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"Physics, Seethalakshmi Achi The utilization of natural fiber-reinforced polymer composite has received greater
College for Women, Pallathur-630 attention in various fields due to its recyclability; inexpensive, nonabrasive, specific
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fibers are generally lignocellulosic and multicellular, a better alternate to the synthetic
materials. Among the natural fibers, leaf fibers are hard fibers, used in the making

of filaments, threads, ropes, mats, fabrics, etc. PALF, sisal, henequen, cantala, fique, alfa,
and sansevieria family are the examples of the leaf fibers. The present comprehen-
sive review aims to provide different types of leaf fibers, their properties, and their
reinforced composites. The effect of various factors like fiber volume fraction, fiber
aspect ratio (length/diameter), fiber orientation, packing arrangement, matrix content
and coupling agents, and processing techniques towards the mechanical properties
of leaf fiber-reinforced polymer composites, is discussed. The surface modification

of fiber such as alkaline, silane, KMnO,, and their effects on the mechanical properties
is given. Scanning electron microscopy (SEM) and water absorption (WA) characteris-
tics are also discussed.

Keywords: Leaf fibers, Polymer composites, Surface modification, Impact strength (1S),
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Introduction

Natural fibers have been gaining much attention from the researchers, engineers, and
industrialists and have been considered as a viable alternative to the synthetic counter-
parts. These fibers have many advantages such as light weight, available in nature, pollu-
tion-free, economical and eco-friendly, design flexibility, low pressure, and temperature
requirement during manufacturing.

Natural fibers are referred to as vegetable fibers extracted from the plants and can be
used as a filler or reinforcement in polymer matrices, and it is mainly consists of cellu-
lose. Based on the strength, stiffness, and location of extraction, these fibers have been
categorized into the following: (i) leaf fibers are hard fibers, obtained from the leaves
or leaf stalks of various perennial, monocotyledonous plants, and the fiber lumen is
larger in relation to the cell wall; (ii) stem or bast fibers occur in the phloem, typically
low in elongation and recovery from stretch (jute, ramie, flax, banana, kenaf, hemp); (iii)
seed and fruit fibers are attached to hairs or in the form of bundle or encased in a husk
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(coconut, cotton, kapok); (iv) grass fibers occur in stems and leaves (bagasse, elephant
grass, bamboo); (v) wood fiber is extracted from trees, having high level of porosity used
in the manufacture of hardboard and paperboard (Eucalyptus, pine, beech, birch); and
(vi) straw fibers, an agricultural by-product, obtained from the stalks of cereal plants
after the grains were removed (barley, wheat, oat, rice, corn). Based on the main sources,
bast, leaf, seed, wood, and grass, the plant fibers which are categorized further into dif-
ferent types are presented in Fig. 1. These abundantly available plant fibers consist var-
ious properties such as reliable quality, inexpensive, light weight, and nontoxic which
make these fibers more popular among the researchers, scientists, and industrialists for
the purpose of enhancing their applicability.

The studies undertaken by various authors on the leaf fiber-reinforced composites are
presented in this review. Different molding processes such as hand layup, compression,
and injection twin-screw extruder and different leaf fibers and their reinforced compos-
ites have been studied by several authors. The most common matrix materials used in
this review are thermoplastic and thermosets, i.e., epoxy, polyester, polypropylene (PP),
and polyethylene (PE). Also, their mechanical properties were determined and com-
pared to the properties of synthetic fibers.

Leaf fiber as reinforcing material

The contribution of plastics, problems at their end of lifetime, and the depletion of non-
biodegradable resources have emphasized the utilization of eco-friendly materials. Com-
pared to synthetic fibers, there is a wide variety of natural fibers available throughout
the world, which act as a sustainable and suitable reinforcing agent in the biodegrad-
able composites. At the time of manufacturing, synthetic fibers such as glass and car-
bon could create different environmental and health hazard issues for the employees.
With the help of nonhazardous plant fibers, these problems can be solved by combining,
strengthening, and shaping composites in polymer matrix. The characteristic features of
the plant fibers over the synthetic fibers are reduced tool wear, inexpensive, contribution
of greener environment to the society, non-toxicity, low density and it is very easy to
dispose at their end of life cycle, etc. Conversely, it has disadvantages too, i.e., low ther-
mal and water resistance, lower durability, and hydrophilic nature of the plant fibers lead
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poor fiber-matrix interfacial bonding. Many attempts are made by researchers and tech-
nologists [1-4] to utilize leaf fiber by mixing it with suitable matrix for the preparation
of composite material. The surface modification of fiber can enhance fiber-matrix inter-
facial bonding, decrease the absorption of moisture, and could improve the mechanical
property of the polymer composites.

Constituents and properties of leaf fiber

Leaf fibers are versatile materials, and their characteristics may vary with chemical con-
stituents and physical structure. The physico-mechanical properties of leaf fibers are
mainly influenced by the fiber extraction method, age of the plant, climatic conditions,
moisture content, technical process involved during harvesting, retting, and decorti-
cation. Major components present in the fibers are as follows: (i) cellulose — a linear
homopolymer made up of glucose units; (ii) hemicellulose — strengthen the cell wall
of the fibers, hydrophilic in nature, and have bonding with the cellulose; (iii) lignin — a
phenolic compound which conferred rigidness to plant cell wall; (iv) pectin — glues the
elementary fibers to form bundles and found in the primary cell wall; and (v) wax — pro-
tects the primary wall, which is composed of cellulose crystalline fibrils. The mechanical
properties of cellulose-based fibers are highly dependent upon the fibrillar angle and cel-
lulose content present in the fibers. Table 1 displayed the chemical constituents of leaf
fibers in which they significantly differed from leaf fiber types and origins. Generally,
the primary composition, cellulose, is at 43 — 80%, hemicellulose 10 — 39%, lignin 3—15%,
and the remaining parameters are given in Table 1. The leaf fibers exhibited a wide range
of tensile strength ranging from 230 to 1627 MPa, Young’s modulus 0.2 to 22 GPa, and
density 0.8 to 1.4 g/cm? (Table 2). The TS values are generally lower than those of syn-
thetic fibers such as E-glass fiber which has a TS of approximately 2000—3500 MPa [5].

Leaf fiber-reinforced polymer composites

There has been a growing interest in recent years to replace traditional synthetic fiber
with leaf fiber to reinforce polymer resins as it eliminates the environmental issues and
fossil fuel depletion. These leaf fibers have been gaining importance from materialists
and scientists due to its ecological and economical attribution. Researchers extracted the
fibers from leaves for their studies, and the typical view of different types of leaf with

Table 1 Chemical compositions of leaf fibers

Fiber type Cellulose Hemicellulose Lignin Pectin Ash Wax Microfibrillar Reference
angle (°)
Alfa 454 385 149 - 2 5 - (6]
Cantala 5947 27.71 9.1 - - - - (7]
Fique 70 24.8-27.1 10.1 - - - - (8]
Henequen 60 28 8 - 13 2 [6]
PALF 56-62 16-19 9-13 20-25 2-30 47 14 [9]
Sansevieria ehrenbergii - 80 11.25 78 - 0.6 045 19 [10]
Sansevieria cylindrica 79.7 10.13 38 - - 009 - [11]
Sansevieria roxburghi- 54 30 12 - 2 - - [12]
ana

Sisal 43-78 10-13 4-12  08-2 1 2 20 [6]
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their respective fibers is shown in Fig. 2A—]. Approximately, 30 million tons of plant fib-
ers are annually generated and utilized as a constituent in various applications includes,
automobile, construction, sports equipment, packaging and research industries. In the
following section, the leaf fibers, such as alfa, cantala, fique, henequen, PALEF, sisal, San-
sevieria cylindrica Sansevieria ehrenbergii, Sansevieria roxburghiana, and Sansevieria
trifasciata, reinforced polymer composites which are discussed.

