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Abstract 

The diagnosis of faults in grid-connected photovoltaic (GCPV) systems is a challenging 
task due to their complex nature and the high similarity between faults. To address this 
issue, we propose a wrapper approach called the salp swarm algorithm (SSA) for fea-
ture selection. The main objective of SSA is to extract only the most important fea-
tures from the raw data and eliminate unnecessary ones to improve the classification 
accuracy of supervised machine learning (SML) classifiers. Subsequently, the selected 
features are used to train supervised machine learning (SML) techniques in distinguish-
ing between various operating modes. To evaluate the efficiency of the technique, we 
used healthy and faulty data from GCPV systems that have been injected with frequent 
faults, 20 different types of faults were introduced, including line-to-line, line-to-
ground, connectivity faults, and those affecting the operation of bay-pass diodes. 
These faults present diverse conditions, such as simple and multiple faults in the PV 
arrays and mixed faults in both arrays. The performances of the developed SSA-SML are 
compared with those using principal component analysis (PCA) and kernel PCA (KPCA) 
based SML techniques through different criteria (i.e., accuracy, recall, precision, F1 
score, and computation time). The experimental findings demonstrated that the pro-
posed diagnosis paradigm outperformed the other techniques and achieved a high 
diagnostic accuracy (an average accuracy greater than 99%) while significantly reduc-
ing computation time.

Keywords: Fault diagnosis (FD), Feature selection (FS), Photovoltaic (PV) systems, Salp 
swarm algorithm (SSA), Supervised machine learning (SML)

Introduction
In huge datasets, the process of assessing data becomes more difficult since not all of 
the data is appropriate. Feature selection is the process of selecting the most important 
features and removing the repetitious ones in order to solve classification issues. The 
selected subset of features will improve classification accuracy while decreasing classi-
fication time, providing the same or even better classification accuracy than using all 
of the features [1]. The goal is to identify a set of significant s features from a set of S 
features (s < S) in a given dataset [2]. S is composed of all the features of a particular 
data collection; it may include noisy, repetitive, and misleading features. As a result, 
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a complete search cannot be used in practice since it scans the whole solution space, 
which takes a long time [3]. We intended to save only a subset of the relevant features. 
Unnecessary features are not only useless for classification, but they may significantly 
decrease classification accuracy. By removing unnecessary features, computational effi-
ciency, and classification accuracy may be improved. The search criteria contain two 
types of FS methods: filter-based and wrapper-based. The filter-based techniques choose 
the feature subset independently of the predictors. Filtering-based FS methods include 
the gain ratio [4] and information gain (IG) [5]. Wrapper-based techniques, as opposed 
to filter-based approaches, apply predictors to evaluate the quality of the chosen features 
[6, 7]. These techniques like sequential backward selection (SBS) [8], sequential forward 
selection (SFS) [9], and neural network-based methods [10]. Several search approaches, 
in particular the random search and the greedy search, have been employed to find the 
most suitable subset of features [11]. Greedy search approaches create and assess all 
possible combinations of characters, making this strategy time-demanding. Meanwhile, 
random search approaches scan the search space at random for the best subset of fea-
tures. However, these approaches have several disadvantages, such as being easily stuck 
at local optimal points and having a high search space and time complexity. Metaheuris-
tic approaches were employed to address the limitations of the previously discussed FS 
methods. Metaheuristic techniques are approaches to global optimization that mimic 
the biological, physical, and animal social behaviors in nature [12]. When applied to FS 
issues, they can explore the search space both globally and locally. Particle swarm opti-
mization (PSO) [13], genetic algorithms (GAs) [14], differential evolution (DE) [14], Ant 
lion optimization (ALO) [15], grey wolf optimizer (GWO) [16], and artificial bee colony 
optimization [17] are all well-known instances of metaheuristics. In the preceding two 
decades, metaheuristics have proved their efficiency and productivity in solving diffi-
cult and large-scale challenges in engineering design and machine learning data mining 
applications [18]. Several studies have been conducted to evaluate the effectiveness of 
various metaheuristic algorithms for feature selection. In [19], the authors introduced 
a binary version of the ant lion optimizer (ALO) to find the optimal set of features and 
demonstrated that their proposed algorithm outperformed other algorithms in terms of 
accuracy. In [20], the authors modified the parameter used to balance exploration and 
exploitation in ALO and introduced a chaotic ALO (CALO), which was shown to out-
perform standard ALO, particle swarm optimization (PSO), and genetic algorithm (GA). 
Meanwhile, in [21], the authors proposed a feature selection technique based on a modi-
fied Cuckoo Search algorithm with rough sets and showed that their proposed method 
was superior to other optimizers. In [22], the authors improved the binary iteration of 
the whale optimization algorithm (WOA) for feature selection, resulting in an improved 
algorithm (IWOA) that outperformed other algorithms in terms of classification accu-
racy and feature reduction. In [23], the authors introduced a chaotic version of the moth-
flame optimization (MVO) algorithm, called CMVO, which was found to be superior to 
other optimizers. Finally, in [24], the authors proposed a binary version of the hybrid 
grey wolf optimization and particle swarm optimization algorithm (BGWOPSO), which 
outperformed other binary optimization algorithms for accuracy, feature selection, and 
computational time. Another approach to feature selection is using machine learning 
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algorithms such as artificial neural networks (ANN). In [25], the authors proposed a fea-
ture selection approach based on an extension of particle swarm optimization (PSO) for 
wind energy conversion (WEC) systems, which demonstrated improved classification 
performance with reduced computation time. Similarly, in [26], the authors proposed 
using genetic algorithm (GA) for feature selection in combination with ANN for fault 
diagnosis in grid-connected photovoltaic (GCPV) systems, which proved to be feasible 
and effective with low computation time.

