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Abstract 

In this paper, we apply two methods for solving nonlinear system of fractional differ-
ential equations (FDEs); these two methods are Picard and Adomian decomposition 
methods (ADM). The type of fractional derivative in this system will be the Atangana–
Baleanu derivative. The existence and uniqueness of the solution will be proved. In 
addition, the convergence of ADM series solution and the maximum expected error 
will be discussed. Some numerical examples will be solved by using these two method 
and a comparison between their solutions will be done. There exist an important appli-
cation to these types of systems, this application is the fractional-order rabies model 
and it will be solved here. From the obtained results, it is noticed that the obtained 
results from using these two methods are coincide with each other, and also these 
results are coincide with the obtained results from the classical fractional derivatives 
such as Caputo sense.

Keywords: Fractional differential equations, Atangana – Baleanu derivative, Picard and 
Adomian decomposition methods, Existence and uniqueness, Error analysis, Fractional-
order rabies model

Introduction
Fractional Differential equations have many applications in engineering and science; 
some of them are fluid flow [1, 2], electrical networks, control theory [3, 4], electromag-
netic theory, viscoelasticity [5, 6], fractals theory, potential theory [2, 7], biology, chemis-
try [8, 9], optical and neural network systems [10–12]. In this paper, Picard [13–15] and 
Adomian decomposition methods [16–20] will be used to solve these type of systems. 
These two methods have many advantages; they efficiently work with different types of 
linear and nonlinear equations [21–24] in deterministic or stochastic [25–27] fields and 
gives an analytic solution for all these types of equations without linearization or discre-
tization [28–30].

The paper will be organized as follows:
In Methods section, Picard and ADM will be introduced as the two used methods to 

solve the system under consideration. In Results and discussion section, Existence and 
uniqueness of the solution will be proved, convergence of ADM series solution and error 
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analysis will be discussed. Finally, an important application to these types of systems will be 
solved which is fractional-order rabies model and other numerical examples will be solved 
by using these two methods and a comparison between their results will be illustrated.

Methods
In this research, two methods will be used to solve a nonlinear system of fractional differen-
tial equations containing Atangana–Baleanu derivative. The first method is ADM and the 
second method is Picard method.

Formulation of the problem

Consider a system of nonlinear FDEs of the form,

Subject to the initial conditions,

Where y =
(

y1, y2, . . . , yn
)

 and ABDα
t (.) is fractional derivative of Atangana–Baleanu 

sense that defined as:

Where B(α) > 0 , is a normalization function satisfying B(0) = B(1) = 1 and Eα is the 
Mittag–Leffler function of one variable. The corresponding fractional integral defined by 
see [3, 4],

And

Now applying the integrating operator of order α to the system (1)-(2), this reduces it to 
the system of fractional integral equations,

Assume that xi(t) bounded ∀t ∈ I = [0,T ], T ∈ R+ , gi(τ ) ≤ Mi∀0 ≤ τ ≤ T ,  Mi are 
finite constants and fi(y) satisfy Lipschitz condition with Lipschitz constants Li such as,

(1)AB
D

α
t yi(t)+ gi(t)fi

(

y(t)
)

= xi(t), α ∈ (n− 1, n), i = 1, 2, . . . , n.

(2)yi
(j−1)(0) = cj , j = 1, 2, . . . , n.

AB
D

α
t f (t) =

B(α)

1− α

∫ t

0

Eα

(

−α(t − s)

1− α

)α

f ′(s)ds

ABIα f (t) =
1− α

B(α)
f (t)+

α

B(α)Ŵ(α)

∫ t

0

f (s)(t − s)α−1ds, 0 < α < 1.

