capability using SPT data. Utilizing machine learning techniques 
may be successful, according to earlier research [16].

Machine learning ( ML ), a subset of artificial intelligence that simulates  the human 
brain’s functioning, is capable of inferring novel information nonlinearly from past data 
via adaptive learning [17–24]. Additionally, as learning data increases, the machine learn-
ing ( ML)-based models’ efficiency may be enhanced progressively, keeping them cur-
rent with the strict precision demands for complicated engineering challenges [25–30]. 
Numerous studies have shown how well ML-based models work in solving issues associ-
ated to civil engineering, such as forecasting the mechanical characteristics (compressive/
tensile strength/shear) of hardened concrete [31–34], the ultimate bond strength of cor-
roded reinforcement and surrounding concrete [35, 36], the bearing capability of piles 
[37, 38], the pulling capability of ground anchors [39–41], and others.

Artificial neural networks ( ANN ), in particular, have been widely employed in ML-based 
models to forecast pile-bearing capability. Previous attempts in this manner may be seen 
in [42, 43], which use ANN with error back propagation. Utilizing results from 50 dynamic 
load tests performed on prefabricated concrete piles, [44] combines ANN with genetic 
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algorithm ( GA ), with the weights of ANN being adjusted by GA . Identical methods are sug-
gested in [45], where the ANN connection weights are optimized using particle swarm opti-
mization ( PSO ) along with GA . When using ANN to forecast the piles’ bearing capability, 
GA is also utilized to identify the most crucial characteristics in the unprocessed dataset 
[3]. Other ML-based approaches than ANN have also been taken into account; for example, 
Samui [46] employs support vector machine ( SVM ), Pham et al. [2] explore random forest, 
and Chen et al. [38] investigated the neuro-imperialism and neuro-genetic approaches.

Many studies employed a number of machine learning techniques to successfully 
measure the foundation’s bearing capabilities. For the purpose of predicting the bearing 
capacity of the thin-walled foundation, ANN models were developed utilizing a total of 
150 specimens, and an adaptive neuro-fuzzy inference system ( ANFIS ) was developed as 
well [47]. The researchers obtained the coefficient of determination ( R2 ) and root mean 
squared error ( RMSE ) values for the ANFIS and ANN models, which were determined to 
be 0.875 and 0.048, and 0.71 and 0.529, accordingly. In an alternative study, the determina-
tion of pile bearing capability included the use of 296 sets of data and the application of 
Gaussian process regression analysis, resulting in an R2 value of 0.84 [48]. In their study, 
Kulkarni et al. [49] used a dataset consisting of 132 data points to elucidate the behavior 
of rock-socketed piles. This was achieved by using a hybrid approach that combined the 
genetic algorithm ( GA ) technique with artificial neural networks ( ANN ). The researchers 
obtained a coefficient of determination ( R2 ) value of 0.86 and a root mean square error 
( RMSE ) value of 0.0093. Using this dataset and a hybrid model known as particle swarm 
optimization ( PSO)-ANN , another group of researchers were able to replicate the behavior 
of rock-socketed piles [50]. Their results showed an R2 value of 0.918 and an RMSE value of 
0.063. The dataset used in previous empirical endeavors to construct models consisted of a 
total of 472 specimens [3, 51]. Models that were taken into account included a hybrid deep 
neural network ( DNN ) with genetic algorithm ( GA ), as well as a hybrid whale optimiza-
tion ( WOA ) technique with extreme gradient boosting ( XGB ). The R2 and RMSE values 
that were generated by the GA-DNN model came out to be 0.882 and 109.965, accordingly. 
The findings for WOA-XGB showed significant improvement, with R2 , and RMSE values 
of 0.97 and 64 during the training step, and 0.94 and 87.03 at the testing step, respectively.

In conclusion, the present study has made some notable contributions, which may 
be outlined as follows:

• In this study, a comprehensive dataset including 472 pile test findings is used to 
develop and validate machine learning models for the assessment of pile-bearing 
capacity. It is essential to acknowledge that prior research has often concentrated 
on limited datasets.

• The investigation of coot bird optimization ( CBO ) for assessing the load-bearing 
capacity of piles has been somewhat neglected in scholarly research, despite the 
existence of numerous suggested models.