In the current study, we present a novel fault diagnosis paradigm for photovoltaic (PV) 
systems utilizing a feature selection method called SSA-SML. The proposed approach 
aims to address the complex nature of GCPV systems and the high similarity between 
different faults, which makes it challenging to diagnose faults accurately and ensure 
high-performance functioning. The main contributions of our work include:

• The first step in our approach is to select the most important and sensitive features 
from the data, which can be challenging in nonlinear systems. While PCA is a com-
monly used method, it is not always effective for fault classification. Therefore, an 
alternative method called KPCA was developed. However, KPCA can be computa-
tionally challenging for large datasets.

• To overcome these challenges, we propose an SSA-based SML technique for detect-
ing faults and distinguishing between operating modes in PV systems. SSA offers 
several advantages, such as being a new algorithm, easier to implement, having fewer 
parameters, and having a low computational cost [27].

• The salp swarm algorithm (SSA) is utilized for feature selection by eliminating 
unnecessary features, while supervised machine learning is used for fault diag-
nosis. This approach tackles the issues of statistical, multivariate, and nonlinear 
feature selection and fault diagnosis in GCPV systems while improving classifica-
tion accuracy, limiting the number of chosen features, and significantly reducing 
computation time.

The rest of the paper is organized as follows: Sect. 2 gives a brief theoretical overview 
of PCA, KPCA, and SSA, which are employed in feature extraction and selection. Sec-
tion 3 is devoted to the discussion of supervised machine-learning techniques. Section 4 
presents the proposed methodology for fault diagnosis and classification utilizing an 
SSA-based SML algorithm. Section 5 presents the simulation results that evaluate the 
performance of the proposed SSA-based SML. Section 6 concludes the paper.

Methods
Feature extraction and selection

Principal component analysis

Principal component analysis (PCA) is a descriptive method for analyzing existing rela-
tionships between system variables without taking the system’s model into account [28]. 
Originally developed by Karl Pearson to describe and summarize the information con-
tained in a dataset, Harold Hotelling later improved it as a technique for analyzing exist-
ing relationships between variables [29].
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Consider the data matrix X(N , m) of a system, where N represents the number of 
measurements or observations and m represents the number of sensors or variables. 
Before running the analysis, it is necessary to perform preprocessing, which includes 
centering and reducing the data. The goal of this preprocessing is to keep certain vari-
ables from dominating the analysis simply due to their high amplitude in comparison 
to other variables. The following relation then centers each column X1 of the matrix 
X(N ·m)

Where  Xi is the ith column of the matrix X, Mi is the mean of the ith column and Xσ i
2
1 

is the variance of the ith column, respectively. The new centered and reduced data 
matrix is as follows:

After obtaining the new data matrix, the covariance matrix Φ is computed as 
follows:

The principal component analysis thus consists of breaking down the matrix as 
follows:

where the principal components of X are represented by the columns of the matrix 
T. The eigenvectors of the covariance matrix Φ are represented by the columns of the 
matrix P. In terms of linear systems, PCA is quite effective. Due to the nonlinear nature 
of the majority of current systems, PCA is ineffective in these systems. In order to get 
around PCA’s difficulties, a number of nonlinear-based PCA techniques have been 
developed, including kernel principal component analysis (KPCA).