(

ABIα
)(

AB
D

α
t

)

f (t) = f (t)− f (a)

(3)
yi(t) =

n
∑

i=1

ci
Ŵ(α)

tα−1 + 1−α
B(α)xi(t)+

α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1xi(τ )dτ

− 1−α
B(α)gi(t)fi

(

y(t)
)

− α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1gi(τ )fi

(

y(τ )
)

dτ

(4)
∣

∣fi(y)− fi(z)
∣

∣ ≤ Li

n
∑

k=1

∣

∣yk − zk
∣

∣
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The first method: ADM

Applying ADM depends on replacing the nonlinear term with its corresponding Ado-
mian polynomials as follows,

Where,

Substitute from Eq. (5) into Eq. (3), we get

Let yi(t) =
∑∞

k=0 yik(t) in (7) we get,

Finally, the ADM series solution will be,

Existence and uniqueness theorem

Let E = ((I),R(n) ) be the Banach space of continuous functions defined on the compact 
interval I that are valued in R(n) . On R(n) is considered the norm �y� =

∑n
i=1

∣

∣yi
∣

∣ where 
y  =  (y1, y2, . . . , yn)  ∈ R(n) . If y ∈ E and y(t) = (y1(t), y2(t), . . . , yn(t)) then 
�y� =

∑n
i=1 max

t∈J

∣

∣yi(t)
∣

∣.

Theorem  1  The system (1) and (2) has a unique solution whenever 0 < β < 1, 
β = LM

B(α) [(1− α)+ αTα

Ŵ(α+1)
] where L =

∑n
m=1 Lm,M = max{M1,M2, . . . ,Mn}.

Proof Equation (3) can written as,

Where,

(5)fi(y) =

∞
∑

k=0

Aik(yi0, yi1, . . . , yik)

(6)Aik(yi0, yi1, . . . , yik) =
1

k!

dk

d�k



fi





∞
�

j=0

�
jyij









�=0

(7)
yi(t) =

n
∑

i=1

ci
Ŵ(α)

tα−1 + 1−α
B(α)xi(t)+

α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1xi(τ )dτ

− 1−α
B(α)gi(t)

∞
∑

k=0

Aik − α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1gi(τ )

∞
∑

k=0

Aik dτ

(8)yi0(t) =

n
∑

i=1

ci

Ŵ(α)
tα−1 +

1− α

B(α)
xi(t)+

α

B(α)Ŵ(α)

∫ t

0

(t − τ )α−1xi(τ )dτ ,

(9)
yik(t) = − 1−α

B(α)gi(t)Ai(k−1)

− α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1gi(τ )Ai(k−1) dτ , k ≥ 1.

(10)yi(t) =

∞
∑

k=0

yik(t)

y(t) =
n
∑

i=1

ci
Ŵ(α)

tα−1 + 1−α
B(α)xi(t)+

α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1xi(τ )dτ

− 1−α
B(α)gi(t)fi(y(t))−

α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1gi(τ )fi(y(τ ))dτ
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The mapping R : E → E defined as,

Let Y ,Z ∈ E:

Under the condition, 0 < β < 1, the mapping R is contraction and there exist a unique 
solution of the system (1)-(2).

Proof of convergence

Theorem  2  The series solution (10) of the system (1)-(2) using ADM converges 
if 

∣

∣yi1
∣

∣ < ∞ and  0 < β < 1, β = LM
B(α) [(1− α)+ αTα

Ŵ(α+1)
] , where L =

∑n
k=1 Lk

, M = max{M1,M2, . . . ,Mn}.
Proof Define a sequence 

{

Sip
}

 as, Sip =
∑p

k=0
yik(t) is the sequence of partial sums from 

the series solution 
∑∞

k=0 yik(t), we have,

Let Sip and Siq be two arbitrary partial sums such that p > q . Now, we are going to prove 
that 

{

Sip
}

 is a Cauchy sequence in this Banach space.

x(t) = (x1, x2, . . . , xn)
′,

g(t) = diag
{

g1, g2, . . . , gn
}

,

f (y(t)) =
(

f1(y), f2(y), . . . , fn(y)
)′
.

