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Abstract 

This study presents an enhanced envelope detection technique implemented 
on a field-programmable gate array (FPGA) to diagnose bearing faults in rotating 
machinery. Bearing faults frequently result in machinery breakdowns, incurring sub-
stantial downtime and maintenance expenses. In our approach, we employ the Teager 
energy operator (TEO) to extract the vibration signal envelope. Subsequently, we 
subject the envelope signal to the fast Fourier transform (FFT) to generate the enve-
lope spectrum of the vibration signal. Finally, we further refine the envelope spectrum 
using TEO for a second time, resulting in a pronounced fault peak that facilitates early 
fault detection. We evaluate the effectiveness and performance of the proposed 
method using two distinct types of bearing vibration signals, one being simulated 
and the other measured. Our findings reveal that the suggested approach outper-
forms traditional envelope detection methods, leading to a substantially enhanced 
fault diagnosis capability. For instance, when we assess the characteristic frequency 
ratio (FCFR) for faults in the inner and outer rings of the bearing using the proposed 
method, we observe that the FCFR values are significantly elevated, ranging from 160 
to 330% higher compared to the analysis performed by the TEO and HT methods. 
Consequently, this indicates that the proposed approach has the ability to detect faults 
at an earlier stage than other methods. Furthermore, the FPGA-based implementation 
makes it suitable for critical industrial applications where rapid fault detection is essen-
tial to prevent catastrophic failures.

Keywords: Bearing fault, FPGA, Envelope detection approach, Teager energy operator, 
Rotating machines, Vibration analysis

Introduction
The crucial role of rotating machines is played by bearings, and they are frequently the 
primary origin of malfunctions. An emphasis on outer and inner ring faults is placed, 
as a statistical study has revealed that 90% of failures in rolling element bearings are 
ascribed to them. Therefore, it is imperative to ensure that bearings are continuously 
monitored and diagnosed for the sake of effective maintenance [1, 2].

Numerous techniques are used for diagnosing bearing faults, including current and 
temperature monitoring, acoustic and vibration analysis, and noise surveillance [3]. 
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Vibration measurement is the most effective, capable of detecting, locating, and distin-
guishing various defects [4]. Diagnosing bearing defects relies on a range of signal-pro-
cessing techniques that are employed to extract fault characteristics from the bearings. 
These approaches encompass all possible scenarios, including straightforward cases 
involving single defects and constant rotation speeds, as well as more complex situations 
featuring multi-faults under varying speed conditions [5].

Nonetheless, envelope detection (ED) has proven to be particularly effective in the 
realm of bearing fault detection over time. This efficacy stems from the fact that enve-
lope signals offer considerably more diagnostic insight compared to raw signals, as 
highlighted by Tandon and Choudhury [6]. Randall and Antoni have provided compre-
hensive reviews of ED methods, further emphasizing their significance in the field [7]. 
Guo et al. introduced a method using an envelope spectrum and support vector machine 
for fault classification, establishing a foundation for subsequent research [8]. Pan and 
Tsao focused on the crucial role of selecting appropriate intrinsic mode functions for 
envelope analysis, emphasizing their significance in improving fault diagnosis accu-
racy [9]. Tyagi and Panigrahi advanced the field by incorporating particle swarm opti-
mization to enhance envelope detection, optimizing parameters for more precise fault 
diagnosis [10]. Gałęzia et al. explored the combined Teager-Kaiser envelope, combining 
techniques to potentially achieve more robust and reliable results in bearing fault diag-
nosis [11]. Collectively, these works demonstrate a progression in envelope detection 
techniques, incorporating various methods and optimization approaches to improve the 
rolling bearing fault diagnosis.

This study proposes and implements a novel approach on an FPGA (Field-Program-
mable Gate Array) using the Teager energy operator (TEO) for detecting bearing defects 
through envelope detection of vibration signals. The TEO, introduced by H. M. Teager in 
1983 for speech analysis [12], calculates and tracks the energy of a signal while extract-
ing its instantaneous frequency and amplitude (signal envelope). This method’s effective-
ness is compared with that of the conventional Hilbert transform, a widely employed 
for envelope detection. The severity and identification of the fault involves analyzing the 
fault’s characteristic frequencies in the envelope spectrum, which is referred to as the 
fault characteristic frequency ratio (FCFR). The TEO stands out for its ability to oper-
ate within a short-time window, relying only on three consecutive points of a signal. 
Moreover, its mathematical definition is simple, requiring only basic operations such as 
subtraction and multiplication, making it suitable for hardware or software implementa-
tions in real-time systems [13, 14].