Kernel principal component analysis

Kernel PCA (KPCA) depends on translating data into a higher-dimensional space 
where the data becomes linear. Consider a data matrix with m variables and N obser-
vations that have been normalized.

The data are projected onto the characteristic space H  using the function 
∅ : xi ∈ R

m → ∅i = ∅(xi) ∈ R
h of dimension h >> m  The dot product of two vec-

tors ∅(xi) and ∅ xj  is an important characteristic in the feature space, and it is as 
follows:

(1)Xi =
Xi −Mi

σ 2
i

(2)X = [X1X2L · · ·Xm]

(3)� =
1

N − 1
XT · X

(4)T = PTX

(5)X = [x1x2 · · · xN ]
T ∈ R

N×m
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where k denotes the kernel function and i, j = 1, . . . ,N  
In this study, we utilized the radial basis function defined as follows:

where c is the width of the Radial basis kernel function.
The KPCA model, like the linear PCA model, is derived by looking at the eigenvalues 

and eigenvectors of the covariance matrix in the new space. In the case of a collection of 
centered and reduced data,  ϕ = [∅(x1)L∅(x1) · · ·∅(xN1)]

T The covariance matrix C is 
defined in the space of the characteristics by:

The following equation will be solved to determine the eigenvalues λ and eigenvectors 
v of the covariance matrix C.

Equation (2) may be expressed from the Gram’s matrix K = ϕϕT as follows:

where � and α are the eigenvalues and eigenvectors of K. It being important to identify 
the first ℓ kernel principal components. The cumulative percent variance (CPV) criteria 
[30] are utilized to calculate the number of significant ℓ KPCs. As determined by the first 
ℓ KPCs, the CPV is a measure of the percent variance:

Subsequently, the kernel principal components are calculated using

where the ℓ principal eigenvectors P = [α1,K , . . . ,α1] of K are those that correspond to 
its largest eigenvalues � = diag{�1,K , . . . , �l}.

To select the effective features, Hotelling’s T2 and SPE are also used in addition to the ℓ 
first KPCs. These are the statistical characteristics defined:

(6)∅

(

xj
)T

∅

(

xj
)

= k
(

xi, xj
)

(7)k
(

x, y
)

= exp

(

−

(

x − y
)T (

x − y
)

c

)

(8)
(N − 1)C = ϕTϕ

=
N
∑

i=1

∅i∅
T
i

(9)ϕTϕv =
N
∑

i−1

∅i∅
T
i v

�v

(10)Kα = �α

(11)CPV (l) =

∑l
j=1�j

∑N
j=1�j

× 100

(12)t = �−1/2PTk(x)

(13)T 2(x) = k(x)PA−1PTk(x)

(14)SPE(x) = k(x, x)− k(x)TCk(x)
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Where � = (�1,K , . . . ,�l) and C = PA−1PT . Where k(x) is the kernel vector of the 
measured variable x and is denoted by

Figure 1 illustrates the main stages of the KPCA technique for feature extraction and 
selection.

Salp swarm algorithm (SSA)

SSA is one of the algorithms with a random population that Mirjalili et  al. [27]. pro-
posed in 2017. SSA mimics the swarming behavior of salps during ocean foraging. Salps 
typically form a swarm known as a salp chain in heavy oceans. The salp at the front of 
the chain is the leader in the SSA algorithm, while the remaining salps are referred to 
as followers. The position of salps is defined in a d-dimensional search space, where 
d is the number of variables in a particular problem, similar to previous swarm-based 
methods. Therefore, a two-dimensional matrix called x is utilized to store the positions 
of all salps. Additionally, it is believed that the swarm will use S as its aim to find a food 
source in the search space. The following is the provided mathematical model for SSA. 
Using the next equation, the leader salp can change its position:

