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Introduction
Concrete is the foremost cement-based composite widely employed in construction pro-
jects [1]. However, the progressively intricate application contexts now demand height-
ened performance standards [2]. In response, ultra-high-performance concrete (UHPC) , 
an innovative cement-based composite, has witnessed rapid advancement in recent years 
both in theoretical exploration and practical implementation [3]. UHPC demonstrates 
remarkable advantages in fulfilling the intricate requisites of modern construction, 
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at constructing a predictive model aligned with experimental datasets. Notably, these 
models demonstrate commendable accuracy, effectively paralleling experimental 
findings as a testament to DT’s efficacy in UHPC prediction based on input parameters. 
To elevate predictive precision, this study integrates two meta-heuristic algorithms: 
the Sea-horse Optimizer (SHO) and the Crystal Structure Algorithm (CryStAl). This inte-
gration spawns three hybrid models: DTSH, DTCS, and DT. Particularly, the DTSH model 
shines with remarkable R2 values, registering an impressive 0.997, coupled with an opti-
mal RMSE of 1.746 during the training phase. This underlines the model’s unmatched 
predictive and generalization capabilities, setting it apart from other models culti-
vated in this research. In essence, the fusion of empirical experimentation, advanced 
ML via DT, and the strategic infusion of SHO and CryStAl, culminates in the ascension 
of predictive prowess within the realm of UHPC compressive strength projection.

Keywords: Ultra-high-performance concrete, Compressive strength, Decision tree, 
Sea-horse Optimizer, Crystal Structure Algorithm

Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Zhou et al. 
Journal of Engineering and Applied Science           (2024) 71:43  
https://doi.org/10.1186/s44147‑023‑00350‑1

Journal of Engineering
and Applied Science

*Correspondence:   
lihongmei@hatu.edu.cn

1 Furong College, Hunan 
University of Arts and Science, 
Changde 415000, Hunan, China
2 Hunan Technical College 
of Railway High-Speed, 
Hengyang 421200, Hunan, China
3 Information Engineering 
College, Hunan Applied 
Technology University, 
Changde 415000, Hunan, China

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s44147-023-00350-1&domain=pdf


Page 2 of 17Zhou et al. Journal of Engineering and Applied Science           (2024) 71:43 

encompassing lightweight structures, expansive spans, and national defence projects, 
owing to its exceptional mechanical attributes and enduring nature [4]. Diverging from 
conventional concrete types, UHPC ’s core objective to achieve outstanding performance 
revolves around cultivating a dense particle packing arrangement. Consequently, the 
incorporation of supplementary cementitious materials (SCMs) such as silica fume, fly 
ash, limestone powder, and metakaolin becomes necessary to fill voids among larger 
particles. This incorporation of SCMs , however, leads to a more intricate and variable 
UHPC mix, which in turn introduces instability in UHPC ’s performance, including 
mechanical characteristics, workability, and rheological properties. Thus, a fitting meth-
odology for UHPC mix design becomes imperative [5–7].

However, traditional mix design approaches often rely on empirical knowledge and 
are sometimes offered without substantiation, lacking the guidance of particle packing 
theories. Currently, theoretical design approaches for UHPC predominantly stem from 
particle-dense packing models, categorizable into discrete and continuous models [8]. 
Discrete models assume a specific particle size set, whereas continuous models consider 
a continuous distribution of particle sizes seamlessly integrated into size distribution 
systems. In 2013 , the American Society of Civil Engineers assigned a D+ rating to the 
deteriorating US Infrastructure. Principal factors contributing to this decay are the cor-
rosion of steel reinforcement and concrete degradation due to the infiltration of corro-
sive ions [9].

In comparison to standard concrete, UHPC stands out with substantial enhance-
ments in mechanical and durability properties. UHPC holds the potential to address 
the prevailing state of dilapidated infrastructure effectively. A series of conferences held 
in Kassel, Germany [10–12]; Marseille, France [13]; and Des Moines, USA [14], have 
effectively showcased the material’s performance and applicative prospects. Despite its 
impressive capabilities, the widespread adoption of UHPC faces obstacles arising from 
elevated material costs and sustainability concerns. The increased expenses stem from 
various factors intrinsic to UHPC , including the need for superior-quality materials, 
costly fibre reinforcements, and corresponding quality assurance [15]. Efforts have been 
undertaken to mitigate costs through the utilization of more affordable, locally available 
constituents.