Ry(t) =
n
∑

i=1

ci
Ŵ(α)

tα−1 + 1−α
B(α)x(t)+

α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1x(τ )dτ

− 1−α
B(α)g(t)f (y(t))−

α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1g(τ )f (y(τ ))dτ

�RY (t)− RZ(t)� = � − 1−α
B(α)g(t)

(

f
(

y
)

− f (z)
)

− α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1g(τ )f (y(τ ))dτ�

≤ 1−α
B(α)�g(τ )��f (y)− f (z)�

+ α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1�g(τ )��f (y)− f (z)�dτ

≤
(1−α)M
B(α)

∑n
m=1 Lm

(

∑n
m=1 max

t∈J

∣

∣fm(y)− fm(z)
∣

∣

)

+ αM
B(α)Ŵ(α)

∑n
m=1 Lm

(

∑n
m=1 max

t∈J

∣

∣fm(y)− fm(z)
∣

∣

)

∫ t
0
(t − τ )α−1dτ

≤
(1−α)M
B(α)

∑n
m=1 Lm

(

∑n
m=1 max

t∈J

∣

∣yk − zk
∣

∣

)

+ αMTα

B(α)Ŵ(α+1)

∑n
m=1 Lm

(

∑n
m=1 max

t∈J

∣

∣yk − zk
∣

∣

)

≤

[

(1−α)ML
B(α) + αMTαL

B(α)Ŵ(α+1)

]

�y − z�

≤ LM
B(α)

[

(1− α)+ αTα

Ŵ(α+1)

]

�y − z�

≤ β�Y − Z�

f (Sip) =

p
∑

k=0

Aik(yi0, yi1, . . . , yip)
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Let p = q + 1 then,

Using the triangle inequality,

Since, 0 < β < 1 and p > q then, (1− βp−q) ≤ 1 . Consequently,

If 
∣

∣yi1(t)
∣

∣ < ∞ and as q → ∞ then, �Sip − Siq� → 0 and hence, 
{

Sip
}

 is a Cauchy 
sequence in this Banach space so, the series 

∑∞
k=0 yik(t) converges.

Error analysis

Theorem 3 The maximum absolute truncation error of the series solution (10) to the system 
(1)-(2) estimated to be,

�Sip − Siq� =
n
∑

k=1

max
t∈J

∣

∣Skp − Skq
∣

∣

=
n
∑

k=1

max
t∈J

∣

∣

∣

∣

∣

p
∑

j=q+1

ykj(t)

∣

∣

∣

∣

∣

=
n
∑

k=1

max
t∈J

∣

∣

∣

∣

∣

p
∑

j=q+1

[

1−α
B(α)gk(t)Ai(k−1) +

α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1gk(τ )Ak(j−1) dτ

]

∣

∣

∣

∣

∣

=
n
∑

k=1

max
t∈J

∣

∣

∣

∣

∣

∑p
j=q+1

1−α
B(α)gk(t)

p
∑

j=q+1

Ak(j−1) +
α

B(α)Ŵ(α)

∫ t
0
gk(τ )(t − τ )α−1

∑p
j=q+1

Ak(j−1)dτ

∣

∣

∣

∣

∣

=
n
∑

k=1

max
t∈J

∣

∣

∣

∣

∣

p
∑

j=q+1

1−α
B(α)gk(t)

p−1
∑

j=q

Akj +
α

B(α)Ŵ(α)

∫ t
0
gk(τ )(t − τ )α−1

p−1
∑

j=q

Akjdτ

∣

∣

∣

∣

∣

=
n
∑

k=1

max
t∈J

∣

∣

∣

∣

∣

p
∑

j=q+1

1−α
B(α)gk(t)

[

f
(

Sk(p−1)

)

− f
(

Sk(q−1)

)]

+ α
B(α)Ŵ(α)

∫ t
0
gk(τ )(t − τ )α−1[f (Sk(p−1))− f (Sk(q−1))]dτ

∣

∣

∣

≤ 1−α
B(α)

n
∑

k=1

max
t∈J

[
∣

∣gk(t)
∣

∣

∣

∣f
(

Sk(p−1)

)

− f
(

Sk(q−1)

)∣

∣]

+ α
B(α)Ŵ(α)

∑n
k=1 max

t∈J
[
∫ t
0

∣

∣gk(t)
∣

∣

∣

∣(t − τ )α−1
∣

∣

∣

∣f
(

Sk(p−1)

)

− f
(

Sk(q−1)

)∣

∣dτ ]