• The selection of the appropriate model, which entails the selection of the appropriate 
hyper-parameters, is of the utmost importance. This work presents and validates a 
unique approach that combines the coot bird optimization ( CBO ) model the multi-
layered perceptron ( MLP ) neural network and the adaptive neuro-fuzzy inference 
system ( ANFIS).
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Methods
Data description and pre‑processing

The dataset used for training and evaluating the machine learning approach described in 
this paper consists of findings of static load tests conducted on driven strengthened con-
crete piles. The 472 pieces of data that are now included in this collection were obtained 
for previous research [3]. The adequacy of the data collection for the development and vali-
dation of advanced machine-learning models is attributed to its substantial size. In order 
to evaluate the capacity of the precast piles, hydraulic pile-driving machinery is used to 
drive the piles into the soil layers. The piles have closed tops. Figure 1 illustrates the test-
ing environment, including the data gathering apparatus, as well as the specific testing site. 
The bearing capacity of piles was determined using a static load test experiment detailed in 
Fig. 1b. Figure 2 is a graphic representation of the pile structure, which includes the geo-
metrical factors associated with it as well as the location of the soil layers. The following are 
categories of input parameters: In1 ) pile’s diameter (mm) , In2 ) the first soil layer’s thickness 
that piles embedded (m) , In3 ) the second soil layer’s thickness that pile embedded (m) , In4 ) 
the third soil layer’s thickness that piles embedded (m) , In5 ) top elevation of pile (m) , In6 ) 
natural ground elevation (m) , In7 ) the extra segment pile top’s elevation (m) , In8 ) the pile 
tip’s depth (m) , In9 ) the mean SPT  blow count along the pile shaft, and In10 ) the mean SPT  
blow count at the pile tip [3]. Table 1 contains an overview of all ten of the conditioning 
variables that were considered while making a prediction about the dependent parameter 
(axial pile bearing capacity). These variables are denoted by the notation In1 through In10 . 
Along with other pieces of information, this table also provides a statistical analysis of the 
independent parameters as well as the parameters that are being predicted. The dataset 
contains 472 pieces of data, and it was partitioned into three distinct subsets: the testing 
set, which comprises 15% of the dataset (or 71 data), the validation set, which also com-
prises 15% of the dataset (or 71 data), and the training set, which comprises 70% of the 
dataset (or 330 data) [3, 51]. The data points are extracted from the bigger database via 
a standard diffusion and are then picked at random. An investigation using statistics was 
performed so that the practicability of the input parameters could be evaluated. Addition-
ally, the input and outcome factor distribution diagrams are shown in Fig. 3.

The degree to which the data points in a scatterplot conform to a linear pattern is meas-
ured by the Pearson correlation coefficient [52], which provides a numerical value. The 
primary objective of the Pearson correlation coefficient is to ascertain the degree of asso-
ciation between two variables. The range of the coefficient is from − 1 to + 1. A positive 
numerical value indicates a positive linear relationship, whereby there is a propensity for 

Fig. 1 a Experimental position. b Static load test experiment to record bearing capacity of pile [3]
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both parameters to increase together. A negative number indicates a negative linear rela-
tionship, whereby there is a tendency for the other variable to decrease as one parameter 
increases. Values closer to + 1 or − 1 indicate a powerful linear relationship, while values 
closer to 0 suggest a weak or negligible linear correlation. The Pearson correlation coef-
ficient is shown here in Fig. 4. The study may have been not capable of effectively capturing 
the impact of substantial negative or positive Pearson correlation coefficient variables on 
the findings due to a potential deficiency in powerful technique. It is noteworthy to observe 
that there are not many deviations from the high association values that exist among the 
parameters. As a consequence of this, the development of models that make use of these 
inputs needs to be successful for the purpose of reaching the highest possible accuracy. It 
is evident that a significant proportion of the association values exhibit high magnitudes. 
Among the investigated variables, the highest positive value is seen for In8 and In3 , both 
having a value of 0.99. The most negative value is seen in In5 and In2 , measuring -0.96.