Machine learning (ML) algorithms, like artificial neural networks (ANNs) , have gained 
broad acceptance in various fields due to their ability to predict outcomes accurately, 
aligned with experimental results [16–18]. Nevertheless, experiments can involve intri-
cate test matrices with many parameters, some of which contribute only minimally to 
the outcomes. In response, computer scientists have developed selection algorithms 
based on data-driven models [19–21]. These algorithms effectively identify the most 
relevant independent variables, swiftly reducing the dimensionality of the input matrix. 
The demand for soft computing tools in predictive modelling in engineering, covering 
components, systems, and materials, continues to rise steadily [22–24]. Among these 
tools, ANN has emerged as a leading soft computing approach, finding successful appli-
cation across different engineering domains. ANN’s usefulness extends to tasks such as 
prediction, approximation, character and pattern recognition, image processing, fore-
casting, classification, optimization, and control-related challenges. This versatility has 
motivated researchers to propose and utilize ANN models for a wide array of issues in 
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civil engineering. Notably, ANN behavioural modelling has been extensively employed 
to study concrete structural elements. Recent efforts have extended this research to 
employ various ANN models for predictive tasks related to building materials like steel, 
concrete, and composites [25]. Concrete, in particular, has garnered significant interest. 
ANN modelling, leveraging accumulated experimental data, has effectively addressed its 
fresh and hardened properties [26].

Additionally, predicting concrete’s compressive strength has become a prolific area of 
investigation, where ANN  models play a crucial role. The utilization of ANN  for predict-
ing the compressive strength of diverse concrete types, including normal weight, light-
weight, and recycled, has intrigued researchers [27]. Simultaneously, exploring different 
ML techniques has enabled the comprehension of high-performance concrete’s com-
pressive strength. As the field has progressed, the introduction of UHPC has spurred 
further refinements in ANN modelling, broadening its application to predictive analyses 
of this cutting-edge material’s behaviour [28].

The precision of UHPC prediction is being improved with the help of a novel ML tech-
nique introduced in this study. This primary focus is on obtaining extremely precise 
predictions of UHPC results, a crucial component in civil engineering. The study uses 
the decision tree (DT) model because collecting empirical data has inherent difficul-
ties. However, careful parameter fine-tuning is essential to the DT model’s success. The 
study uses a dual-algorithm approach that combines Sequential Halving Optimization 
(SHO) and Crystal Structure Analysis (CryStAl) to get the best performance possible 
from the DT model. This fusion turns out to be incredibly powerful, greatly improving 
the DT  model’s accuracy and efficiency. The practical benefits of this innovative strat-
egy are especially notable in the infrastructure sector, where they simplify the design 
and construction of UHPC structures. With the aid of a sizable UHPC dataset, thorough 
comparative analyses are carried out to support the validity of this proposed framework. 
These results demonstrate a promising route for achieving precise UHPC forecasts in 
the context of civil engineering projects by incorporating the DT  algorithm into this ML 
methodology.

Methods
Data gathering

A meticulous approach assesses ultra-high-performance concrete (UHPC) within a 
soil context, considering numerous variables. The effort involves precise data man-
agement, dividing the dataset into training (70%), validation (15%), and testing (15%) 
subsets. The foundation is a dataset of 110 experimental samples from prior research, 
validating the empirical distribution method and fortifying predictive models. UHPC 
behaviour assessment and prediction utilize a decision tree (DT) model, leveraging 
inherent predictive capabilities within variables outlined in Table  1. The concrete 
mix design includes eight inputs: cement content (C) , sand-cement ratio (S/C) , sil-
ica fume-cement ratio (SF/C) , fly ash–cement ratio (FA/C) , steel fibre-cement ratio 
(STF/C) , quartz powder-cement ratio (QP/C) , water-cement ratio (W/C), and admix-
ture-cement ratio (Ad/C) . Except for cement (C) , these inputs are as percentages 
relative to C . C is in (kg/m3), while other inputs are percentages relative to C . The 