FPGA-based implementations offer several advantages in terms of power consump-
tion and speed compared to other platforms. FPGAs can be dynamically reconfigured 
either globally or partially, allowing for flexibility based on specific requirements. While 
there are various development tools available for FPGA programming, it is widely recog-
nized that programming FPGAs directly using VHDL or similar languages is a complex 
and time-consuming process. To expedite the design process, we opted for the conven-
ient and efficient tool called system generator, which is a branch of the Xilinx library 
accessible through Matlab Simulink. This tool allows for the automatic transformation 
of a model constructed using Xilinx library blocks into a VHDL-based model. Subse-
quently, the VHDL model can be converted into a bitstream file and easily downloaded 
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to the target FPGA using the Vivado Design Suite [15]. This paper’s structure is as fol-
lows: Section 2 introduces the concept of diagnosing bearing faults and discusses several 
signal processing methods that utilize vibration signals to extract fault characteristics. 
These methods include the Teager energy operator, Hilbert transformation, and FCFR. 
In Section 3, the paper validates and compares the suggested approach with other enve-
lope-based detection techniques using both synthetic and real vibration signal data. Fur-
thermore, Section 3 provides a detailed description of the FPGA implementation of the 
proposed method, utilizing the Xilinx system generator (XSG). The paper is ultimately 
concluded in Section 4.

Methods
Characteristic frequencies of bearing faults

A bearing is a mechanical component that facilitates smooth movement and reduces 
friction between two or more parts in a machine or system. Essential bearing compo-
nents comprise the outer and inner ring, along with balls and a cage. Each bearing com-
ponent has a specific frequency ( BPFI, BPFO, BSF   and FTF  ), which depends on ball 
bearing parameters ( F  is the rotating frequency, N is the number of balls, P is the pitch 
diameter, B is the ball diameter, and α is the contact angle). Figure 1 shows all the con-
stituents of the bearing, whereas Table  1 presents the fundamental frequencies of the 
bearing as documented in references [16] and [17].

System description and bearing database

This research employs an experimental dataset of vibration signals from various defec-
tive bearing components, gathered by Case Western Reserve University [18]. The test 
data comprises various conditions encompassing both normal and faulty bearing meas-
urements. Examples of these conditions include bearing categories (FE: 6203-2RS JEM 
SKF and DE: 6205-2RS JEM SKF), motor speeds (1730, 1750, 1772, and 1797  rpm), 

Fig. 1 Geometry and parts of ball bearing
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dynamometer/load settings (0, 1, 2, and 3 HP), and fault sizes (0.1778, 0.3556, and 
0.5334 mm), among others.

Figures  2a, 3a, and 4a display vibration signals of an undamaged bearing, a bearing 
with a fault in its outer ring, and a bearing with a fault in its inner ring. These signals 
were taken from a motor with no load operating at 1797 rpm, using a sample frequency 
of 12 kHz and specific bearing specifications (B = 7.94 mm, N = 9, α = 0°, P = 39.04 mm) 
with a fault size of 0.36 mm. The related rotational frequency of the shaft is 29.95 Hz, 
whereas the frequency of the fault in the inner ring is calculated to be 162.19 Hz, and 
for the outer ring fault, it is 107.36 Hz. These values were derived using the equations 
provided in Table 1. Similarly, Figs. 2b, 3b, and 4b depict vibration signals for the same 

Table 1 Characteristic frequencies of each bearing component

Component frequencies Fundamental frequency formulae [Hz]

Ball-pass frequency at the inner ring ( BPFI)
fi =

N

2
· F · 1+

B

P
cosα

Ball-pass frequency at the outer ring ( BPFO)
fo =

(

N

2

)

· F ·

(
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(

B

P

)

· cosα

)

Ball-spin frequency ( BSF)
fb =
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P

B

)

·

(

F

2

)

·
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)

· cosα

)2
)

Fundamental train frequency ( FTF)
f =

(
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2

)

·
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)

· cosα
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Fig. 2 Vibration signals from a Normal bearing installed on a motor exhibiting the following features: a 
speed = 1797rpm and load = 0HP , b speed = 1730rpm , and load = 3HP

Fig. 3 Vibration signals from a bearing with outer ring fault installed on a motor exhibiting the following 
features: a speed = 1797rpm and load = 0HP , b speed = 1730 rpm, and load = 3 HP
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bearing specifications and sample frequency, but at a rotational speed of 1730 rpm and 
under a 3 HP motor load. In this case, the shaft frequency is F = 28.83Hz , while the 
outer ring fault frequency being fO = 103.36Hz , and the inner ring fault frequency 
measuring fi = 156.14Hz.

Envelope detection

Envelope detection is a fundamental process in signal processing used to extract the var-
ying magnitude or envelope of a modulated signal, which helps in visualizing and ana-
lyzing signal characteristics, particularly in time-varying or dynamic signals. By tracking 
the envelope variations, it becomes easier to observe patterns, trends, and important 
features of the signal, which aids in signal processing, diagnostics, or system monitoring.

Envelope detection finds applications in various fields allowing for accurate and real-
time analysis of signals in various applications, including wireless communication, audio 
processing, vibration signal analysis, and many more. The various methods of envelope 
detection include peak detection, quadrature detection, Hilbert transform, and RMS 
detection [17, 19, 20].

It is important to underline that the selection of the envelope detection method is con-
tingent on the particular application, the intended effectiveness of the detection process, 
and the characteristics of the modulated signal.