Applied optimizer and frameworks

Coot bird optimization (CBO)

The COOT method, developed by Iraj Naruei et  al. (2021), is a recently introduced 
meta-heuristic optimization technique that aims to replicate the collective behavior of 
a swarm of coot birds. In comparison to other optimization methods, including the 
particle swarm optimization method and the differential evolution method, the COOT 

Fig. 2 Plot for stratigraphy and pile variables [3]
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Table 1 Statistical description of the input and output variables

Phase Metric

Minimum Maximum Standard deviation Skewness Kurtosis Average

Inputs

 Diameter of pile ( mm ) ( In1)

  Training 300 400 48.432  − 0.515  − 1.745 362.424

  Validating 300 400 48.546  − 0.504  − 1.798 361.972

  Testing 300 400 44.9823  − 0.9917  − 1.0468 371.831

 The thickness of the first soil layer that pile embedded ( m ) ( In2)

  Training 3.4 5.72 0.491 0.642  − 0.730 3.821

  Validating 3.4 4.45 0.447 0.372  − 1.815 3.794

  Testing 3.4 4.75 0.46495 0.1379  − 1.756 3.87746

 The thickness of the second soil layer that pile embedded ( m ) ( In3)

  Training 1.5 8 1.574  − 0.946 0.517 6.594

  Validating 1.71 8 1.700  − 1.029 0.638 6.532

  Testing 1.66 8 1.83948  − 1.2861 0.92027 6.5569

 The thickness of the third soil layer that pile embedded ( m ) ( In4)

  Training 0 1.69 0.450 0.893  − 0.984 0.321

  Validating 0 1.13 0.446 0.856  − 1.167 0.326

  Testing 0 1.22 0.48996 0.63525  − 1.5594 0.38338

 Pile top elevation ( m ) ( In5)

  Training 0.68 3.4 0.619  − 0.393  − 1.388 2.812

  Validating 1.95 3.4 0.609  − 0.362  − 1.700 2.825

  Testing 1.95 3.4 0.60256  − 0.0936  − 1.802 2.74225

 Natural ground elevation ( m ) ( In6)

  Training 3.04 4.12 0.080 1.310 13.141 3.495

  Validating 3.26 3.67 0.078  − 0.203 1.031 3.490

  Testing 3.21 3.72 0.07878  − 0.6016 3.06421 3.50169

 The elevation of extra segment pile top ( m ) ( In7)

  Training 1.03 4.05 0.598  − 0.667  − 0.982 2.929

  Validating 2 3.58 0.577  − 0.532  − 1.458 2.914

  Testing 1.99 4.35 0.61997  − 0.2142  − 1.3344 2.87549

 The depth of pile tip ( m ) ( In8)

  Training 8.3 16.09 1.733  − 0.693  − 0.014 13.547

  Validating 8.51 15.53 1.848  − 0.798 0.143 13.478

  Testing 8.46 15.62 2.02017  − 1.0291 0.34365 13.56

 The average SPT blow count along the pile shaft ( In9)

  Training 5.6 15.41 2.220  − 0.156  − 1.234 10.746

  Validating 5.81 13.49 2.291  − 0.203  − 1.192 10.653

  Testing 5.76 13.57 2.41719  − 0.4566  − 0.9812 10.8177

 The average SPT blow count at the pile tip ( In10)

  Training 4.38 7.73 0.617  − 1.926 5.366 7.064

  Validating 4.56 7.7 0.685  − 2.111 5.405 7.047

  Testing 4.52 7.75 0.80459  − 1.9101 3.43106 7.02746

Output

 The axial bearing capacity load of pile ( kN)

  Training 423.9 1551 354.039 -0.090 -1.686 987.007

  Validating 407.2 1551 360.570 -0.028 -1.625 956.177

  Testing 423.9 1551 337.617 -0.1526 -1.5152 999.186
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Fig. 3 Plot of input and output parameters. a–j Input variables. k Output
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method has rapid convergence velocity and great precision in convergence. Further-
more, the COOT method has undergone validation in several engineering applications, 
including pressure vessel design, welded beam design, stepped cone pulley, and rolling 
bearing difficulties [53]. Hence, this study employs the COOT method as a solution to 
address the HDEED issue.

The underlying concept of the COOT method may be described below (Figs. 5 and 6).

(1) The first placement of the coot population will be established, followed by the com-
putation of the associated fitness levels for each of these populations.

The variable Q is formed by the process of randomly initializing people. The variable d 
reflects the dimension of the problem that has to be solved. Additionally, the variables Ub 
and Lb represent the highest and lowest bounds of the population positions. The matrix 
displaying the positions of the coot is shown below.