≤
(1−α)ML

B(α) max
t∈J

n
∑

j=1

∣

∣Sj(p−1) − Sj(q−1)

∣

∣

+ αML
B(α)Ŵ(α)max

t∈J

∑n
j=1

∣

∣Sj(p−1) − Sj(q−1)

∣

∣

∫ t
0
(t − τ )α−1dτ

≤ LM
B(α)

[

(1− α)+ αTα

Ŵ(α+1)

]

�Si(p−1) − Si(q−1)�

≤ β�Si(p−1) − Si(q−1)�

�Si(q+1) − Siq� ≤ β�Siq − Si(q−1)� ≤ β2�Si(q−1) − Si(q−2)� ≤ · · · ≤ βq�Si1 − Si0�

�Sip − Siq� ≤ �Si(q+1) − Siq� + �Si(q+2) − Si(q+1)� + · · · + �Sip − Si(p−1)�

≤
[

βq + βq+1 + · · · + βp−1
]

�Si1 − Si0�

≤ βq
[

1+ β + · · · + βp−q−1
]

�Si1 − Si0�

≤ βq
[

1−βp−q

1−β

]

�yi1(t)�

�Sip − Siq� ≤
βq

1−β
�yi1(t)�

≤
βq

1−β
max
t∈J

∣

∣yi1(t)
∣

∣

max
t∈J

∣

∣

∣

∣

∣

yi(t)−

q
∑

k=0

yik(t)

∣

∣

∣

∣

∣

≤
βq

1− β
max
t∈J

∣

∣yi1(t)
∣

∣
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Proof From Theorem 2 we get that

If Sip =
∑p

k=0
yik(t) as p → ∞ then,Sip → yi(t) so,

Hence the maximum absolute truncation error in the interval J  is,

The second method: Picard method

Applying Picard method to the system (3), the solution is constructed by the 
sequence,

Finally, the Picard solution will be,

Results and discussion
Example 1. Fractional-order rabies model

The fractional-order rabies model,

Subject to the initial conditions,

Was discussed before in [22], it solved by using Adams-type predictor–corrector 
method. Now, we will solve it by using ADM.

1- ADM solution:

Using ADM to system (14) leads to the following solution algorithm,

�Sip − Siq� ≤
βq

1− β
max
t∈J

∣

∣yi1(t)
∣

∣

�yi(t)− Siq� ≤
βq

1− β
max
t∈J

∣

∣yi1(t)
∣

∣.

max
t∈J

∣

∣

∣

∣

∣

yi(t)−

q
∑

k=0

yik(t)

∣

∣

∣

∣

∣

≤
βq

1− β
max
t∈J

∣

∣yi1(t)
∣

∣

(11)yi0(t) =

n
∑

i=1

ci

Ŵ(α)
tα−1 +

1− α

B(α)
xi(t)+

α

B(α)Ŵ(α)

∫ t

0

(t − τ )α−1xi(τ )dτ ,

(12)
yik(t) = yi0(t)−

1−α
B(α)gi(t)fi

(

yi(k−1)(τ )
)

− α
B(α)Ŵ(α)

∫ t
0
(t − τ )α−1gi(τ )fi

(

yi(k−1)(τ )
)

dτ , k ≥ 1.

(13)yi(t) = lim
k→∞

yik(t)

(14)
AB

D
α
t y1 = −by1y2,

AB
D

α
t y2 = by1y2 − dy2,

y1(0) = 1, y2(0) = 2,
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Where A1,j represent the Adomian polynomials of the nonlinear term y1y2.
Moreover, the final solution will be,

2- Picard Solution:
Using Picard method to the system (14), the solution algorithm will be,

Moreover, the final solution will be,

Figure 1a and b show ADM and Picard solutions of y1 and y2 where (n = 5,b = d = 1 ) 
at ( α = 0.8, 0.9).

From these two figures, we see that ADM solutions of (y1 and y2) are coincide with 
Picard solutions at the same values of α.

Example 2. Consider the following nonlinear system of FDEs,

Subject to the initial conditions,

Which has the exact solution y1(t) = t, y2(t) = t2 and y3(t) = t3.