Page 4 of 17Zhou et al. Journal of Engineering and Applied Science           (2024) 71:43 

output, CS , quantified in megapascals (MPa) , supports a robust comprehension of 
UHPC behaviour and predictive modelling insights. A 2D kernel plot, Fig. 1, visually 
illustrates input–output interplay. It represents associations between inputs and CS 
and depicts joint distribution or correlation. The plot shows pairs of data points, one 
axis showing input variables (e.g. cement content, S/C ratio) and the other CS values. 
Each point signifies an experimental sample with connected input and output. The 
plot aids in discerning trends, patterns, and interdependencies, identifying impactful 
input combinations on UHPC strengths. This representation helps researchers com-
prehend variable relationships and input–output impacts. Within the UHPC evalua-
tion context, the 2D kernel plot enhances understanding of predictive model efficacy 

Table 1 The properties of data set components engaged in the modelling process

Components Units Properties

Max Min Mean St. dev

C (kg/m3) 1600 383 879.707 331.28

SF/C (%) 0.332 0 0.214 0.0848

FA/C (%) 1.011 0 0.053 0.1323

S/C (%) 4.699 0 1.447 1.1751

STF/C (%) 0.447 0 0.0395 0.076

QP/C (%) 0.937 0 0.0469 0.157

W/C (%) 0.514 0.0375 0.238 0.0636

Ad/C (%) 0.281 0 0.0385 0.0399

CS (MPa) 240 95 152.223 31.603

Fig. 1 The 2D kernel plot between input and outputs
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by visually illustrating links between concrete mix design and compressive strength, 
enriching performance insight [29].

Decision tree (DT)

The (DT) is a widely used supervised learning technique for resolving classification and 
regression issues. When a specific categorical grouping or classification is absent, the 
regression analysis technique can still predict the likely outcome based on independent 
variables thanks to the hierarchy or divided structure of the tree [30, 31]. The model 
shown in Fig. 2 shows a straightforward decision tree with a single binary target variable, 
Y  (with values of 0 or 1 ), two continuous variables, x1 and x2 , and all of their values fall 
between 0 and 1 . Additionally, as shown in Fig. 3, the arrangement can be thought of as 
a segmented geographic area. The analytical framework that is frequently used includes 
dividing the sample space into distinct, well-defined, and comprehensive segments. Each 
of these segments directly relates to a particular leaf node, which denotes the result of a 
series of subsequent decision-making steps. Every record in a decision tree is given a sin-
gle segment, called a leaf node, which serves as its home. Determining the most efficient 
model that can precisely segment all available data into distinct segments is the main 
goal of using decision trees for analysis [32].

Nodes and branches are the basic building blocks of a decision tree model, and split-
ting, stopping, and pruning procedures are important steps in its construction [33].

Nodes

Nodes fall into three distinct categories.

1. Primary nodes, called decision nodes, are the first category and denote a choice to 
partition or subset all data.

Fig. 2 Sample decision tree based on binary target variable Y
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2. An intermediary node, or chance node, is the second kind of node. It represents a 
constrained range of potential decisions that can be made at a specific location in the 
hierarchical structure.

3. Terminal nodes, also called end nodes, comprise the third category of nodes and rep-
resent the outcome of a string of assessments or events.

Branches

A hierarchical structure of branching elements represents chance events when build-
ing a decision tree model. A discrimination protocol can be expressed as rules using 
an if–then structure for each path from the root node through intermediary and ter-
minal nodes. For instance, the realization of outcome j may depend on a series of 
conditions numbered from 1 to k , where the satisfaction of each condition causes out-
come j to occur.

Splitting

It is necessary to identify key input variables and segment records based on them to 
build a model. The purity of the child nodes, determined by the percentage of the 
target condition, serves as a guide for choosing the input variables. The partitioning 
procedure is guided by metrics like entropy and the Gini index and continues until 
uniformity or stopping criteria are met. Most of the time, not all possible input vari-
ables are used, and a particular input parameter may be used more than once at dif-
ferent levels of the decision-making hierarchy.

Fig. 3 DT using sample space view
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Stopping

In statistical modelling, complexity and robustness must be balanced because they inter-
act mutually antagonistically. The accuracy of future projections is inversely correlated with 
the model’s complexity. Even though it is crucial to build a decision tree that matches cur-
rent observations and has a small distribution of data points in each leaf, it is insufficient 
for forecasting future cases. Stopping rules must be incorporated during development to 
prevent excessive complexity. The number of observations needed in a leaf, the number of 
observations in a node before partitioning, and the depth measure are common parameters 
for stopping rules. Analytical goals and dataset characteristics must be thoroughly exam-
ined to choose the appropriate stopping parameters. Berry and Linoff recommend defining 
a specific percentage of records contained in a leaf node, ranging from 0.25 to 100%, regard-
ing the entire training dataset to reduce overfitting and underfitting. A thorough approach 
is required to ensure the best accuracy and relevance in modelling.