Alfa fiber-reinforced polymer composite

Alfa belongs to the Gramineae family and is the esparto grass also called tussock grass,
extracted from the leaves of Stipa tenacissima L. grass. The fiber bundles are character-
ized by a mean diameter of 113 um (ranging from 90 to 120 um) and a density of 0.89 g/
cm? [17].

Mansour et al. [18] studied the impact of alkali (NaOH)-treated composites from alfa
fiber included with polyester matrix. The treated fiber in 1%, 5%, and 10% NaOH solu-
tion for both periods of 24 h and 48 h was taken for the study. The flexural strength (FS)
of 57 MPa was observed for the 10% NaOH-treated (for 24 h) fibers, which was nearly
60% greater than the untreated fiber composites. A similar pattern is observed in flexural
modulus (FM) as that of FS, i.e., ~62% increased for the 10% NaOH-treated fibers com-
pared to untreated one. The same procedure is adopted for alfa fiber (20 wt% as fixed)-
reinforced polypropylene (PP) composites. Arrakhiz et al [19] evaluated the influence
of alkali, ethrification and esterification on the mechanical properties of the composites
using hot pressing molding techniques. A significant enhancement in Young’s modu-
lus (1405 MPa) of alfa palm/polypropylene composites was noted, which is 35% greater
than untreated fiber and two times greater than plain PP. Then significant improvement
in thermal stability was noted for the etherification-treated alfa fibers with gains in the
temperature up to 80 °C.

Polypropylene incorporated with three natural fibers such as alfa, coir and bagasse
composites with the effect of alkali-treated fiber on the mechanical properties [20]. Dif-
ferent fiber loadings at 5, 10, 15, 20, 25, and 30 wt% were taken for the studies. Com-
pared to plain PP, the Young’s modulus of all the three fiber composites have greater
value, and tensile strength (TS) was lower value with increase in fiber loadings (at 30

Table 2 Physical and mechanical properties of leaf fibers

Fiber type Density (g/cm®) Tensile Young’s Elongation Moisture  Reference
strength modulus  atbreak (%) uptake (%)
(MPa) (GPa)
Alfa 0.89 350 22 58 - [13]
Cantala 1.056 - - - -
Fique 087 237 8.01 6.02 12 [8]
Henequen 1.20 430-570 11.1-16.3 3.7-59 - [13]
PALF 1.44 413-1627 34.5-82.5 16 1.8 [14]
Sansevieria ehrenbergii  0.887 278.82 9.71 2.81 10.55 [10]
Sansevieria cylindrica 0915 585-676 02-11.2 11-14 3.08 [11]
Sansevieria trifasciata 1414 349 153 23 105 [15]
Sansevieria roxburghiana 1.410 34517 20.66 9.58 9.0 [16]
[

Sisal 145 468-640 9.4-22.0 39-70 11.0
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€) PALF Plant and its Fibre ) Sansevieria Trifasciata Plant and its Fibre

Fig. 2 a Alfa plant and its fiber. b Cantala plant and its fiber. ¢ Fique plant and its fiber. d Henequen plant
and its fiber. e PALF plant and its fiber. f Sisal plant and its fiber. g Sansevieria cylindrica plant and its fiber. h
Sansevieria ehrenbergii plant. i Sansevieria roxburghiana plant. j Sansevieria trifasciata plant and its fiber

wt%). The FM for alfa coir and bagasse composites were 2077.5 MPa, 2088.5 MPa, and
1841 MPa, respectively, at 30 wt% of fiber loadings. According to FS, it remains constant
for all the three composites from 5 to 30 wt% of fiber. A considerable enhancement in
torsion modulus (in power law model) were noted with increasing frequency and fiber
loadings; thus, the authors concluded that the prepared material behaved like an elastic
solid.

Hybrid polymer composites based on PP reinforced with two fillers alfa fiber and clay
particles were fabricated [21] by using injection molding techniques. The incorpora-
tion of clay in the PP composites improved the Young’s modulus of 3120 MPa, i.e., an
increase of 300% than plain PP. Contrarily, the TS had a greater value for the alfa fiber
composite rather than clay-filled composites.

Sami Ben and Ridha Ben [22] prepared the alfa fiber incorporated with PE composites
and investigated the mechanical properties with the effect of fiber orientation and fiber
fraction of the composite. The longitudinal and transverse Young’s modulus of alfa/PE
composite were 12.3 GPa and 5 GPa, respectively, at 45% fiber loadings. The effect of
fiber orientation on the composite mechanical properties denoted that the longitudinal
Young’s modulus and stress at break were decreased with increasing angle (0 to 90°). But
Poisson’s ratio increases with increasing angle up to 10° and then decreases considerably.

Using extrusion and injection molding process, El-Abbassi et al. [23] evaluated the
impact of alkali-treated fiber on mechanical and water aging properties of alfa fiber
blended polypropylene (AFRP) with respect to different fiber weight fractions (0%, 10%,
20%, & 30 wt%). After applying the alkali treatment on fibers, the Young’s modulus and
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tensile strength were enhanced by 23% and 16%, respectively, and a significant reduction
in WA properties was also noted.

Mechakra et al. [1] investigated the outcomes of optimizing parameters of alkaline
treatment (24 and 48 h) and fiber volume fractions (0, 10, 20, 30) for the preparation of
short alfa fiber blended with PP resin. In their studies, the authors found that the Young’s
modulus, TS, and breaking stress had a greater value for the PP charged with 30% alfa
fiber treated at 24 and 48 h. As the volume of fiber increases, the mechanical property
increases. Also, the treatment of alkaline indicated a significant raise in strength and
decreases the breaking strain.

Med Amin et al. [24] observed that the wool-alfa-reinforced hybrid polyester compos-
ites exhibited a medium hydrophilicity through water contact angle (62 +2)° measure-
ment. During the second heating run by the DSC analysis, the observed glass transition
temperature (T,) of the composite was 69.2 °C. From the TGA, the material is less ther-
mally stable at 400 °C, and a 2.6% of mass loss at 84 °C was obtained due to the moist
structure of the natural fibers.

Sair et al. [25] modified the alfa fiber surface by alkali treatment with different conc. of
0%, 5%, 7.%, 10%, and 12%. The effect of various volumes of fibers 5, 10, 15, 20, 25, and
30 wt% on the thermal, mechanical, and acoustical characteristics of the alfa fiber PU
composites was determined. After applying the alkali treatment, the tensile test results
showed that the tensile strength of treated fiber composites was enhanced, but for plain
PU and untreated fiber, composite showed the reversed effects. The 20% of alkali-treated
fiber was the optimum parameters for the composites where the Young’s modulus and
TS raised from 2.7 to 4 GPa and 14.3 to 24.9 MPa, i.e., an enhancement of 48.14% and
74.12%, respectively. A weak resistance between the fiber and matrix at 30% wt was
noted for the composites too.