Here, Cposl shows the entire coot position, and N  shows the population’s scale.
The inclusion of the coot’s position is included in the fitness function, resulting in the 

generation of a fitness matrix for the coot population.

Here, fitli shows the fitness value of the ith individual at the time of the lth iteration.

(1)Q = Lb+ rand(1, d) ∗ (Ub− Lb)

(2)Cposl = xlN ,1, x
l
N ,D, . . . , x

l
N ,D

(3)Fitl =
[

fitl1, fit
l
2, . . . , fit

l
N

]

Fig. 4 PCC matrix
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(2) Common coot population position update

The current motion of the coot is modeled by simulating the collective motion of the 
population based on the distinct collective manners shown by the leader and the typical 
coot individual. Hence, there are four distinct patterns of movement seen on the water’s 
surface, such as random movement, chain movement, movement guided by the leader of 
the general population, and optimum movement executed by the leader.

Fig. 5 Coots’ leader selection mechanism [53]

Fig. 6 Readjust the leaders’ locations relative to the proper location [53]
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A location is generated at random inside the spatial domain, allowing a common one 
to afterward update the location. The formula governing the accidental mobility of the 
individual is as outlined below:

Here, the location of the ith the typical individual is denoted as Cpos(i) , where A repre-
sents a decreasing integer ranging from 0 to 1, R2 indicates an accidental value between 
0 and 1, and Q indicates an accidental location inside the search area. The following for-
mula determines the values of A and Q in the following way:

Here, l is the iterations’ present number, and L is the iterations’ highest number that 
may be performed, respectively.

A distance vector among two individuals updates the location throughout the typical 
population chain movement. The formula for the chain is outlined below:

In the context of leader-based location modification, the typical individual is required 
to modify its location by means of the kth leader.

Where Lpos(k) is the kth leader’s location, R1 represents an accidental integer within 
the range [0,1], and the variable k is selected in the manner outlined below:

In this equation, m represents the total number of leaders, and i indicates the present 
member of the ith coot group.

(3) Position update of the leader population

As part of the leader’s location modification, it is not uncommon for the leader to 
abdicate the currently finest location in order to assist in the discovery of a location that 
is more advantageous. If a leader is looking for a finer location, the ideal location from 
the prior instant should be assigned to the leader; alternatively, the leader should return 
to the place they were in before. The following outlines the leader’s location:

The variables R3 and R4 denote accidental values within the range of 0 to 1, whereas 
gbest indicates the present ideal position. The modified position of variable B is outlined 
below:

(4)Cpos(i) = Cpos(i)+ A× R2× (Q − Cpos(i))

(5)
{

A = 1− l
L

Q = rand(1, d) ∗ (UB− LB)+ LB

(6)Cpos(i) = 0.5× (Cpos(i − 1)+ Cpos(i))

(7)Cpos(i) = Lpos(k)+ 2× R1× cos(2Rπ)× (Lpos(k)− Cpos(i))

(8)k = 1+ (iMODm)

(9)Lpos(i + 1) =
{

B× R3× cos(2Rπ)×
(

gbest− Lpos(i)
)

+ gbestR4 < 0.5

B× R3× cos(2Rπ)×
(

gbest− Lpos(i)
)

− gbestR4 ≥ 0.5

(10)B = 2− l/L
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Multi‑layered perceptron (MLP) neural network

According to [54], ANN models are strong non-linear modeling techniques that operate 
by mimicking the functioning of the human brain. They are computer models for informa-
tion processing. When the input and outcome parameters are mapped into a complicated 
network, an ANN may assess nonlinear functions. This research utilized a popular ANN 
with one input level, one outcome level, and at minimum one concealed level that was first 
put out by [55]. According to [56], the ANN might be represented in the following way:

Here, xi stands for the ith nodal value, N  for the nodes’ number, in the prior level; f  
shows the jth nodal value, yi shows the jth node’s bias, bi denotes the activation function, 
and wji stands for a weight-linking xi and yi.