Pruning

An alternative method for implementing stopping criteria in decision tree modelling entails 
growing a big tree and trimming it down to the perfect size by removing nodes that do not 
add much to the collection of new data. Utilizing the percentage of datasets linked to error 
prediction to choose the best subtree from a pool of candidates is a common technique. The 
ideal answer can be aided by validating the model on a different dataset. Pre-pruning and 
post-pruning are two acknowledged pruning techniques in machine learning. Pre-pruning 
involves using statistical tests such as chi-square [34] tests and multiple comparison adjust-
ment techniques to limit the development of nonsignificant branches. Post-pruning, on the 
other hand, removes branches in an ideal way after building a thorough decision tree to 
increase classification accuracy when using the validation dataset. The specific context and 
features of the dataset will determine which pruning technique is used.

Sea‑horse Optimizer (SHO)

In 2022 , Zhao proposed a novel meta-heuristic approach called the SHO algorithm. The 
SHO algorithm is a population-based meta-heuristic technique that mimics the social 
behaviour of sea horses and consists of three primary components: movement, hunting, 
and reproduction. The algorithm incorporates both local and global search abilities to 
achieve a balance between exploration and exploitation capabilities. The movement behav-
iour is designed for local search, while the hunting behaviour is intended for global search, 
and the reproductive behaviour complements both [35]. The SHO algorithm commences 
by generating a population of potential solutions.

where dim represents the number of dimensions in the search space and pop indicates 
the population size used in the SHO algorithm, each member of the sea horse popula-
tion represents a potential solution within the search space problem. In an optimization 

(1)SH =

x11 . . . x
dim
1

... . . .
...

x1pop . . . x
dim
pop
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problem that involves minimizing, the elite individual is determined as the one with the 
lowest fitness value and is denoted by Xelite . Xelite can be obtained using Eq. (2):

The function f (.) represents the cost function’s value for a given problem, which 
assesses the fitness of potential solutions in the search space. The motion behaviour 
of sea horses involves two states: Brownian motion and Levy flight. Brownian motion 
facilitates enhanced exploration in the search space, while Levy flight simulates the 
step size of the movement of sea horses, allowing them to migrate and explore differ-
ent locations to avoid excessive local exploitation. To determine the updated position 
of a sea horse in iteration t , we can express these two scenarios as follows:

where Levy is defined by the Lévy flight distribution function with a randomly gener-
ated parameter � from the interval [0, 2] , the coordinates represent the spiral movement 
component of SHOtes x, y, and z . The constant coefficient l is used to control the step 
size of the Lévy flight; βt is Brownian motion’s random walk coefficient. The normal ran-
dom number r1 is used to introduce stochasticity in the Brownian motion component 
[36]. The hunting behaviour of sea horses can lead to either success or failure. Success is 
achieved when a sea horse captures its prey by moving faster, while failure results in fur-
ther exploration of the search space. This hunting behaviour can be represented math-
ematically as:

where the new location of the sea horse after hunting at iteration t is denoted as X1
new(t) , 

r2 is the randomly generated number within [0, 1], and b is a directly decreasing param-
eter that adjusts seahorse-based step length during the hunting process. The reproduc-
tive behaviour of sea horses divides the population into male and female groups based 
on their fitness values, and male sea horses are responsible for reproduction.

where fathers and mothers refer to the male and female populations, respectively, while 
X2
sort denotes all X2

sort arranged in ascending order of their corresponding fitness values. 
The algorithm selects half of the best-fit individuals from the population to create a new 
generation of candidate solutions. The expression of the i − th offspring is as follows:

where r3 is the random number between [0, 1], X father
i  and Xmother

i  individuals are cho-
sen at random from the male and female populations. The SHO algorithm is specifically 
developed for solving optimization problems that entail continuous search spaces and 

(2)Xelite = argmin(f (Xi))

(3)