1- ADM Solution:

Apply ABIα to the system (17), then using ADM and replace each nonlinear term by 
its corresponding Adomian polynomials we obtain,

Moreover, the final solution will be,

(15)
y1,0 = 1, y1,j+1 = −bABIα(A1,j),

y2,0 = 2, y2,j+1 =
ABIα

(

bA1,j − dy2,j
)

,

y1 =

n
∑

i=0

y1,i, y2 =

n
∑

i=0

y2,i.

(16)
y1,0 = 1, y1,j+1 = y1,0 − bABIα[y1,jy2,j],

y2,0 = 2, y2,j+1 = y2,0 +
ABIα

[

by1,jy2,j − dy2,j
]

.

y1 = lim
n→∞

y1,n, y2 = lim
n→∞

y2,n.

(17)
AB

D
0.5
t (ABD0.5

t y1) = 1+ y32 − t6,
AB

D
0.5
t (ABD0.5

t y2) = y1 + t,
AB

D
0.5
t (ABD0.5

t y3) = 3y21,

yk(0) = 0, k = 1, 2, 3.

(18)
y1,0 = t − t7

7
, y1,j+1 =

ABI1[A1,j],

y2,0 =
t2

2
, y2,j+1 =

ABI1[y1,j],

y3,0 = 0, y3,j+1 =
ABI1[3A2,j].

y1 =

∞
∑

i=0

y1,n, y2 =

∞
∑

i=0

y2,n, y3 =

∞
∑

i=0

y3,n.
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2- Picard Solution:
Using Picard method to the system (17), the solution algorithm will be,

Moreover, the final solution will be,

Figure 2a-c show Picard and exact solutions of y1, y2 and y3 (n = 5). While, Fig. 2d-f 
show ADM and exact solutions of y1, y2 and y3 (n = 5).

Tables 1, 2 and 3 show the relative absolute error between exact solutions, Picard and 
ADM solutions of y1, y2 and y3 . A comparison between Picard with exact solutions and 
ADM with exact solutions are shown from these results that Picard method give more 
accurate results than ADM but ADM take less time than Picard (ADM time = 0.235, Pic-
ard time = 0.455).

Example 3. Consider the following nonlinear system of FDEs,

(19)
y1,0 = t − t7

7
, y1,j+1 = y1,0 +

ABI1[(y2,j)
3],

y2,0 =
t2

2
, y2,j+1 = y2,0 +

ABI1
[

y1,j
]

,

y3,0 = 0, y3,j+1 = y3,0 +
ABI1[3(y1,j)

2].

y1 = lim
n→∞

y1,n, y2 = lim
n→∞

y2,n, y3 = lim
n→∞

y3,n.

Fig. 1 a ADM and Picard solution of  y1 (α = 0.8, 0.9) . b ADM and Picard solution of  y2 (α = 0.8, 0.9)
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(20)
AB

D
α
t y1 = 1− y1,

AB
D

α
t y2 = y1 − y22,

AB
D

α
t y3 = y22,

Fig. 2 a Picard and exact solution of  y1. b Picard and exact solution of  y2. c Picard and exact solution of  y3. d 
ADM and exact sol. of  y1. e ADM and exact solution of  y2. f ADM and exact solution of  y3

Table 1 Absolute relative error between exact, Picard and ADM solutions of  y1

t Absolute relative error between
Exact and Picard Solutions of y1

Absolute relative error between
Exact and ADM Solutions of y1

0.1 4.06666× 10−23 2.06044× 10−15

0.2 1.06605× 10−16 8.43956× 10−12

0.3 1.5755× 10−14 1.095× 10−9

0.4 2.79452× 10−12 3.45681× 10−8

0.5 1.55117× 10−10 5.03017× 10−7

0.6 4.129× 10−9 4.48461× 10−6

0.7 6.61776× 10−8 0.0000285108

0.8 7.31484× 10−7 0.0001415

0.9 6.08514× 10−6 0.000581157

1 0.0000404295 0.00205527
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Subject to the initial conditions,

Where 0 < α < 1.

1- ADM Solution:

Apply ABIα to the systems (20), then using ADM and replace each nonlinear term by its 
corresponding Adomian polynomials we obtain,

yk(0) = 0, k = 1, 2, 3.