Numerous investigations have shown that the ANN model can predict complicated 
nonlinear functions for hydrological data with only one concealed level [57]. According to 
our research’s preliminary findings, the link between the groundwater level and the other 
hydrologic cycle elements may be roughly approximated by one concealed level. Although 
optimal practices for finding the volume of the concealed nodes have also been offered, cal-
culating the volume of the concealed nodes is commonly carried out by examination and 
mistake and is a crucial component of the ANN . According to Huang’s (2003) research, the 
following amount of concealed nodes is required to learn Ni samples with a little tiny fault:

Here, NH shows the concealed nodes’ highest volume, and Ni and No show the input 
nodes and outcome nodes. In this work, the concealed nodes’ size was changed from one 
to NH , and the ideal size was determined via a process of examination and mistake. For 
training, the Levenberg–Marquardt ( LM ) method, one of ANN s’ most effective meth-
ods, was employed [58]. The back-propagation method is applied to learn the biases and 
weights, and the CBO algorithm determines the optimal neuron numbers in each hidden 
layer (Fig. 7). In this study, the maximum number of each hidden layer is assumed to 
be 25. According to the literature, two hidden layers are considered for MLP structure 
to predict the bearing capacity of the concrete pile. MLPs often have hyperparameters 
(e.g., learning rate, number of layers) that impact their performance. CBO was employed 
to perform hyperparameter tuning, searching through the hyperparameter space to find 
the best configuration for the MLP. MLPs may suffer from overfitting, especially with 
complex architectures. Regularization techniques were optimized using optimization 
algorithms to find the right balance between model complexity and generalization.

Adaptive neuro‑fuzzy inference system (ANFIS)

The basic model in the present work uses ANFIS as a machine learning method. The Takagi–
Sugeno fuzzy system approach, which underpins ANFIS , was first suggested by Jang et al. in 
1993 [59]. ANFIS is capable of using both fuzzy logic and neural networks in a single frame 
if one thinks of it as an integrated notion. The ANFIS method’s proper structure is chosen 
based on the input data, membership level, and input and result membership functions. By 

(11)yi = f

(

∑N

i=1
wjixi + bi

)

(12)NH = 2
√

(No + 2)Ni
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modifying the level of membership variables in accordance with the allowed rate of error 
throughout the training phase, input values are able to be closer to observed values. The 
ANFIS technique makes use of fuzzy logic and neural network learning methods to handle 
the nonlinear connection between the values of the input and the output. It has great poten-
tial for use in time series modeling and categorization problems [60]. Based on the benefits 
of fuzzy rules, numeric data may be collected from a technically written rule, and the ANFIS 
is able to easily assess the intricate conversion of mankind’s intelligence into fuzzy systems. 
The fuzzy if–then principles that may be learned to estimate nonlinear functions are used 
in its inference mechanism. ANFIS is hence regarded as a well-liked estimating tool in engi-
neering domains. ANFIS is hence regarded as a well-liked estimating tool in engineering 
domains. In this work, fuzzy grouping according to the k-means grouping method was done 
using the fuzzy cluster means ( FCM ) technique, and the optimal optimization technique for 
the traditional ANFIS was found using the backpropagation technique [61]. In the present 
work, the ANFIS model was implemented using fuzzy c-means ( FCM ) clustering by collect-
ing the collection of rules required for producing the fuzzy inference system ( FIS ). Regarding 
ANFIS designs, a fundamental ANFIS design was created using the initial parameters. The 
CBO methodology was then used to optimize the developed ANFIS framework. The param-
eters of the membership function for the proposed system were enhanced by the use of the 
CBO method in this research. The RMSE index was calculated as a fitness indicator in order 
to assess the precision of the optimization framework. Finally, a hybridized and optimized 
ANFISCBO network was defined, whereby the parameters of the network, such as the num-
ber of fuzzy words and the maximum number of iterations, were determined.

Indices to effectiveness evaluation

The performance comparison criteria were developed to fulfill the need for a standard-
ized and quantifiable approach to assessing and comparing the overall efficiency of a 

Fig. 7 The schematic of CBO−MLP
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number of different models. The use of these metrics enables the stakeholders to per-
form an evaluation of the performance of a number of answers, determine regions in 
need of development, and make choices based on accurate information. In this study, the 
following metrics were calculated and included in the analysis: coefficient of determi-
nation ( R2 ), root mean square error ( RMSE ), normalized root-mean-square ( NRMSE ), 
relative absolute error ( RAE ), root relative squared error ( RRSE ), and performance index 
( PI ). Lower values of RMSE , RAE , RRSE , and PI are indicative of greater accuracy. Fur-
thermore, a greater R2 value signifies enhanced performance.