X2
new(t + 1) =

{

Xi(t)+ Levy(�)((Xelite(t)− Xi(t))× x × y× z × Xelite(t)r1 > 0
Xi(t)+ rand ∗ l ∗ βt ∗ Xelite(t)r1 < 0

(4)X2
new(t + 1) =

{

b ∗
(

Xelite − rand ∗ X1
new(t)

)

+ (1− b) ∗ Xelite(t)r2 > 0.1

(1− b) ∗
(

X1
new(t)− rand ∗ Xelite

)

+ b ∗ X1
new(t)r2 < 0.1

(5)mothers = X2
sort(

pop

2
+ 1 : pop)

(6)X
offspring
i = r3X

father
i + (1− r3)X

mother
i
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has exhibited encouraging outcomes in several applications. The proposed SHO algo-
rithm’s flowchart is presented in Fig. 4.

The SHO algorithm offers a fresh perspective on resolving optimization problems, and 
its effectiveness and efficiency render it a promising technique for diverse applications.

Crystal Structure Algorithm ( CryStAl)

Crystals are defined as minerals with a three-dimensional organized or regularly repeat-
ing crystalline structure. The sizes and forms of crystalline solids can vary, and they 
might have isotropic or anisotropic characteristics [37]. Crystals are made of tiny par-
ticles having a distinct form. Numerous chemical and physical compositions have been 
investigated and put forth via testing. Furthermore, human inventions like mechanics, 
buildings, and artwork have been impacted by the complex symmetries and qualities of 
crystals. The crystal structure is explained in this article using the Bravais model. This 
model takes the infinite lattice geometry into account, and it specifies the periodic struc-
ture that the lattice geometry describes together with the vector of the lattice locations 
in the following manner:

Fig. 4 The flowchart of the proposed SHO algorithm
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The lattice geometry and the vector of the lattice locations, where ci is the minimum 
vector of the primary crystal directions and si is the angular number of the crystal, 
which explains the periodic structure in the Bravais model. This fundamental concept 
of crystals is described with suitable modifications for the mathematical modelling of 
CryStAl . In this paradigm, every possible optimization technique solution is thought 
of as a single crystal lattice. For the cycle’s startup, any number of crystal lattices is 
chosen.

where q is the problem’s size, and s is the potential solution. The starting locations of 
these crystals in the search space are chosen at random by:

The j th choice variable of the i-th candidate arrangement is within the indicated ρ , 
where xji(0) represents the beginning gem position and the least and maximum allow-
able values are characterized as xji,max and xji,min , respectively. As to the crystallographic 
theory of the “base”, all corner crystals make up the fundamental crystals. wzmain is 
randomly selected while taking into account the first crystal created. Furthermore, 
each tread has a random extraction technique defined, and the current value (zl) is dis-
regarded. wzr indicates crystals having the ideal arrangement and Dv is the average of 
crystals that are chosen at random. Using basic network concepts, four kinds of update 
processes are created to track a candidate solution’s location in the search space:

In the above formula, the old position is given by wzold , the new position is denoted by 
wznew , and the random numbers are denoted by z, z1, z2, andz3 . Metaheuristics consists 
of two main components: mining and exploration. It is noteworthy that Eqs. (10) to (13) 
have been tested to perform global and local searches simultaneously. To deal with vari-
able solutions xji that violate the variable limit requirements, a mathematical flag is cre-
ated that requires adjustment of the variable limits, causing problems with xji exceeding 

(7)z =
∑

sici

(8)
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(10)Simplecubic wznew = wzmain + wzold
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(12)Meancrystalcubicle wznew = z1wzzmain + z2Dv + wzold

(13)M&Bcrystalcubicle wznew = wzold + z1wzzmain + z2wzr + z3Dv
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the variable range. The termination criteria rely on a fixed number of iterations, after 
which the optimization process ends [38, 39].

Performance evaluation methods

In this study, various evaluation criteria for hybrid models are presented, emphasizing 
their correlation and error rates. The evaluation metrics discussed in this discussion 
include mean absolute error (MAE) , coefficient of correlation (R2), relative absolute error 
(RAE) , root mean square error (RMSE) , and Scatter Index (SI) . The mathematical equa-
tions for each of these metrics are listed below. An algorithm with an R2 value close to 1 
performs exceptionally well in the training, validation, and testing phases. On the other 
hand, lower values of metrics like RMSE , RAE , and MAE are preferred because they sig-
nify a lower degree of model error.