Table 2 Absolute relative error between exact, Picard and ADM solutions of  y2

t Absolute relative error between
Exact and Picard Solutions of y2

Absolute 
relative error 
between
Exact and ADM 
Solutions of y2

0.1 2.3238× 10−24 2.47608× 10−16

0.2 6.09171× 10−19 9.79546× 10−13

0.3 9.00286× 10−16 1.27098× 10−10

0.4 1.59687× 10−13 2.01227× 10−9

0.5 8.86392× 10−12 5.83804× 10−8

0.6 2.3595× 10−10 5.0386× 10−7

0.7 3.78188× 10−9 3.30691× 10−6

0.8 4.18068× 10−8 0.0000163978

0.9 3.47854× 10−7 0.0000672372

1 2.31195× 10−6 0.000237109

Table 3 Absolute relative error between exact, Picard and ADM solutions of  y3

t Absolute relative error between
Exact and Picard Solutions of y3

Absolute 
relative error 
between
Exact and ADM 
Solutions of y3

0.1 1.32789× 10−23 4.01786× 10−15

0.2 3.48098× 10−18 1.64571× 10−11

0.3 5.14449× 10−15 2.13521× 10−9

0.4 9.12499× 10−13 6.74004× 10−8

0.5 5.06509× 10−11 9.80474× 10−15

0.6 1.34828× 10−9 8.73407× 10−6

0.7 2.16106× 10−8 0.0000554211

0.8 2.38892× 10−7 0.000273993

0.9 1.98767× 10−6 0.00111721

1 0.0000132102 0.00390145
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Moreover, the final solution will be,

2- Picard Solution:
Using Picard method to the systems (20), the solution algorithm will be,

Moreover, the final solution will be,

Figure  3a-c show ADM solutions of y1, y2 and y3 at different values of α 
( α = 1, 0.95, 0.9, 0.85).

While, Fig. 3d-f show Picard solutions of y1, y2 and y3 at the same values of α.

(21)
y1,0 =

tα

Ŵ(1+α)
, y1,j+1 = −ABIα[y1,j],

y2,0 = 0, y2,j+1 =
ABIα[y1,j − Aj],

y3,0 = 0, y3,j+1 =
ABIα[Aj].

y1 =

∞
∑

i=0

y1,n, y2 =

∞
∑

i=0

y2,n, y3 =

∞
∑

i=0

y3,n.

(22)
y1,0 =

tα

Ŵ(1+α)
, y1,j+1 = y1,0 −

ABIα[y1,j],

y2,0 = 0, y2,j+1 = y2,0 +
ABIα

[

y1,j − (y2,j)
2
]

,

y3,0 = 0, y3,j+1 = y3,0 +
ABIα[(y2,j)

2].

y1 = lim
n→∞

y1,n, y2 = lim
n→∞

y2,n, y3 = lim
n→∞

y3,n.

Fig. 3 a ADM solution of  y1. b ADM solution of  y2. c ADM solution of  y3. d Picard solution of  y1. e Picard 
solution of  y2. f Picard Solution of  y3
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Comparing between Fig. 3a-c and d-f, we see that ADM solutions of y1, y2 and y3 
coincide with Picard solutions at the same values of α.

Example 4. Consider the following nonlinear system of FDEs,

Subject to the initial conditions,

Where α ∈ (0, 1).

1- ADM solution:

Using ADM to system (23) leads to the following scheme,

Where A1,j and A2,j represent the Adomian polynomials of the nonlinear terms y21 
and y2 cos y1 respectively.

Moreover, the final solution will be,

2- Picard Solution:

Using Picard method to the system (23), the solution algorithm will be,

Moreover, the final solution will be,

Figure  4a and b show ADM solutions of y1 and y2 at different values of α 
( α = 1, 0.95, 0.9, 0.85, 0.8).

While, Fig. 4c and d show Picard solutions of y1 and y2 at the same values of α.
Figure  4e and f show ADM solution of y1 and y2 at another different values of α 

( α = 0.25,α = 0.5,α = 0.75,α = 1) . While, Fig. 4g and h show Picard solutions of y1 
and y2 at the same values of α.