In these equations, md , m , zd , and z are the observations, the average of the observa-
tions, the simulations, and the average of the simulations, respectively. Also, D depicts 
the total number of datasets.

Results and discussion
Model development

The determination of the bearing capacity of the concrete piles was conducted utiliz-
ing the hybridized CBO models as outlined in this study. The hybrid models denoted 
as MLPCBO and ANFISCBO , were used to ascertain the maximum iterations and the 
count of fuzzy words via the employment of MLP and ANFIS techniques. The bearing 
capacity of the concrete piles was assessed and computed throughout the training, 
validation, and testing phases of the developed MLPCBO and ANFISCBO techniques, 
as seen in Fig. 8. The error distribution is shown on the right side of Fig. 8. The met-
rics R2 , RMSE , NRMSE , RAE , RRSE, and PI were used to conduct an analysis of how 
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effective MLPCBO and ANFISCBO were in the research of procedure prediction (see 
Table 2 for more information). Furthermore, the reliability and efficacy of the devel-
oped models, namely XGB , WOA− XGB , and GA− DLNN , were assessed based on 

Fig. 8 The performance of the models. (right side: error, left side: correlation)
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the results obtained from the present study, which primarily centered on the perfor-
mance of these models. The findings were compared to those that were found in the 
previous research [3] and [51].

Based on the data, it seems that both the MLPCBO and ANFISCBO models have sub-
stantial potential for accurately predicting the pile-bearing capacity. During the training 
stage, the R2 values for MLPCBO were determined to be 0.954, while during the validat-
ing stage, they were 0.9667, and during the testing stage they were 0.9729. in a similar 
manner, the R2 values for ANFISCBO during the training, stage were 0.9874, while dur-
ing the validating stage, they were 0.9785, and during the testing stage they were 0.987. 
Evaluating the dependability of a model based just on one metric is inadequate. In order 
to achieve this objective, it is important to conduct a comprehensive examination of 
a range of measures, including but not limited to RSME , NRMSE , RAE , RRSE , and PI . 
When one compares the percentages that are reported for MLPCBO and ANFISCBO for 

Table 2 The CBO-based models’ performance and literature comparison

Data Index Models Literature

MLPCBO ANFISCBO XGB [51] WOA‑XGB [51] GA‑DLNN [3]

Train data R
2 0.9754 0.9874 0.99 0.97 0.944

Score 1 2

RMSE 55.4829 39.6769 36.64 62.74 83.593

Score 1 2

NRMSE 0.0563 0.0402

Score 1 2

RRSE 0.1567 0.1121

Score 1 2

VAF 97.5445 98.7441

Score 1 2

Validate data R
2 0.9667 0.9785 0.923

Score 1 2

RMSE 65.9464 52.9064 95.118

Score 1 2

NRMSE 0.0687 0.0552

Score 1 2

RRSE 0.1829 0.1467

Score 1 2

VAF 96.6681 97.8512

Score 1 2

Test data R
2 0.9729 0.987 0.92 0.94 0.887

Score 1 2

RMSE 55.607 38.6543 101.3 87.72 110.17

Score 1 2

NRMSE 0.0557 0.0387

Score 1 2

RRSE 0.1647 0.1145

Score 1 2

VAF 97.2879 98.6893

Score 1 2

Summated score 15 30



Page 16 of 21Gu et al. Journal of Engineering and Applied Science           (2024) 71:39 

a variety of metrics, it is easy to see that ANFISCBO reports a significant drop in com-
parison to MLPCBO . The observed drop in performance demonstrates the high level of 
accuracy shown by the ANFISCBO in estimating the bearing capacity of concrete piles.