The variables N  , which stand for the number of samples, hi , h , and z , which stand for 
the mean predicted and measured values, respectively, and zi , which alternatively stands 
for the measured value, are used in Eqs. (14–18).

Results and discussion
This study’s primary objective was to predict UHPC using three different models: DT, 
DTSH, and DTCS. During the training, validation, and testing phases, these models’ 
performance was compared to actual measurements. Five statistical measures were 
used to ensure a thorough evaluation as indicated in Table 2: R2, RMSE , SI , RAE , and 
MAE . These metrics provided a solid basis for evaluating and contrasting the efficiency 
of the employed algorithms. The R2 values, which measure how much of the variability 
in the dependent variable can be explained by the independent variable, received par-
ticular attention. A standout was the DTSH model, which achieved the highest R2 values 
of 0.997 across all phases and displayed remarkable predictive accuracy. The DT model, 

(14)R2 =









�N
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�
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�

(zi − z)
�

�

�N
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√
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on the other hand, produced slightly lower R2 values, 0.985, during the corresponding 
phases. Beyond R2, the study also examined RMSE and other error indicators. The DT 
model showed more errors during the validation phase, with RMSE values ranging from 
1.746 to 7.403, while the DTSH model showed the least errors during the training phase. 
The DTSH model obtained the lowest SI value of 0.011 during the training phase as part 
of the evaluation, indicating that it is the most suitable for modelling.

Similarly, the training phase of the DT model resulted in a SI value of 0.025. The DTSH 
model, which produced values of 1.233 and 12.824 for MAE and RAE during the training 
phase, emerged as the better choice compared to the DT model, which produced values 
of 2.887 and 26.357. Overall, the results convincingly demonstrate that the DTSH model 
is superior to the DT and DTCS models in all three stages. When selecting a model for 
real-world applications, it is crucial to consider additional aspects like model complexity, 
computational effectiveness, and ease of implementation. The study’s findings essentially 
show that SHO optimization successfully enhances DT’s UHPC prediction capabilities. 
Therefore, using the DTSH model for actual UHPC prediction applications offers a use-
ful and trustworthy option.

A scatter plot is used in Fig. 5 to compare a hybrid model’s performance over the cru-
cial training, validation, and testing phases. R2 is used in the evaluation to determine 
how closely predicted and observed values are related, and RMSE is used to determine 
how much of a difference between the two there is. The DTSH model’s central line and 
closely spaced data points show exceptional accuracy in all phases. Projected and actual 
value alignment reveals a remarkable agreement with few scattering traces. In contrast, 
despite having data points that are distributed more evenly around the central axis, the 
DT and DTCS models exhibit comparable performance levels. When compared to the 
DTSH model, this wider distribution suggests increased inaccuracy and relatively lower 
precision.

In Fig. 6, a comprehensive comparison is presented, demonstrating the correlation 
between predicted and measured UHPC through a bar chart plot. The evaluation of 
predictive precision is centred around how well the predicted and observed behav-
iours match. For the DTSH model, there is a subtle deviation across all three phases, 
with a notable concentration of predicted data points placed above their measured 
counterparts. Shifting to the DT and DTCS models, a slight difference becomes appar-
ent between the projected and actual data points; however, their predictive accuracy 
falls slightly below the standard set by the DTSH model. On the contrary, the DTSH 
model’s performance shows an even more modest alignment with the measured data 

Table 2 Performance indices of proposed models

Models DT DTSH DTCS

Section Train Validation Test Train Validation Test Train Validation Test

RMSE 3.867 7.403 5.413 1.746 3.891 3.439 3.310 5.559 4.955

R2 0.985 0.955 0.978 0.997 0.989 0.989 0.990 0.982 0.981

MAE 2.887 6.144 3.702 1.233 3.084 2.422 2.284 4.433 3.441

SI 0.025 0.051 0.035 0.011 0.027 0.022 0.022 0.038 0.032

RAE 26.357 27.025 26.64 12.824 66.650 16.50 23.669 69.721 21.44
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points than the other two models. This discrepancy is particularly evident, marked by 
a noticeable difference between the projected and observed values.