(15)k(x) = [k(x1, x)K , . . . k(xN ′x)]T

Fig. 1 KPCA-based feature extraction and selection flowchart
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where x1j  represents the position of the first salp (leader) in the jth dimension, Sj repre-
sents the position of the food source in the jth dimension, ubj and lbj represent the upper 
and lower bounds of the jth dimension, respectively, and c1 , c2 , and c3 are random num-
bers. Equation 16 demonstrates that the leader only changes its position in relation to 
the food source. Because it balances exploration and exploitation, the coefficient c1 is the 
most crucial parameter in the SSA.

where L is the maximum number of iterations and l represents the current iteration. 
Random variables in the interval [0,1] are generated uniformly for the parameters c2 and 
c3. The following equations (Newton’s law of motion) are used to update the position of 
the followers:

where i ≥ 2 , x1j  depicts the position of the ith follower salp in the jth dimension, t 
denotes time, δ0 denotes the beginning speed, and � =

δfinal
δ0

 where δ = x−x0
t

The discrepancy between iterations is equal to 1 because the time in optimization is 
iterated, and since δ0 = 0 , this equation can be written as follows:

where  i ≥ 2 , xij represent the position of the ith following salp in the jth dimension, 
respectively. It is possible to mimic the salp chains using Eqs. 16 and 19.

SSA‑based feature selection

The following is a list of the requirements to develop the SSA-based feature selection 
paradigm:

Encoding scheme We encoded the individuals using a vector of real numbers. The vec-
tor is applied for features that are randomly mapped in the interval [0,1]. As a result, if 
the component value is equal to or greater than 0.5, it is replaced with 1 and the feature 
is selected. However, the value is estimated to be 0 and the feature is not picked.

Objective function The classification accuracy rate is calculated from Eq. 20, which is 
our objective function based on computing accuracy for each selection.

where TP (true positive) refers to correctly classified positive observations, TN (true 
negative) refers to correctly classified negative samples, FP (false positive) refers to 

(16)x1j =

{

Sj + c1
((

ubj − lbj
)

c2 + lbj
)

c3 ≥ 0

Sj + c1
((

ubj − lbj
)

c2 + lbj
)

c3 < 0

(17)c1 = 2e
−

(

4l
L

)2

(18)xij =
1

2
�t2 + δ0t

(19)xij =
1

2

(

xij + xi−1
j

)

(20)Accuracy =
TP + TN

TP + FN + FP + TN
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incorrectly classified positive observations, and FN (false negative) refers to incorrectly 
classified negative observations.

Architecture system In this part, we discussed our suggested system, the SSA-based 
feature selection architecture. Previous research employed the term’System Architec-
ture’ [31, 32]. The following are the primary components of SSA-based feature selection:
Data normalization is a typical preprocess in feature selection. We normalized the fea-
tures to exist in the interval [0,1] in order to eliminate the negative effects of existing 
bias values in particular features; this normalization was accomplished by identifying the 
selected feature by N in Eq. 21:

Salps individuals decoding: our vector has been occupied by the selected features in 
this stage.

Identifying training and testing sets: we partitioned the dataset into training sets (Xtrain, 
Ytrain) and testing sets (Xtest, Ytest). The main features are represented by X = [X1,X2, . . . ,Xn] 
and the main class is Y. To build the model, SML classifiers are used to manage Xtrain and 
Ytrain. Finally, we evaluate the model’s accuracy by using Xtest as an input to the model.

Select a feature subset: we picked features with a value of 1 from the training set.
Fitness evaluation: we used training set vectors to train our classifier and then used 

Eq. 20 to estimate classification accuracy.
Termination condition: we stopped the entire operation by limiting the number of iter-

ations. Figure 2 depicts the entire system workflow for feature selection-based SSA.

Faults classification using supervised machine learning techniques Supervised machine 
learning classifiers are then applied to these features for the goal of fault classification 
once the most informative features of the data have been extracted and chosen using 
PCA, KPCA, and SSA approaches. These classifiers include K-nearest neighbors (KNN), 
discriminant analysis (DA), decision trees (DT), and support vector machines (SVM).