In order to assess the reliability of the models, a comprehensive evaluation is con-
ducted by comparing them with existing literature, specifically considering the mod-
els XGB [51, 51] WOA− XGB , and GA− DLNN [3]. A comprehensive examination 
of Table 2 reveals that the ANFISCBO model, as introduced in this study, had favorable 
results in comparison to previous investigations discussed in the existing literature. The 
assessment was conducted using consistent metrics for the training, validation, and 
testing datasets, namely R2 (coefficient of determination) and RMSE (root mean square 
error). The best model, ANFISCBO , has higher R2 values and lower RMSE compared to 
XGB [51, 51]WOA− XGB , and GA− DLNN [3], indicating more precision and strength 
in its conclusions. For example, according to the results obtained from the WOA− XGB 
model, the coefficient of determination ( R2 ) increases from 0.97 to 0.9874 in the train-
ing stage and from 0.94 to 0.987 in the testing stage. Additionally, the metrics based on 
RMSE error shown a drop from 62.74 to 39.6769 in the training stage and from 87.72 
to 38.6543 in the testing stage. A comprehensive comparison between ANFISCBO and 
GA− DLNN [3] may be undertaken, taking into account the improvements seen in the 
training, validating, and testing data sets. These improvements include an increase in the 
values of R2 and a decrease in the values of RMSE.

The distribution of the predicted/observed ratio of the algorithms throughout both 
the training and testing phases can be viewed on the right side of Fig. 8. Demonstrat-
ing enhanced efficacy is shown by a limited margin of error, including both a minimum 
and maximum threshold. The findings indicate that ANFISCBO has higher efficacy in two 
phases, as shown by a decrease in error variability.

Recommendations for future studies

The focus of the current study was on the installation of driven reinforced concrete piles 
and their interaction with certain soil conditions. In the next research, it may be investi-
gated how effectively the previously constructed machine learning models function with 
various soil profiles and pile kinds, such as drilled heaps and wood piles. Investigating 
ensemble models (such as random forests, gradient boosting, or model stacking tech-
niques) might potentially enhance prediction accuracy even more. This is accomplished 
by combining a large number of machine-learning models. In subsequent research, field 
validation on actual construction projects may play a role, with the purpose of deter-
mining how useful the suggested models are when applied to actual-life circumstances. 
There is also the possibility of doing research on the challenges and considerations that 
go into effective implementation. It is feasible that by performing case studies on a vari-
ety of construction projects and contrasting the findings to the standards of the industry, 
it will be possible to learn a great deal about the effectiveness of machine learning mod-
els as well as the potential cost savings they may provide.

Sensitivity analysis

Sensitivity analysis is a technique used in various fields, including finance, engineer-
ing, environmental science, and decision-making processes [18]. The primary aim of 
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sensitivity analysis is to assess how changes in the input parameters or assumptions of 
a model affect the output or outcomes. It helps in understanding the robustness and 
reliability of a model or system under different scenarios. Sensitivity analysis helps 
in identifying which variables or parameters have a significant impact on the model’s 
output. By understanding the sensitivity of the model to different inputs, decision-
makers can focus on key factors that drive the results. In the present, the procedure 
mentioned by Khatti, and Grover was chosen as a sensitivity analysis ( Sa)’s method 
[62]. The results of the Sa was provided in Fig. 9. As it is clear from this plot, most 
of the input variables have high impact on the target higher than 0.9444, with some 
exceptions. The highest value belonged to In3 at 0.9836, while the lowest value was 
for In4 at 0.7216 of Sa (Table 3 in Appendix).

Conclusions
The hybridized CBO systems that were given in this study were used in order to evalu-
ate the bearing capacity of the concrete piles. The hybrid models denoted as MLPCBO 
and ANFISCBO , in which the MLP and ANFIS techniques were specified for the pur-
pose of model augmentation. Furthermore, the reliability and robustness of the devel-
oped models, namely XGB , WOA− XGB , and GA− DLNN , were assessed based on the 
results obtained from the present study, which mostly centered on the produced models. 
The results obtained in this study were compared with the findings reported in previous 
research studies [3, 51].

1. Based on the data, it seems that both the MLPCBO and the ANFISCBO models have a 
great lot of potential for accurately forecasting the pile-bearing capacity. During the 
training stage, the R2 values for MLPCBO were determined to be 0.954, while during 

Fig. 9 The sensitivity analysis of variables on target
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the validating stage, they were 0.9667, and during the testing stage they were 0.9729. 
In a similar manner, the R2 values for ANFISCBO during the training stage were 
0.9874, while during the validating stage, they were 0.9785, and during the testing 
stage they were 0.987.