Cantala fiber (CF)-reinforced polymer composites

Cantala is a member of the Agave family (Agavaceae), which grows in a moist, humid
soil. The fiber is lighter in color than other agaves, and its strength depends on its prepa-
ration. Wijang et al. [26] described the mechanical properties of cantala fiber and short
cantala recycled HDPE composite with reference to the influence of treatments such
as alkali, silane, and combination of both. Alkali-treated fiber exhibited superior FS
(increased by 16%) than untreated composite; conversely, the TS of alkali-silane-treated
fiber composite was lower than alkali-treated fibers. The highest surface energy of 45.37
mN/m was observed for the alkali treated (2 wt% NaOH), and for alkali-silane treatment
(with 0.75 wt%), it showed the greater thermal stability (up to 507.1 °C) and interfacial
shear strength (IFSS) value of 3.6 MPa.

Tipu Sultan et al. [2] modified the cantala leaf fiber with NaOH or sodium chlorite
(NaClO,) and fabricated the treated and untreated fiber PP composites using hot press
molding process. The elastic modulus and thermal resistance of alkali-treated CF have
higher value than the untreated fiber composites.

Ilham et al. [27] analyzed the effect on FS of the brake pad composite from CF (0, 4, 8,
12) reinforced with PP using the cold press cum hot press method. Increasing the vol-
ume fraction of CF increased the flexural properties of specimens. Fiber pullout occurs
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due to the lower interfacial bonding between the fiber, and the matrix was observed by
SEM.

Wijang et al. [7] evaluated the influence of soaking time in alkali solution on the IFSS
of cantala fiber recycled HDPE composites. The surface modification of CF by alkali was
carried out on 2% conc. of NaOH, for a period of 0, 4, 8, 12, 16, 20, and 24 h. The IFSS
(determined by the single fibre pullout test method) values of the modified fibre after
different soaking hours were observed to be 2.44 MPa, 2.15 MPa, 2.93 MPa, 2.63 MPa,
2.80 MPa, and 3.42 MPa. Extending the duration of immersion would result in an eleva-
tion of the Interfacial Shear Strength (IFSS) value of the composites.

Fique fiber-reinforced polymer composites

Fique fibers or cabuya belongs to the Asparagaceae family, extracted from the Furc-
raea andina plant. It is used for making ropes, sacks, and handicrafts. An increase in
the modulus of rigidity was noted from 2.5 to 7.2 GPa when alfa fiber treated with 5
wt% NaOH solution followed by starch-based polymer of 35 wt% [28]. Miguel et al. [29]
studied the mechanical and thermal properties of biocomposites from linear LDPE-non-
woven industrial fique fiber (LLDPE-fique) and epoxy fique composites using resin film
infusion process. Compared to neat LLDPE, LLDPE-fique has the higher tensile modu-
lus (TM) of 1370 MPa, TS of 19.6 MPa, FM of 686 MPa, and FS of 16.2 MPa. Similar
observation is followed for the epoxy fique than the plain epoxy. From the DSC analysis,
a decrease in enthalpy from 144 to 118 J/g for LLDPE and LDPE-fique was noticed.

Catalina and Analia [30] prepared the unidirectional epoxy/fique composites with the
treated (NaOH at 18 w/v%) and untreated fiber by pultrusion method. The parameters
such as flexural properties were determined after 20 days of aging of composites which
was subjected to various environments (in distilled water pH=46.0, alkaline pH=12.0,
cement mortar). After the surface modification of fiber, the flexural properties were
raised than matrix modification. Treated fiber epoxy has the lowest diffusion coefficient,
and then the enhancement at the composite interface reduced the water and calcium
hydroxide absorption by six times. The FM of epoxy fique composite was better than
conventional wood such as oriented strand board (OHB); thus, the authors suggested
that this material opened the new possibility to replace the conventional wood used in
construction purposes.

Sandra and Diego [31] manufactured the natural rubber (NR)/butadiene styrene rub-
ber (SBR)/polybutadiene (BR) matrix-reinforced fique fiber composites and evaluated its
characteristics. A weight loss of 78% was observed from the TGA thermograms. As fiber
loading increased from 0 to 40% of 10-mm length, the tensile loads, compressive loads,
TS, and hardness were increased, while scratch time, cure time, elongation at break, and
wear resistance were decreased for the composites.

Michelle et al. [32] conducted a study on dynamic mechanical properties of fique fab-
ric-reinforced epoxy of different fique content of 15, 30, 40, and 50 vol%. A considerable
increase in the storage modulus (5073 MPa) with increasing volume (at 50%) of fique
fabric at the initial temperature of —50 °C was noted. Loss modulus assigned to the T,
tend to be shifted to higher temperature of 83—89 °C, and it was higher for fique epoxy
compared to polyester composite (28—52 °C).
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Sergio et al. [33] gave a comparative study on the mechanical and dynamic vibratory
properties of fique epoxy and glass fiber epoxy laminates. The TS and elastic modulus for
E-glass epoxy were 153.5 MPa and 4290 MPa, whereas for fique epoxy it was 36.2 MPa
and 1272.98 MPa. A slight increase in natural frequency (Hz) for E-glass composites was
noted than the fique fiber composites. The poor bonding between the fique and the resin
was evidenced by SEM, which was also reflected in the properties of fique epoxy com-
pared to E-glass epoxy.

Michelle [34] studied the notch toughness evaluation of epoxy matrix composites rein-
forced with various fiber loadings (15, 30, 40, and 50 vol%). Composite enhanced with
40% of fique is good to notch toughness, whereas brittle fracture with poor impact ener-
gies for 15 and 30% of fiqu, were observed. At 50% fique, Izod and impact energy suf-
fered a small decrease according to the Roger and Plumtree model.

Henequen fiber (HF)-reinforced polymer composites

Henequen fibers (Agave fourcroydes) are leaf fibers, used for the manufacture of twines
and ropes. The leaves grows of 1.2 to 1.8 m long with a thick stem (reach 5 ft) and a
terminal spine of 2—-3 c¢m long. Surface treatments by steam explosion technology with
the inclusion of polyethylene glycol (PEG) was given to the raw henequen fiber. The
treated fiber-/PLA-reinforced composite was prepared by thermo-compression molding
technology [35]. Compared to plain PLA, the degree of crystallinity is higher for PLA
composite due to that this henequen fibers induced nucleating. Contrarily, the thermal
degradation temperature was lower for fiber treated with PEG composite. An increase in
tensile properties was observed for 90% PLA with 10% fiber without PEG. Lower flexural
properties were noted for all composite than plain PLA.

According to TAPPI standard T257, the chemical composition of henequen fibers was
analyzed, and the values are 68.1% cellulose, 18.2% hemicellulose, 8.7% lignin, 1.3% ash,
and 3.7% extractives, respectively [36]. The fiber strands were more 1 m long with diam-
eter of 220.8 £106.45 pum. The TS of fiber was measured as 442 MPa and Weibull shape
factor as 2.60 with a gauge length of 6.35 mm. Theoretical TS value of henequen fiber
was 450.7 MPa with a gauge length of 485.04 um. The critical fiber length from the IFSS
by von Mises and Tresca was 360 and 414.7 um, respectively. Also, the tensile character-
istics of fiber PP composites were noticed with 4 wt% of coupling agent.