K‑nearest neighbors

The K-nearest neighbors (KNN) technique is a widely used machine learning algorithm 
for classification and regression tasks. It is a simple yet effective non-parametric method 
for classifying new observations based on their similarity to previously observed data [33].

Discriminant analysis

Discriminant analysis (DA) is a well-known machine-learning technique for classifica-
tion tasks. It is a statistical method for determining a linear combination of features that 
best divides into two or more classes of objects. The purpose of the DA is to find a func-
tion that can accurately forecast the grouping or classification of new observations based 
on their predictor variable values [34, 35].

Decision trees

The decision tree (DT) is a common machine-learning technique that represents a 
decision-making process using a tree-like structure. Each node in the tree represents a 

(21)N =
F −minF

maxF −minF
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decision based on a certain feature or attribute, and the branches indicate various out-
comes or decisions based on that feature [36].

Support vector machines

Support vector machine (SVM) is a supervised machine learning model. It is based on 
the concept of a hyperplane classifier, also known as linear separability. The purpose of 
SVM is to identify a linear optimal hyperplane that maximizes the margin of separation 
between the two classes [37, 38].

Fault diagnosis and classification using SSA‑based SML technique The proposed meth-
odology for fault diagnosis in GCPV systems consists of two primary steps: feature 
selection and fault classification. The approach utilizes filter and wrapper methods for 
feature selection, and the supervised machine learning (SML) classifier for fault diagno-
sis. The aim is to simplify the classification process due to the complex nature of GCPV 
systems and the high similarity between different faults. The first step involves collecting 
GCPV data, which is then subjected to PCA, KPCA, and SSA to extract and select the 

Fig. 2 SSA-based feature selection flowchart
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most efficient and pertinent features. The selected feature subset is then used as input 
to the SML classifier to differentiate between operating modes and classify faults. The 
proposed technique is summarized in the block diagram shown in Fig. 3. This study pre-
sents an effective fault diagnosis technique based on the SSA model and SML classifiers. 
Although PCA is highly efficient for linear systems, it is inappropriate for most nonlinear 
systems, which are prevalent in GCPV systems. Moreover, KPCA may be inadequate for 
real-world applications with large datasets. To address these challenges, an optimized 
SSA-based SML classifier technique is proposed, which utilizes SSA for feature selection 
and SML for fault classification.

The proposed SSA-based SML technique is a promising solution for detecting and 
identifying faults in GCPV systems. It leverages the strengths of SSA for feature selec-
tion and SML for fault classification to address the challenges posed by nonlinear sys-
tems and large datasets.

Experimental results and discussions

System description

Figure 4 shows a photovoltaic system setup with a DC bus voltage of 500 V. The PV 
side is made up of 3 PV networks with a maximum power of 4 kW each. A single set 
of PV arrays is composed of 2 parallel chains where each chain has 24 modules con-
nected in series. Every module has 20 cells [26].

In this study, the two parallel PV fields,  PV1 and  PV2, underwent different scenar-
ios representing five types of faults, as outlined in Table  1. The simple fault in  PV1 
involved four fault scenarios:

• Bypass diode fault: The bypass is emulated by changing the resistance.

Fig. 3 Illustration of SML-based features selection procedures for PV fault diagnosis
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Fig. 4 Scheme of a parallel structure on a direct bus

Table 1 Description and characteristics of the different labeled injected faults

Types of faults Fault label Description

Simple fault in  PV1 F1
F2
F3
F4

Bypass diode fault  (BD1)
Connectivity fault  (Cn1)
Line to line fault  (LL1)
Line to ground fault  (LG1)

Simple fault in  PV2 F5
F6
F7
F8

Bypass diode fault  (BD2)
Connectivity fault  (Cn2)
Line to line fault  (LL2)
Line to ground fault  (LG2)

Multiple fault F9
F10
F11
F12

LL1 +  LG1
LL1 +  BD1
LL2 +  LG2
LG2 +  Cn2

Mixed fault F13
F14
F15
F16
F17
F18
F19
F20

LL1 +  LL2
LG1 +  LG2
LL1 +  BD2
LG1 +  Cn1
LL1 +  LG1 +  BD2
BD1 +  BD2 +  LG2
BD1 +  BD2 +  LL2
LL1 + BD1 +  Cn2 +  LG2
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• Connectivity fault: the connectivity fault is considered in the string of the PV sys-
tem, between two modules. This fault was modeled by a serial variable resistance.