Example 5. Consider the following nonlinear system of FDEs,

(23)
AB

D
α
t y1 = y21 + y2,

AB
D

α
t y2 = 1+ y2cosy1,

yk(0) = 0, k = 1, 2.

(24)
y1,0 = 0, y1,j+1 =

ABIα(A1,j)+
ABIα(y2,j),

y2,0 =
tα

Ŵ(1+α)
, y2,j+1 =

ABIα
(

A2,j

)

,

y1 =

∞
∑

i=0

y1,n, y2 =

∞
∑

i=0

y2,n

(25)
y1,0 = 0, y1,j+1 = y1,0 +

ABIα[(y1,j)
2 + y2,j],

y2,0 =
tα

Ŵ(1+α)
, y2,j+1 = y2,0 +

ABIα
[

y2,jcos(y1,j)
]

,

y1 = lim
n→∞

y1,n, y2 = lim
n→∞

y2,n.

(26)
AB

D
α
t y1 = 2y22,

AB
D

α
t y2 = 1+ ty1,

AB
D

α
t y3 = 1+ y2y3,
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Subject to the initial conditions,

Where α ∈ (0, 1).

1- ADM solution:

Applying ADM to system (26) leads to the following recursive relations,

yk(0) = 0, k = 1, 2, 3.

(27)y1,0 = 0, y1,j+1 =
ABIα(2A1,j),

Fig. 4 a ADM solution of  y1 [n = 5]. b ADM solution of  y2 [n = 5]. c Picard solution of  y1 [n = 1]. d Picard 
solution of  y2 [n = 1]. e ADM solution of  y1 [n = 3]. f ADM solution of  y2 [n = 3]. g Picard solution of  y1 [n = 2]. h 
Picard solution of  y2 [n = 2]
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Where A1,j and A2,j represent the Adomian polynomials of the nonlinear terms y22 and 
y2y3 respectively.

Moreover, the final solution will be,

2- Picard Solution:

Using Picard method to the system (26), the solution algorithm will be,

(28)y2,0 =
tα

Ŵ(1+ α)
, y2,j+1 =

ABIα
(

ty1,j
)

,

(29)y3,0 =
tα

Ŵ(1+ α)
, y3,j+1 =

ABIα
(

A2,j

)

,

y1 =

∞
∑

i=0

y1,n, y2 =

∞
∑

i=0

y2,n, y3 =

∞
∑

i=0

y3,n.

(30)
y1,0 = 0, y1,j+1 = y1,0 +

ABIα[(y2,j)
2],

y2,0 =
tα

Ŵ(1+α)
, y2,j+1 = y2,0 +

ABIα
[

ty1,j
]

,

y3,0 =
tα

Ŵ(1+α)
, y3,j+1 = y3,0 +

ABIα
[

y1,jy2,j
]

,

Fig. 5 a ADM solution of  y1 [n = 5]. b ADM solution of  y2 [n = 5]. c ADM solution of  y3 [n = 5]. d Picard 
solution of  y1 [n = 5]. e Picard solution of  y2 [n = 5]. f Picard solution of  y3 [n = 5]
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Moreover, the final solution will be,

Figure  4a-c show ADM solutions of y1 , y2 and y3 at different values of α 
( α = 0.85, 0.9, 0.95, 1).

While, Fig. 4d-f show Picard solutions of y1 , y2 and y3 at the same values of α.
We see from the above figures that ADM solutions of (y1, y2 and y3) are coincide with 

Picard solutions at the same values of α.

Conclusions
In this research, we use two interesting methods (ADM and Picard methods) to solve a 
system of nonlinear fractional differential equations of Atangana–Baleanu sense; these 
two methods give analytical solutions, which coincide with each other (see Figs. 1, 2, 3, 4 
and 5). In addition, these two methods give good approximate analytical solutions as we 
compared them with the exact solution (see Example 2) and from these results, we see 
that Picard method give more accurate results than ADM but ADM take less time than 
Picard (see Tables 1, 2 and 3).
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