Biocomposites-reinforced henequen and silk fiber with the influence of poly(butylene
succinate) were prepared using a compression molding method [37]. For the hygrother-
mal effect, the composite was placed in the chamber at 60 °C and 85 °C relative humid-
ity for about 1000 h. In WA properties, the weight increase of biocomposites of both
silk and henequen was noted and also absorb maximum amount of water within 50 h.
The storage modulus of henequen composite was 4GPa and decreased with the duration
(more than 500 h) resulting the half value of 2 GPa. The tan § peak has been shifted to
high temperature, and intensity was decreased for the henequen fiber, because the lesser
polymer chains were participated in the transitions.

The fibers from henequen have been used as reinforcement for epoxy resin composites
by compression molding process, and their mechanical properties were investigated [38].
The untreated fiber/epoxy showed a TS as 234+ 11.3 MPa, FS as 197.32 £ 7.64 MPa, and
impact strength as 116.04 4 14.65 kJ/m?, whereas for treated, it was 233+11.98 MPa,
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199.52 4 7.42 MPa, and 90.81 4 18.57 kJ/m?2. As shown, the experimental results for both
forms (treated and untreated) of the composite are identical, and it can be inferred that
their mechanical properties have not been enhanced by chemical treatment.

The density value of the alkali and alkali + heat-treated henequen fibers was larger than
the raw fibers [39]. The alkali-treated fiber epoxy composite has higher TS of 49.04 MPa,
whereas it was 18.16 MPa and 11.7568 MPa for untreated epoxy and plain epoxy com-
posite respectively. For the fractured samples (SEM analysis), the presence of matrix to
the fiber surface and uncoiling of microfibrils has been observed for the alkali-treated
samples, whereas there is no trace of matrix to the fiber surface in case of untreated fiber
composite. The TM (2.189 GPa) and FS (54.482 MPa) were higher for heat-treated fiber
and alkali + heat-treated fiber epoxy composite respectively. By DTG analysis, the com-
posites have high degree of crystallinity and thermally stable at 366 °C, 371 °C, 388 °C,
and 369 °C for untreated, alkali, heat, and alkali + heat-treated fiber epoxy composites.

Pineapple leaf fiber (PALF)-reinforced polymer composites

PALF is obtained from the leaves of pineapple plant Ananas comosus, and a perennial
herbaceous plant holds 80 leaves in its lifetime. The postharvest waste PALF is multicel-
lular, lignocellulosic fiber in nature and can reduce negative environmental impacts in
the preparation of composite work.

A comparative study on mechanical evaluation of coir fiber epoxy and PALF epoxy
composites were given [40]. Compared to coir (30%wt) fiber epoxy composite strength
(28.7 MPa), 30%wt PALF fiber epoxy (86.4 MPa) yielded greater strength. The impact
strength (946 J/m), elastic modulus (7.97 GPa), and elongation (1.3%) were greater for
PALF fiber composites. For multilayer armor system (MAS), coir fiber has the highest
depth of penetration (DOP of 31.6 mm) with impact energy of 3.52 kJ, whereas PALF
has DOP of 18.2 mm with 3.48-k] impact energy.

Gabriel et al. [41] used the lignocellulosic fiber (PALF) to study the tensile proper-
ties of fiber-reinforced polyester (PE) composites. The fiber content of 10%, 20%, and
30% and diameters from 0.09 to 0.30 mm were taken for the composite preparation. An
observation was made that the inclusion of 30wt% of fibre composites resulted in an
augmentation of tensile strength (103.25 MPa), elastic modulus (1.99 GPa), and defor-
mation (5.14%). The introduction of PALF would improve the tensile qualities, including
TS, elastic modulus (EM), and elongation.

“The determination of FS by means of 3-point bend tests and Weibull statistical anal-
ysis for epoxy composites incorporated with continuous and aligned PALF fibers was
analyzed [42]. The determination of Weibull parameters such as characteristic strength
(6 is 101.5 MPa for 30 wt%), modulus (-3.38 for 20 wt%), and precision adjustment
(R*=0.9635 for 10 wt%) was noted for the PALF-reinforced epoxy composites. Also, the
rupture mechanisms associated with reinforcing were analyzed by the SEM.

Ridzuan et al. [43] studied the influence of PALF, napier, and hemp fibers with differ-
ent fiber weight of 5, 7.5, and 10% on the scratch resistance of epoxy composites. Com-
pared to PALF and hemp fiber-filled epoxy composites, the highest peak loads at 28.6
N (5%wt), 30.2 N (7.5 wt%), and 36.4 N (10 wt%) were obtained for napier epoxy com-
posites. The coefficient of friction (COF 0.703), fracture toughness (4.24), and scratch
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hardness were also higher for napier composites. Conversely, the density and porosity
have the lowest value for napier fibers. Hence, the lower porosity might be the reason for
obtaining the higher scratching resistance.

Indra et al. [44] conducted an experiment study on the mechanical characteristics of
hybrid (jute, PALF, and glass) fiber-reinforced epoxy polymer composites. The ratio of
each fiber is 1:1:1, with 0.18 to 0.42 wt% of fibers and 1.5% content of resins which were
used for the preparation of composites by hand lay-up process. The TS (71.66 MPa), FS
(239.37 MPa), and TM (>800 MPa), respectively, were noticed for the maximum fiber
content of 0.42%. As the fiber content raised in the epoxy composites, the mechanical
properties also increased.

Using compression molding technique, the PALF-reinforced PE composites were fab-
ricated, and the samples were tested [45]. The obtained results showed the crosshead,
speed of 5 mm/min, and gauge length of 50 mm yielded highest TS (33.13 MPa), TM
(1.553 GPa), and elongation at break (4.11%) respectively for 45wt% fiber loading. At
the same time, the flexural strength (82.97 MPa) and modulus (6.37 GPa) showed an
increasing trend, with an increase in fiber content of the PALF composites.

Pujari et al. [46] suggested that PALF-reinforced natural rubber matrix composites
could be successfully used to transformer applications. The specimens containing a dif-
ferent volume fraction of fibers, i.e., 5, 10, 15, 20, 25, and 30 wt%, have been selected for
the thermal, physical, and dielectric studies. The WA coefficient (%), oil absorption coef-
ficient (%), and dielectric strength (kV/mm) of the composites were increased, whereas
the thermal conductivity (W/m k) value decreased, as the volume fraction of the fiber
increases.

Parameswara et al. [47] revealed that the influence of fiber orientation (0°, 30°, 45°, 60°,
and 90°) on dynamic mechanical properties of hybrid PALF reinforced with basalt epoxy
composites. The orientation of the fiber played a major role, because it gave the effect on
storage modulus and loss tangent along with mechanical characteristics. At frequencies,
0.1 Hz, 1 Hz, and 10 Hz, the storage modulus were- 3.86 GPa; 4.26 GPa, and 4.23 GPa
and lost tangent as 0.16, 0.12, and 0.09, respectively. The composite with 0° fiber ori-
entation of thickness 2.87 mm has good damping properties; also, the similar resulting
pattern was followed for mechanical properties including Young’s modulus and flexural
modulus.