• Line-to-line fault: LL is described by the variation in resistance that is situated 
between any two points in the PV array.

• Line to ground fault: LG is described by the variation in resistance that is situated 
between one point and the ground.

This study deals with various fault scenarios, and each scenario includes several 
cases, as shown in Table 2.

• The first scenario refers to simple faults that only affect the PV1 array.
• The second scenario represents simple faults that solely affect the PV2 array.
• The third scenario deals with multiple faults on the same array. In this case, we 

address multiple faults on both PV1 and PV2 separately.
• The fourth scenario examines mixed faults that might occur on both arrays at the 

same time.
• The fifth scenario integrates all of the preceding scenarios to monitor the system in 

all of its states.

Table 3 shows the various simulated 8 variable measurements that were collected in 
order to carry out the various experiments for fault diagnosis purposes. These vari-
ables represent one healthy (attributed to class C0) and 20 different faulty operating 
modes of GCPV (assigned to Ci, i = 1, …, 20), respectively, as shown in Table 2. The 

Table 2 Construction of database for GCPV fault diagnosis system

Types of faults Class State Training set Testing set

Normal C0 Healthy 6000 6000

C1 F1 6000 6000

Simple fault in  PV1 C2 F2 6000 6000

C3 F3 6000 6000

C4 F4 6000 6000

Simple fault in  PV2 C5 F5 6000 6000

C6 F6 6000 6000

C7 F7 6000 6000

C8 F8 6000 6000

Multiple fault C9 F9 6000 6000

C10 F10 6000 6000

C11 F11 6000 6000

C12 F12 6000 6000

Mixed fault C13 F13 6000 6000

C14 F14 6000 6000

C15 F15 6000 6000

C16 F16 6000 6000

C17 F17 6000 6000

C18 F18 6000 6000

C19 F19 6000 6000

C20 F20 6000 6000
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collected dataset was divided into two categories, namely, training and testing data-
sets, and the same observations were used for both. To validate the testing dataset, we 
added noise of significant magnitude.

The following criteria have been approved for use in evaluating and comparing perfor-
mance: accuracy, precision, recall, F1 score, and computation time (CT) [39].

Simulation results In this section, the proposed methods PCA, KPCA, and SSA-based 
SML are applied for monitoring the GCPV system, a tenfold cross-validation approach 
was used. In order to perform the proposed FD paradigm, four conditions are consid-
ered including the first condition (attributed to Cd1), which represents a healthy mode, 
Simple fault in PV1 (F3), and simple fault in PV2 (F7) modes. The second condition 
(Cd2), which represents a healthy mode, Simple fault in PV1 (F2) and simple fault in PV2 
(F6) modes. The third condition (Cd3), which represents a healthy mode and Mixed fault 
mode (F15). Finally, the last condition (Cd4), which represents a healthy mode and all 
faults modes (F1 to F20).

The PCA and KPCA algorithms are used as a feature selection technique in a filter 
mode. In this study and in regard to the PCA model, 3 groups of features are used, con-
taining group 1: (Tℓ), group 2: (Tℓ, SPE), and group 3: (Tℓ, T 2, SPE). Group 2 (the first 
ℓ = 6 PCs and SPE statistics) provides the best results in terms of classification accuracy. 
Where 6 Principal components have been retained to be used in a supervised machine 
learning classifier in all faults. Thus, due to its underlying linearity assumption, PCA 
performs quite poorly for fault classification in some nonlinear systems. KPCA was 
developed to deal with nonlinear relationships between process variables. Where, the 
95% cumulative variance criteria are used to identify the retained KPCs, with 53 KPCs 
remaining.

On the other hand, the SSA algorithm is used as a feature selection technique in a 
wrapper mode by applying the KNN, DA, DT, and SVM classifiers as a fitness function 
(where K = 5, nSplit = 50, Disc = ’l’ and Kernel = r). In this work, these classifiers are 
used as a classification algorithm to evaluate the quality of the chosen subset of features. 
The SSA parameters are set as follows, the population size (number of salps) is 10 and 
the maximum number of iterations is 50. The results presented in Table 4 show that the 
SSA-SML selects a minimal number of features in all faults.