Figure 7 illustrates the error rate percentages of the hybrid frameworks using a nor-
mal distribution plot. These models underwent a comprehensive evaluation across three 
phases: training, validation, and testing, each with separate sample sets. The normal dis-
tribution plot vividly highlights notable differences in error distribution among the mod-
els. It is worth noting that the samples tend to cluster within a relatively narrow error 
range of − 2 to 2%, showcasing the consistent and tightly grouped distribution exhibited 
by the DTSH model. The DTCS model displays an error rate of − 3 to 3%, while the DT 
model shows a broader span of − 5 to 5%, indicating its position as the model with the 
highest error rate. This observation emphasizes the consistent performance of the DTSH 
model across all evaluation phases. Among the trio of models, the DT model stood out 
due to its wider range of error percentages, indicating increased variability and reduced 
predictive precision compared to the other two models. Moving on, Fig.  8 presents a 
half-violin diagram depicting error percentages for the models in this study. During the 
training phase, DTSH exhibited an impressive mean error rate of 0%, characterized by a 
well-formed normal distribution with minimal dispersion. The error distribution con-
sistently remained below the 6% threshold, indicating favourable results.

Fig. 5 The scatter plot for developed hybrid models
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Fig. 6 The comparison of estimated and observed values

Fig. 7 The error rate percentage for the hybrid models is based on the normal distribution plot
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In contrast, the DT model displayed dispersion across both phases, featuring a sym-
metric and uniformly distributed normal curve. Despite this dispersion, the model 
managed to maintain its error percentage below 10%. DTCS showed the most pro-
nounced and diverse discrepancies among the three models. Interestingly, a single 
outlier data point emerged during the assessment stage, comprising over 8% of the 
dataset, an unusual occurrence in statistical analysis. When considering dispersion, 
the DT model stood out, showing a greater spread than the other two models, with 
fewer instances of incidence near zero. Overall, all three models demonstrated satis-
factory performance. However, DTSH showcased superior outcomes in terms of con-
sistency and accuracy.

Conclusions
The number of experimental studies examining the characteristics of ultra-high-perfor-
mance concrete (UHPC) has increased recently. However, using conventional statisti-
cal techniques to establish a precise relationship between the composition variables and 
the engineering features of UHPC has proven challenging and nonlinear. A robust and 
sophisticated approach is needed to make sense of the vast amount of experimental data 
available. This strategy ought to produce precise estimation methods and illuminate the 
complexities of nonlinear materials science. Enter ML, a potent technique that excels at 
spotting hidden patterns within complex datasets. In light of these considerations, the 
present study is dedicated to harnessing cutting-edge ML techniques, specifically DT, to 
predict the CS of UHPC. The foundation of this endeavour lies in a meticulously curated 
dataset consisting of 110 test experiments and 8 input parameters extracted from a com-
prehensive compilation of published literature. To elevate the predictive capabilities of 
the DT model, two meta-heuristic algorithms, SHO and CryStAl, have been seamlessly 
integrated. This amalgamation yields three distinct models: the original DT, an enhanced 
version DTSH empowered by SHO, and DTCS enriched by CryStAl. Evaluating these 
models is an exhaustive process, encompassing stages such as Training, Validation, and 
Testing. The dataset utilized for these evaluations comprises laboratory samples sourced 
from reputable published references. The efficacy and predictive prowess of the mod-
els in estimating UHPC compressive strength are quantified through an array of perfor-
mance evaluation metrics, expounded upon in the dedicated section.

The culmination of these rigorous evaluations yields the following outcomes:

Fig. 8 The box of errors among the developed models
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a) According to the investigation, the DTSH variants of the models suggested in this 
study produced the most impressive results, showing the highest R2 values. Even 
though the DT model had the lowest R2 score, the difference was insignificant. The 
DTSH models outperformed the DT and DTCS models in terms of error rates, 
showing a notable 2% decrease in error rate in comparison to DTCS. The combined 
increased R2 values and decreased error rates of the DTSH models highlighted their 
exceptional propensity for prediction.

b) Notably, the DTSH model consistently displayed the lowest RMSE values across all 
phases, highlighting its remarkable dependability and accuracy in forecasting UHPC 
compressive strength. The RMSE of DTSH was noticeably 80% lower than that of the 
DT model, which is a resounding demonstration of the improved prediction accu-
racy of this method.
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