Ayu et al. [48] developed the PALF-reinforced polypropylene (PP) composites on dif-
ferent fiber volume ratio of 30, 40, 50, 60, and 70 wt%. Using compression molding tech-
nique with random orientation, the composites were prepared for the treated (alkaline)
and untreated fibers. At 30 wt% of fiber, the tensile strength was increased with 12.9%
with increase of fibers and decreased drastically by —76.4% with the inclusion of fiber
fraction (up to 70 wt%). It was found that the higher tensile strength (16.71 MPa), hard-
ness (62.8 shore-D), and density (0.93 g/cm?) at 30% fiber weight were noted, and this is
the optimum parameters (30 wt%) for the preparation of composites.

Sisal fiber-reinforced polymer composites

Sisal is a hard, rigid, and highly resistant fiber obtained from the leaves of sisal plant
(Agave sisalana). Depending upon the climatic conditions, soil, and method of extrac-
tion, each plant produces 120—240 leaves, in its lifetime. A single leaf consists of about
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1000 fibers, cuticle (0.75%), dry matter (8%), water (87.25%), and fiber (4%) [49]. The
diameter and length of sisal fiber are 100+ 300 um and 1-1.5 m, respectively [50]. Sev-
eral works have been reported on the utilization of sisal fiber as a reinforcement material
in polymer matrices such as PE, PP, and PU [51-54].

Krutibash et al. [55] studied the experimental analysis on the impact of fiber load-
ing (0%, 10%, 15%, 30 wt%) and surface treatment of natural fibers (jute and sisal for
NaOH at 2 h) on the mechanical and WA properties of glass/jute/sisal (GF/JF/SF) fiber
PP composites. The hybrid fibers (each fibers 10% and PP 70%) specimens has the high-
est TS (33.18 MPa), TM (3282.09 MPa), hardness (100.1 R/scale), and impact strength
(44.155 J/m), whereas the other fiber loading composites treated has lowest mechanical
properties. The flexural strength (61.39 MPa) and modulus (3453.15 MPa) were obtained
for the hybrid (glass—15%, jute—15%, PP—70%) fiber composites. WA were found to be
lower for all polymer composite, and hybrid samples have below 0.3% (by weight).

Pramod et al. [56] concentrated his work on the compression and WA characteris-
tics of banana and sisal hybrid fiber epoxy composites using hand lay-up process. The
fiber was modified by alkali with 5% for 24 h and various fiber loading taken as banana:
sisal were 25:15, 15:25, 20:20, and 10:30. The compressive strength of 430 MPa was
observed for 10:30 (% of banana & sisal) treated fiber epoxy, whereas for untreated, it
was 322 MPa. WA properties of the above said samples were minimum than the treated
and other proportion fiber samples.

Changes in the mechanical properties of sisal fiber and human hair-based hybrid
epoxy were noticed [57]. By hand lay-up process, the composites were prepared with
various percentage of fiber (5, 10, 15%) and epoxy resin (95, 90, 85%). From the experi-
mental results, it was clearly seen that, as the percentage of fiber increased, the quality of
mechanical properties was also increased. The ultimate tensile strength (27.7 N/mm?),
impact energy (46.182 J/m), FM (963.86 MPa), and flexural stress at maximum flexural
load (38.158 MPa) were higher for 15% of fiber composites, whereas hardness (82 HRB)
was higher for 5% fiber samples.

Sandeep et al. [58] focused the influence of mustard cakes and pink needles on TS,
impact energy, and abrasion of sisal fiber-based hybrid polyester composites. Among the
various proportion of fillers, particulates, and fibers, the (55% PE, 40% sisal, and 5% pine
needles) hybrid PE composites have the highest value of TS (41.45 MPa), void fraction,
impact energy (8 J), and lowest specific wear rate (3.019 x 10~ mm? N/m).

Composites from sisal(S), waste tea fibers (T), and glass fibers (GF) reinforced with
epoxy-based hybrid composites were prepared and studied their acoustical, mechanical,
and chemical properties [59]. The TS (75.6 MPa), impact energy (95 kJ/m?), and modu-
lus (5.82 GPa) were higher for hybrid (2%S and 10%T) epoxy, and the specimens with
high sisal and glass fiber exhibits more flexural strength. Regarding acoustic behavior,
the weak sound (for 20 wt.% of sisal fibers and 5 wt.% of tea fiber) and high sound (20
wt.% of tea fiber and 5 wt.% of sisal) absorption were measured. By varying the frequen-
cies range from 63 to 6300 Hz, the sound absorption coefficient («) value varies between
0.03 and 0.27. Surface treatment and hybrid effect enhanced more adhesion between the
fiber, and the resin used in the specimens was analyzed by SEM.

Laminated composites were developed with the help of sisal, banana fibers, and poly-
ester resin using compression molding techniques [60]. The effects of fiber weight (%)
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and fiber surface treatment on flexural properties and damping factor for 50 wt% of fiber
were analyzed. The increased FM (N/mm?) were noticed for 50 wt% of banana, sisal, and
hybrid fibers. The natural frequency and damping factor were higher for the treated fiber
composites.

Physico-mechanical and micrographs were examined under different situations such
as effect of silica microparticles, volume fraction of sisal, and maleic anhydride of uni-
directional sisal fiber epoxy hybrid composites [61]. It was revealed that, at low weight
fraction of fiber, the composites provided better tensile properties, but maleic anhy-
dride treatment affected the flexural properties, WA, and apparent porosity. The authors
also suggested that these composites opened an alternative material for engineering
applications.

In order to improve the adhesion between the fiber and matrix, alkaline treatment was
given, then the static and dynamic properties of three different fiber composites that are
sisal, jute, and sisal/jute reinforced epoxy composites [62]. From the three different sam-
ples, the hybrid (sisal/jute) epoxy has the highest TS, FS, and damping factor. Successive
resonance sets and accelerance level confirmed the good dynamic properties of hybrid
composites.

Similar results were observed from Asokan et al. [63]; they prepared the hybrid com-
posites from sisal and hemp fiber reinforced with polylactic acid (PLA) through injec-
tion molding process. From the experimental analysis, the largest value of density (1.2 g/
cm?), elongation at break (0.93 +0.35%), WA (1.06 +0.18%), TS (42.25a), Young’s modu-
lus (6.1 GPa), specific TS (38.86), FS (94.83 MPa), FM (6.04 GPa), and specific FS (79.76)
were noticed for hybrid fiber composites.

Sivakandhan et al. [64] conducted a study on mechanical and morphological analy-
sis of sisal and jute fiber hybrid sandwich epoxy composites. The coaxial TS and FS
were 22.53 N/mm? and 56.31 N/mm?, respectively, for the hybrid epoxy increased with
increasing jute fiber content. The transaxial TS and impact strength were increased by
17.99 N/mm? and 0.8 5 ] for the hybrid epoxy with increase of sisal fiber.