Table 3 Variables description

Variables Descriptions

x1 Ipv1: Output current of the  PV1 panel (A)

x2 Vpv1: Output current of the  PV1 panel (V)

x3 Ipv2: Output current of the  PV1 panel (A)

x4 Vpv2: Output voltage of the  PV2 panel (V)

x5 Vdc: Grid voltage phase dc (V)

x6 ia: Grid current phase a (A)

x7 ib: Grid current phase b (A)

x8 ic: Grid current phase c (A)
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Discussions
Various classifiers are used in this study, and the best classifier is chosen based on clas-
sification performance. Table 5 depicts the overall performance accuracy.

Firstly, PCA-SML achieved low accuracies in some cases. In Cd1, in this case, all the 
developed approaches had high diagnosis performance, with accuracy rates of 87.96%, 
84.89%, 85.47%, and 97.18% for KNN, DA, DT, and SVM classifiers, respectively. How-
ever, the results decreased in Cd2 compared to the previous condition. Additionally, The 
fault diagnosis techniques showed poor performances in Cd3, with an accuracy rate of 
59.86% for the SVM classifier. When dealing with all fault conditions (Cd4), PCA-based 
DA and DT had low accuracy rates of 48.85% and 47.64%, respectively, and were ineffi-
cient in distinguishing between different operating modes.

Secondly, KPCA-SML achieved accuracies between 5.50 and 99.89%. In Cd1, the 
KNN, DT, and SVM classifiers showed good results in terms of performance classifica-
tion, except for the DA classifier with an accuracy rate of 33.35%. However, KNN and 
SVM had very high computation times during the testing stage. Moreover, the outcomes 
decreased in Cd2 compared to the initial condition. Consequently, in Cd3, the Fault diag-
nosis techniques showed good results, except for DA, with an accuracy rate of 46.11%. 
When dealing with all fault conditions (Cd4), KNN and SVM classifiers achieved high 
accuracy rates of 98.83% and 90.91%, respectively. However, DA and DT showed very 
poor classification with accuracy rates of 5.50% and 15.75%, respectively.

Finally, SSA achieved the highest accuracies (57.62 − 99.98%) using the all conditions. SSA-
ML had the best overall performance with accuracies of 99.98% and 99.91% for SVM and 
DT classifiers, respectively, in Cd1. In Cd2, all the developed approaches had high diagno-
sis performance. Then in Cd3, SSA improved the performance classification of KPCA-based 
DA classifier with an accuracy rate increasing from 46, 11% to 83.77%. In the last condition, 
SSA enhanced the results of KPCA-DA from 5.50 to 57.62%, from 15.75 to 69.72%, and from 
90.91 to 99.46% for the DA, DT, and SVM classifiers, respectively. Besides, the proposed 
method led to a significant reduction in computation time compared to the other methods. 
Furthermore, SSA outperformed other techniques in terms of classification accuracy, recall, 
precision, F1 score, and computation time, due to its ability to explore the feature space intel-
ligently. These results confirmed the effectiveness of the SSA in analyzing the feature space 
and selecting the best subset that resulted in higher classification performance.

Conclusions
In this study, we focused on diagnosing various incipient faults of grid-connected pho-
tovoltaic (GCPV) systems during different operation modes. We identified 20 differ-
ent types of faults, including line-to-line and line-to-ground faults, connectivity faults, 

Table 4 SSA-based feature selection in all faults

Algorithm All features No. of selected Features

SSA-KNN 8 5 1, 2, 3, 4, 7

SSA-DA 8 3 2, 4, 5

SSA-DT 8 4 1, 2, 4, 8

SSA-SVM 8 6 1, 2, 3, 4, 5, 7
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Table 5 Summary performances of different classifiers

Classifiers Features selection Phase Global performance

Accuracy Recall Precision F1 score CT(s)