2. The comparison of the percentages of MLPCBO and ANFISCBO across several error-
based measurements reveals a notable decrease in ANFISCBO in comparison to 
MLPCBO . The observed drop in performance demonstrates the high level of accuracy 
shown by the adaptive neuro-fuzzy inference system with coot bird optimization 
( ANFISCBO ) in estimating the bearing capacity of concrete piles.

3. The results obtained from the ANFISCBO model provides higher values of R2 and 
lower RMSE compared to the XGB [51, 51]WOA− XGB , and GA− DLNN [3] 
models, indicating that the ANFISCBO model exhibits more effectiveness and accu-
racy. The outcomes obtained from the train, validate, and test datasets shown sig-
nificant enhancements by increasing the R2 values and decreasing the RMSE values. 
These outcomes may be considered when conducting a comprehensive comparison 
between ANFISCBO and GA− DLNN [3].

4. The findings of the distribution of the predicted/observed ratio indicated that 
ANFISCBO has higher efficacy in two phases, as shown by a decrease in error 
variability.

Appendix

Table 3 The partial dataset

In1 In2 In3 In4 In5 In6 In7 In8 In9 In10 Output

400.00 4.35 8.00 1.00 2.05 3.48 2.08 15.40 13.35 7.63 1395.00

300.00 3.40 5.25 0.00 3.40 3.47 3.42 12.05 8.65 6.75 559.80

300.00 3.40 5.30 0.00 3.40 3.52 3.42 12.10 8.70 6.76 508.90

400.00 4.25 8.00 0.90 2.15 3.56 2.26 15.30 13.15 7.61 1395.00

400.00 3.40 7.30 0.00 3.40 3.49 3.39 14.10 10.70 7.28 1068.80

300.00 3.40 5.30 0.00 3.40 3.50 3.40 12.10 8.70 6.76 661.60

400.00 4.35 8.00 1.06 2.05 3.55 2.09 15.46 13.41 7.66 1321.00

400.00 3.85 7.55 0.00 2.95 3.63 3.28 14.35 11.40 7.14 1440.00

400.00 4.65 7.35 0.00 2.15 3.55 3.40 14.15 12.00 6.79 1392.00

400.00 4.35 8.00 1.06 2.05 3.56 2.10 15.46 13.41 7.66 1321.00

400.00 3.85 7.30 0.00 2.95 3.70 3.60 14.10 11.15 7.08 1440.00

300.00 3.40 5.25 0.00 3.40 3.49 3.44 12.05 8.65 6.75 559.80

300.00 3.40 5.25 0.00 3.40 3.47 3.42 12.05 8.65 6.75 585.40

400.00 3.40 7.22 0.00 3.40 3.45 3.43 14.02 10.62 7.26 1240.00

300.00 3.40 5.27 0.00 3.40 3.51 3.44 12.07 8.67 6.75 661.60

400.00 4.10 2.08 0.00 2.70 3.63 2.75 8.88 6.18 4.86 432.00

400.00 3.45 8.00 0.30 2.95 3.65 2.95 14.70 11.75 7.59 1152.00

400.00 4.75 7.40 0.00 2.05 3.55 3.35 14.20 12.15 6.76 1440.00

400.00 4.10 1.71 0.00 2.70 3.26 2.75 8.51 5.81 4.56 423.90

400.00 4.65 7.50 0.00 2.15 3.59 3.29 14.30 12.15 6.82 1551.00
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Abbreviations
ML  Machine learning
GA  Genetic Algorithm
ANN  Artificial neural network
SVM  Support Vector Machine
CBO  Coot Bird Optimization
PSO  Particle Swarm Optimization
MLP  Multi-layered perceptron
WOA  Whale optimization
ANFIS  Adaptive Neuro-Fuzzy Inference System
XGB  Extreme gradient boosting
SPT  Standard penetration test
DNN  Deep neural network
CPT  Cone penetration test
R2  Coefficient of determination
DMT  Flat dilatometer test
RMSE  Root mean square error
PMT  Pressuremeter test
NRMSE  Normalized root-mean-square
PLT  Plate loading test
RAE  Relative absolute error
DPT  Dynamic probing test
RRSE  Root relative squared error
SS  Press-in and screw-on probe test
PI  Performance index
FVT  Field vane test
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