Senthil et al. [65] studied the effect of different stacking sequence of hemp and sisal
fiber-reinforced hybrid epoxy composites on the mechanical properties. The pure hemp
fiber epoxy has the TS of 31.997 MPa, modulus of 1158.95 MPa, ILSS of 4.68 £0.33, and
compressive strength of 41.088 MPa, which was higher than the pure sisal epoxy and
hybrid fiber epoxy composites. A poor compatibility between the two fibers and poor
adhesion between the sisal epoxy-hemp hybrid reinforced composites could be the rea-
son for lower mechanical properties of hybrid composites.

Physical and morphological studies were determined [51] for the composites, pre-
pared from sisal fiber as a filler and epoxy as a matrix. The mechanical properties such
as TS, FS, IS, and WA were increased with the increasing fiber content. Three types of
immersing agents (ordinary, sea, and distilled water) were used to study the WA test,
and the result revealed that the composites absorb more in the ordinary and distilled
water compared to seawater.

Arun et al. [52] conducted a comparative studies of the mechanical characteristics
of epoxy composites made from sisal and jute. The experimental research revealed
that sisal epoxy exhibited a much higher impact of energy (7.02 kJ/m ), ultimate TS
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(35.52 MPa), and FS (69.41 MPa). On the other hand, both sisal and jute epoxies had
a greater hardness value (95 MPa). The SEM analysis revealed the presence of fibre
pullout and cracks in the matrix. The prepared material offers a superior alternative
to NFPC.

Athith et al. [66] examined the mechanical and tribological studies of composites
from jute/sisal/E-glass fabric blended with matrix such as NR and epoxy. The differ-
ent proportion of fibers and matrix filled with different proportion of tungsten car-
bide were taken for the preparation of composites. From their findings, it was noticed
that the filler loading could increase the mechanical properties especially in the glass
fiber epoxy at the same time the wear rate was decreased with increase in abrading
distance.

The improvement of PP/sisal fiber bonding was done [53] with the aid of chemical
treatments by using polymeric diphenylmethane di-isocyanate (PMDI) and gamma
aminopropyl triethoxysilane (silane A1100). Yield strength more than 50% and
T, up to 6.8 °C increased for the PP-sisal composite with PMDI treatment. A good
agreement between the theoretical model and experimental results of treated and
untreated sisal fiber-PP samples was proved by Halpi-Tsai and Nielson mathematical
model.

Senthil et al. [67] investigated the mechanical and free vibration properties with
possible trilayering sequence of sisal (S) and coconut sheath (CS) hybrid PE compos-
ites. The influence of alkali treated (ATC) and trichlorovinyl silane treated (STC) on
the composite was studied. Among the various stacking sequence of fibers, the CS/
sisal/CS hybrid stack had the better performance of mechanical and damping factor.
Also, the fracture morphology of the fiber and PE resin was analyzed by SEM.

Phiri et al. [3] addressed the mechanical and thermal properties of sisal fiber-kenaf
fiber (SF-KF)-reinforced injection molded composites. The addition of fiber content
increases the impact strength for SFC than KF composite. Increase in TS and Young’s
modulus and decrease in strain at break were noticed. The incorporation of water
glass (WG) showed higher T, of KFC and has a positive influence on the flammability.
In the same way, WG gave a negative on the mechanical properties.

Priyadharshini and Ramakrishna [68] used two parameters of rheological analysis
such as flow rate and cohesion (by vane shear rate). The effect of water/cement ratio,
polymer volume, and fiber content with and without treatment on sisal fiber-rein-
forced cement mortar composites was performed. From the studies, it was noted that
the increase of fiber content decreases the flow value but increases the cohesion of
the composite and vice versa for the increase of polymer dosage. Compared to treated
composite, untreated fiber exhibited larger flow rate and lower cohesion.

Various fibers, such as sisal, jute, and glass reinforced polyester composites, were pre-
pared by hand lay-up process and studied its properties [55]. The study demonstrated
that the jute fiber PE has the maximum TS of 229.54 MPa. The hybrid (glass + sisal + jute)
composite had maximum FS with a displacement of 14.2 mm and 3.00-kN load, whereas
the sisal PE has the highest impact values of 18.67 J. Incomplete distribution of fiber and
matrix, void formed in the fracture surface, was analyzed by SEM.
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Sansevieria cylindrica fiber (SCF)-reinforced polymer composites

SCF belong to the family Asparagaceae, a stemless, rigid, cylindrical snake plant which
can yield 100-150 leaves before flowering. Sansevieria cylindrica leaf yields a strong
white elastic fiber (5%), cuticle (1%), dry matter (10%), and water (84%) and can be used
as reinforcement in cement and polymer matrix [69]. The fibers were identified and
extracted from the leaves [70]. The hierarchical cell structure of the fiber was analyzed
through polarized light microscopy and SEM. Microstructural analysis of leaves exhib-
ited the presence of two types of fibers (structural and arch). The cross-sectional area,
porosity fraction, density, fineness, TS, and TM were 0.0245 mm?, 37%, 0.915 g/cm?, 9
Tex, 658 MPa, and 7 GPa for fibers with elongation at break between 10 and 12%. Also,
the presence of Iy with a crystallinity index of 60% was analyzed by X-ray diffraction
method.

A study was conducted to analyse the erosion characteristics of both treated (alkali)
and untreated SCF vinyl ester composite (SCFVEC) [71]. Fibre lengths of 30 and 40 mm
were used, along with fibre concentrations of 30%, 40%, and 50% wt, for both treated and
untreated SCFVEC samples. These samples were then subjected to an erosion test using
an abrasive air jet erosion rig. Using the Taguchi analysis, the optimized erosion param-
eters of fiber length 30 mm, fiber content 40 wt%, impingement angle 90, impact velocity
41 m/s, erodent discharge 4 g/min, and exposure time of 15 min were noted for prepared
SCEVEC.

Sreenivasan et al. [72] experimented the mechanical characterization of Sansevieria
cylindrica fiber-reinforced polyester composites (SCFRPC) by compression mold-
ing technique. The tensile strength (ASTM D 3039) was 76 MPa, modulus as 1.1 GPa,
the flexural strength (ASTM 790-86) was 84 MPa and modulus as 3 GPa, elongation
at break was lied between 7% and 8.3%, and the impact test (ASTM 256-98) was 9.5 J/
cm?, respectively. Compared with the theoretical projections, the experimental tensile
strengths were found to be in perfect agreement with Hirsch’s model. An X-ray diffrac-
tion (XRD) analysis possessed the presence of cellulose IV (20 =22.5°) with a crystallin-
ity index of 60% and large crystallite size of 68 nm.

Ramachandra et al. [73] conducted a study on tensile and flexural behavior of epoxy
tamarind fruit (TF) fiber and S. cylindrica fiber (SCF) hybrid composite with different
fiber ratios (as 0:20, 5:15, 10:10, 15:5, 20:0). A considerable increase in flexural strength,
modulus, and dielectric strength were noted for epoxy filled with TF fiber and SCF com-
posite. The optimum strength enhanced with the composition 10 wt% of TF, and 10 wt%
of SC was observed for the filled epoxy hybrid composite.