Cd1 87.96% 87.96% 88.04% 87.99% 2.63

KNN Cd2 73.39% 73.40% 73.72% 73.56% 2.14

Cd3 88.97% 88.97% 89.03% 88.99% 1.02

Cd4 70.53% 70.53% 70.58% 70.55% 15.7

Cd1 84.89% 84.89% 86.35% 85.61% 0.03

DA Cd2 70.50% 70.50% 72.03% 71.26% 0.02

Cd3 61.44% 61.45% 61.44% 61.44% 0.09

PCA method Cd4 48.85% 48.85% 51.27% 50.03% 0.9

Cd1 85.47% 85.47% 86.84% 86.15% 0.02

DT Cd2 67.02% 67.02% 68.95% 67.97% 0.02

Cd3 53.86% 53.86% 62.37% 57.80% 0.03

Cd4 47.64% 47.64% 50.81% 49.17% 0.2

Cd1 79.18% 79.18% 81.17% 80.16% 2.66

SVM Cd2 59.86% 59.86% 68.15% 63.74% 5.17

Cd3 65.38% 65.39% 75.85% 70.23% 0.5

Cd4 63.85% 62.30% 63.85% 62.54% 6.31

Cd1 99.89% 99.90% 99.90% 99.90% 26.34

KNN Cd2 99.21% 99.21% 99.22% 99.21% 30.12

Cd3 99.78% 99.78% 99.78% 99.78% 16.08

Cd4 98.83% 98.83% 98.85% 98.84% 145.8

Cd1 33.35% 33.35% 33.48% 33.41% 0.16

DA Cd2 32.33% 32.34% 31.56% 31.95% 0.20

KPCA method Cd3 46.11% 46.11% 41.43% 43.64% 0.19

Cd4 5.50% 5.50% 6.78% 6.07% 5.22

Cd1 92.27% 92.27% 93.36% 90.68% 0.01

DT Cd2 86.86% 86.68% 87.01% 86.84% 0.03

Cd3 99.37% 99.37% 99.38% 99.37% 0.11

Cd4 15.75% 15.75% 42.33% 22.96% 0.28

Cd1 99.08% 99.08% 99.09% 99.08% 5.13

SVM Cd2 98.84% 98.84% 98.88% 98.86% 6.48

Cd3 99.52% 99.53% 99.53% 99.53% 1.55

Cd4 90.91% 90.91% 92.27% 91.58% 21.76

Cd1 99.79% 99.79% 99.79% 99.79% 0.25

KNN Cd2 99.78% 99.78% 99.78% 99.78% 0.25

Cd3 99.85% 99.85% 99.85% 99.85% 0.14

Cd4 99.38% 99.39% 99.38% 99.38% 1.9

Cd1 99.71% 99.71% 99.71% 99.71% 0.1

DA Cd2 87.67% 87.67% 87.96% 87.81% 0.12

Cd3 83.77% 83.77% 87.64% 85.66% 0.05

SSA method Cd4 57.62% 57.62% 63.83% 60.57% 0.67

Cd1 99.91% 90.90% 99.90% 90.90% 0.03

DT Cd2 99.06% 99.06% 99.07% 99.06% 0.015

Cd3 99.94% 99.94% 99.94% 99.94% 0.03

Cd4 69.72% 69.72% 70.61% 70.16% 0.25

Cd1 99.98% 99.98% 99.98% 99.98% 0.55

SVM Cd2 99.98% 99.98% 99.98% 99.98% 1.10

Cd3 99.94% 99.95% 99.95% 99.95% 0.55

Cd4 99.46% 99.47% 99.46% 99.46% 3.37
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and faults affecting the operation of bypass diodes. These faults presented diverse con-
ditions, such as simple and multiple faults in the PV arrays and mixed faults in both 
arrays. To address the complexity and similarity between faults, we developed a feature 
selection tool to enhance the accuracy of the supervised machine learning (SML) mod-
els. Firstly, we applied the salp swarm algorithm (SSA) for feature selection to select the 
most effective features from the raw data. Then, we fed these significant and sensitive 
features into the SML model for classification purposes. The results confirmed that the 
developed paradigm significantly improved the diagnosis performance when applied to 
GCPV systems. The diagnosis accuracies of the proposed SSA-SML were compared to 
those using PCA and kernel PCA-based SML methods through different metrics (i.e., 
accuracy, recall, precision, F1 score, and computation time). The obtained results con-
firmed that the development paradigm outperformed the other methods and achieved 
a high diagnostic accuracy (an average accuracy greater than 99%) and low computation 
time using GCPV data.
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