The effect of layering (three) sequence of alkali and silane-treated SCF/coconut sheath
(CS)/PE composite on the mechanical and vibration behavior was investigated [74].
For the untreated coconut, sheath (three layers)/PE has better TS and impact strength
than the SCF (3 layers) composite, whereas alkali treated reverse effect was observed.
The dynamic behavior and mechanical strength of SCF/CSE/PE were found to be signifi-
cantly influenced by layering sequence and chemical treatment (alkali and silane).

In order to possess the better mechanical strength over the prepared SCFP composites
[11], various treatments were given to the fibers such as alkali, benzoyl peroxide, potas-
sium permanganate (KMnQO,), and stearic acid. Compared with the other treated SCFP
composites, KMnO,-treated Sansevieria cylindrica fiber/polyester composites (PSCFP)
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achieved the optimum tensile strength (141.9 MPa), Young’s modulus (1.2 GPa), elonga-
tion at break (11.51%), FS (150.8 MPa), FM (11 GPa), impact strength (23.4 J/cm?), and
hardness (96), respectively.

Sansevieria ehrenbergii fiber (SEF)-reinforced polymer composites

SEF belongs to the family of Dracaenaceae, a snake grass plant, traditionally used for
antiseptic and for making baskets, roofs, and clothes. Each leaf consists of 100—200
fibrils approximately fiber (8%), cuticle (1%), dry matter (12%), and water (81%). Iden-
tification and characterization of new cellulose Sansevieria ehrenbergii (SE) fibers for
polymer composites were studied [75]. Using optical microscopy, the diameter of longi-
tudinal and transverse section of the raw fiber was around 25-250 pm and 20-240 pm,
whereas it was 40—165 pm for SEM analysis. The cross-sectional area and density were
0.0215 mm? and 0.887 g/cm? respectively for the raw fibers. The presence of Iy cellulose
and semicrystalline nature of fiber were analyzed by X-ray diffraction.

Sathishkumar [76] prepared the Sansevieria ehrenbergii fiber (SEF) with PE com-
posites. The static, dynamic, thermal, and mechanical properties on the alkali treated,
KMnO, treated and untreated fiber PE composite by using hand layup followed by
compression molding process. The tensile, flexural, storage modulus, and impact test of
KMnO,-treated composite were higher than paperboard, plywood, and hardboard sheet.
According to tan §, peak width was maximum, and WA is lower for KMnO,-treated
composite. The author was concluded that this SEF samples could be replaced the wood-
based composites imperial applications.

Sathishkumar et al. [77] analyzed that alkali, benzoyl peroxide (BP), benzoyl chloride
(BC), KMnO,, and stearic acid (SA) treatments increase the physico-mechanical proper-
ties of SEF/isophthalic PE composites. According to their work, mechanical properties
have a maximum value, and WA has lower value for the chemically treated composite
than the untreated composite. SEM evaluated that a rough surface was formed on the
fiber when it was chemically treated, and this was attributed to the removal of lignocel-
lulose part of the fiber. The same author continued his work [78] with the randomly and
longitudinally arranged SEF/PE composites with and without WA (swelling time varia-
tion at 4, 8, 12, 16, 20, & 24 h). The percentage of WA increased, and TS was decreased
with respect to water swelling time. The chemically treated composite has the possibility
to utilize as automotive and household applications.

Sansevieria roxburghiana fiber (SRF)-reinforced polymer composites
SRF (Agaveceae) is a rigid, stemless, perennial, medicinal plant and used for making
bowstrings, cordage, and mats. Mangesh and Akshay [79] studied the chemical compo-
sition and physical and structural properties of SRF (untreated and treated with 2, 5, 10,
15, 20% NaOH). The hemicellulose, ash, and moisture content was found to be decreased
from 30 to 17%, 2 to 0.5%, and 9.0 to 6.5%, respectively. The cellulose and lignin content
were increased from 54 to 65% and 12 to 17%, respectively. Then the crystallinity index
and TS were increased from 72 to 76% and 260 to 311 MPa, from untreated to treated (2
to 15% NaOH) fibers.

Among the various varieties and abundant availability of plant fiber, Ramanaiah et al.
[10] was selected the SRF to reinforced PE unidirectional composites. It was inferred that
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the TS (92.6 MPa), impact strength (206 J/m), and specific heat capacity (1464.83 J/kg)
were maximum for the SRF/PE composites. The lowest thermal diffusivity of 0.9948E-07
m?/s was noted. The result also indicated that as the volume of fiber increases, thermal
conductivity decreases, and the prepared composites could be used in construction and
automobile industries.

Using hand lay-up process, the composites were prepared [80] by SRF and Calotro-
pis procera (PCF) treated it with and without lignite fly ash (LFA). The tensile strength
(13.92 MPa), compressive strength (48.13 MPa), FS (44.71 MPa), and hardness (98 RHN)
were higher for SRF/epoxy, CPF 4 LFA/epoxy, CPF/epoxy, and SRF +LFA/epoxy com-
posites, respectively. Compared to the other composites, SRF has less wear rate and fric-
tional force due to the effect of fly ash. The presence of voids, lignite fly ash, and fiber
breakage in the composites was evidenced by SEM analysis.

Sansevieria trifasciata fiber (STF)-reinforced polymer composites

STF belongs to the family Asparagaceae, commonly called the snake plant. Mature leaves
are dark green with light gray-green cross-banding and usually range between 70-90 cm
in length and 5-6 cm in width. Tensile test and TGA analysis were used to measure the
raw and alkali treated (1, 3, & 5 wt% for 2 h). It was inferred that the increase in TS for
raw STF as 647 MPa and 902 MPa for 5% NaOH treated one. Similarly, TGA showed
the increase in thermal resistance as 288 °C for raw STF and 307 °C for 5% NaOH fiber.
The experiment also proved that the chemical treatment affects the tensile and thermal
properties of STF.

Thanesh et al. [81] obtained fibres from Sansevieria trifasciata Laurentii plants (STF)
and fabricated composites by combining these fibres with PE resin using a manual lay-
up procedure. The tensile, flexural, and impact properties were evaluated by altering
the weight percentage of fibres (10, 20, and 30%) and the fibre length (10, 20, 30 & 40
mm). The authors discovered that a fibre size of 40 mm and a fibre fraction of 20 wt%
yielded superior properties and were deemed to be the optimal size among the four sizes
selected.

Similar procedure was adopted [82] for randomly oriented short STF-blended epoxy
composites. The authors varied the fiber length as 10, 20, 30, and 40 mm and weight as
30, 35, 40, and 45%. The results indicated an increase in mechanical properties until 40%
of fiber weight and then gradually decreased for 45% wt. The TS (75.22 MPa), Young’s
modulus (1.05 GPa), elongation at break (10.07%), FS (82.33 MPa), FM (3 GPa), and
impact strength (8.97 J/cm?) were noticed for fiber length of 30 mm and 40% of fiber
weight, respectively.

Rangga et al. [12] investigated the mechanical properties of STF vinyl ester compos-
ites. In order to enhance the quality of composites, first it was given by alkali (NaOH
3% conc. for 2 h) treatment followed by maleic anhydride (for 2 h). The samples were
prepared by solution casting process with the different fiber fraction of 0, 2.5, 5, 7.5, and
10%. The study showed that the addition of fiber fraction (from 2.5 to 10%) decreases the
volume fraction of void (7.9, 6.87, 3.49, and 2.55%). The actual density (1173 kg/m?), TS
(57.45 MPa), and modulus of elasticity (3472.5 MPa) were achieved higher for 10 wt%
fraction of composites. Also, the surface treatment has improved the interfacial bonding
between STF and vinyl ester matrix of the composites.
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Yanzur and Azizah [16] analyzed that the chemical treatments using NaOH (2% conc.
for 1 h) followed by silane with 1H, 1H, 2H, and 2H-perfluorooctyltriethoxsysilane
(POTS) at 1, 3, and 5% conc. (for 2 h) increase water contact angle (WCA is 1150), flex-
ural (~33 MPa), and impact strength (*3.4 GPa) of the STF/PP composites. The authors
suggested that the treated composite (3% POTS) fiber has greater strength and lowest
WA (20.90%) when compared to untreated fiber composite.

Samson et al. [83] reported the extraction method (STF fiber), fabrication, and prop-
erties of STF-banana pseudostem fiber (BF) epoxy resin composite. The prepared
BF epoxy has better property than STF epoxy composite. Three parameters like stor-
age modulus, loss modulus, and damping factor (tan §) were determined by DMA. The
results indicated that compared to STF epoxy composites, the higher storage modulus of
5.4 GPa and T, as 120 °C was noted for banana woven epoxy. Similarly, the loss modulus
was higher for banana epoxy composites. According to damping factor, the STF com-
posites had a better interfacial bonding between the matrix and fiber, and the value is
tan§ = 0.35.

Raghava et al. [84] manufactured and explained the mechanical, thermal, and morpho-
logical properties of randomly oriented STF-carbon fiber (CF)-reinforced hybrid vinyl
ester composites using hand lay-up method. The composites were prepared with differ-
ent proportions of clay filled at 0, 1, 3, and 5 wt%. At 3% wt of clay content, the maxi-
mum tensile strength and thermal stability at 352-356 °C (at 5%wt) were found for the
composites.

Nurzam et al. [85] studied the mechanical, morphological, and thermal properties of
STF/natural rubber (NR)/HDPE composites by hot pressing process. The specimens
were prepared, using the following parameters that is fiber loadings of 10-40% and fiber
sizes of 1 mm, 500 ym, 250 pum, and 125 pm. From their findings, it was observed that
the overall performance of the specimen was strongly influenced by the fiber size. STF
at 125 pm gave the highest TS and TM. Thermal analysis was not affected much, and no
crystallinity peak in DSC was observed by varying the fiber size. The SEM micrograph
was utilised to analyse the fractured samples that exhibited a strong interaction between
the STF and matrix.

Evaluation of mechanical behavior of leaf fiber-reinforced polymer composites

Several researchers have evaluated the mechanical properties of various leaf-based
matrix composites. From Table 3, it is inferred that the authors have analyzed the influ-
ence of fiber treatment, fiber type, fiber length, fiber loading, fiber orientations, resin
types, processing techniques, etc. It was highlighted that the surface treatment of fib-
ers and fiber loading, significantly increased the mechanical properties of leaf fiber-
reinforced polymer composites (Table 3). Most of the research works are based on,
especially, the fiber content and fiber surface modifications. Sakuri et al. (2020) showed
that 6% soaking time of alkali treatment has to be found, enhancing the mechanical
characteristics of the composites. A greatest TS is noticed for fique/LDPE-AI com-
posites, due to the pre-impregnation treatments as well as the fiber contents, which is
illustrated in Fig. 3. In the same way, the 30% wt of Furcraea foetida with epoxy combi-
nation has the highest strength of 170.47 MPa. The effect of fiber orientation is deter-
mined for warp and weft direction with woven PALF layers (2, 3, 4) of the composites.
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Cantala/Polyester

Date palm/polyvinyl alcohol
Henequen/Polyester

Sansevieria Roxburghiana/Epoxy
sansevieria ehrenbergii/Polyester
Sansevieria trifasciata/Polyester
Sansevieria cylindrica/Polyester
Sansevieria trifasciata/Epoxy
Furcraea foetida/Epoxy
PALF/Epoxy

Fique/LDPE

Fique/LLDPE

Fique/Epoxy

Date palm mat/Polystyrene
Alfa/Polypropylene
Cantala/Polyester

I

Date-palm/Polyester
Alfa/Polycaprolactone

o

50 100 150 200 250 300 350 400

IS(kJ/m2) ®mFS(MPa) mTS (MPa)
Fig. 3 Histogram of various leaf fiber/matrix composites and its mechanical properties

It was revealed that three-layer woven PALF with warp direction has greater mechanical
properties than the weft direction (Hadi et al. 2022). In another research work, the effect
of surface modification on mechanical properties of Sansevieria ehrenbergii/polyester
composites is studied (Sathishkumar et al. 2014). It is observed that among the various
treatments, KMnO,-treated fiber composites depicted superior mechanical characteris-
tics. The figure indicates that there is a significant body of studies focused on leaf fibers
and leaf fiber-based hybrid composite materials. These materials have a wide range of

applications across many manufacturing industries.

Conclusions

Leaf fibers obtained from agricultural waste can be turned into new composite prod-
ucts through proper technology. Fiber-reinforced polymer composites have replaced
synthetic materials to a greater extent because of its biodegradability, low density, ease
to dispose, and less expensive. The favorable properties of this composites are affording
positive benefits to the environment too, i.e., harmless to health during manufacturing
and CO, neutral balance. The usage of leaf fibre composite has been prevalent in several
industries such as automotive (for door panels, roof and dashboard), construction (for
fences, park benches and indoor ornamental boards), and even in packaging and house-
hold appliances, which are increasingly being recognised as potential applications in the
field of composites [106]. The utilisation of leaf fibre as a reinforcing material in polymer
composites has demonstrated a beneficial impact on the mechanical characteristics.

This review article explored the following findings:

i)The various types of leaf fibers used as a reinforcing material are discussed.
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ii) The major components present and their physico-mechanical properties of leaf fibers
are presented through table and figures.

iii) Various researchers prepared the composites by adopting various processing tech-
niques, variety of leaf fibers, and fiber parameters (length, orientation) which are dis-
cussed in the leaf fiber-reinforced polymer composite section.

iv) Several studies have focused on the mechanical properties (such as TS, YM, FS, FM,
and IS), the effects of surface modifications, different matrices used in composite
preparation, and an overview of the performance of composites reinforced with leaf
fibres.

v)The effect of various leaf fibers and their hybrid composites is also the focused in this

review.

Finally, as world is moving towards usage of environmental friendly materials, conduct

of research for the increased utilization of leaf fiber, which is abundantly available, is of

timely needed one. This review of research over the period of one decade shows positive

sign towards increasing the utility of leaf fibers in various industries, household appli-

ances, construction, etc. The researches on influence of surface modification and fiber

loadings on mechanical performance of leaf fiber-reinforced polymer composites show

favorable signs in the composite world.

Abbreviations

TS

Tensile strength

™ Tensile modulus

FS

Flexural strength

FM Flexural modulus
IFSS  Interfacial shear strength
WA Water absorption

IS
IE

Impact strength
Impact energy

SEM  Scanning electron microscopy
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