Hilbert transformation, instantaneous frequency, and amplitude

The research community in the field of vibration analysis has shown significant inter-
est in the Hilbert transform (HT) and its applications over the past 30 years [17]. The 
HT is a mathematical operation that involves convolving the signal s(t) with (1/π t) . This 
transformation has been extensively studied and applied in various applications related 
to vibration analysis. Mathematically, it can be expressed as follows:

The analytical signal sa(t) includes a real part s(t) and imaginary part sh(t) , then 
sa(t) = s(t)+ jsh(t) . An alternate representation of the analytic signal in polar form is 
expressed as sa(t) = a(t)ejϕ(t) . Consequently, three quantities can defined from this 

(1)sh(t) = HT {s(t)} = s(t) ∗ (1/π t) = π−1

∫

+∞

−∞

s(τ )

t − τ
dτ

Fig. 4 Vibration signals from a bearing with inner ring fault installed on a motor exhibiting the following 
features: a speed = 1797rpm and load = 0HP and b speed = 1730 rpm and load = 3 HP
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form, the first quantity is instantaneous amplitude A(t) = |sa(t)| =
√

s2(t)+ s2h(t) , and 

the second is instantaneous phase ϕ(t) = arctan{sh(t)/s(t)} and finally instantaneous 
frequency in [Hz] f (t) = (dϕ/dt)/2π . A significant property of the Hilbert transform is 
that the instantaneous frequency and instantaneous amplitude at all times converge to 
the most important amplitude component (if the signal is a multicomponent) [21].

Basic concepts of Teager energy operator (TEO)

The TEO is a signal processing technique that provides useful features for analyzing sig-
nals. It provides valuable features for signal analysis, including energy calculation, instan-
taneous frequency estimation, signal envelope extraction, and robustness to noise. Its 
applications span various domains, and its implementation is feasible in real-time sys-
tems. The basic concept of TEO is to calculate and track the signal’s total energy and find 
its instantaneous frequency and amplitude [11]. The TEO can be classified into three ver-
sions: continuous, discrete, and generalized. The continuous version is defined as follows:

where s(t) a continuous signal, ṡ(t) its first derivative, and s̈(t) its second derivative. The 
discrete version is defined as follows:

Equation (3) requires only three consecutive points ( m− 1 , m , and m+ 1 ) and involves 
two basic operations, subtraction, and multiplication. As a result, it can be easily imple-
mented in microcontrollers, microprocessors, or FPGAs due to its minimal memory 
storage requirements. The generalized form of the TEO can be derived by substituting 
“1” with the integer value P > 1 in the discrete version of the TEO (Eq. (3)). This yields 
the following equation:

where P is named the lag parameter [21].
For example, the energy operator TEO of a continuous-time sinusoidal function 

Acos(ωt) is given by the following equation:

where A2ω2 is the estimated instantaneous energy and ω and A are the frequency and 
amplitude, respectively [13, 14].

Fault characteristic frequency ratio “ FCFR”

Various methods exist for assessing the fault characteristic frequency, including kurtosis, 
correlation coefficient, and Shannon entropy principle [22]. However, this paper focuses 
on using the FCFR to automatically evaluate the occurrence and severity of faults. The 

(2)�c(s(t)) = {ṡ(t)}2 − s(t) · s̈(t)

(3)�d[s[m]] = s2[m]− s[m− 1] · s[m+ 1]

(4)�g (s[n]) = s2[m]− s[m− P] · s[m+ P]

(5)

�c(s(t)) = {−Aωsin(ωt)}2 − Acos(ωt) ·
{

−Aω2cos(ωt)
}

= A2ω2
{

sin2(ωt)+ cos2(ωt)
}

= A2ω2
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FCFR denoted as Rfc in Eq. (6) and provides a reliable means of estimating fault frequen-
cies and assessing their severity in the analyzed signals.

where Env is the envelope spectrum obtained by TEO , and M is the envelope spectrum 
length, and fc is the fault characteristic frequency (replacing with fi for the frequency 
characteristic of inner ring fault, or with fo for the frequency characteristic of outer ring 
fault). A basic analysis states that the majority of details are present within the initial 
three harmonics of the envelope spectrum. As a result, focusing on the envelope spectra 
of these first three ranges is considerably adequate for optimal assessment [22].

Proposal of an improved TEO method for the bearing faults diagnosis

The process flow of the improved TEO (ITEO) method is illustrated in Fig. 5. It involves 
four key stages, which are:

• Envelope detection: Employ the Teager energy operator (TEO), as defined in Eq. (3), 
to deduce Eq.  (7), which serves the purpose of extracting the envelope, denoted as 
sd[m] from the bearing vibration signal s[m].

• Envelope spectrum analysis: In the context of envelope spectrum analysis, a key step 
involves the application of the fast Fourier transform ( FFT  ) operator to the signal 
sd[m] . This operation is performed to derive the envelope spectrum, denoted as 
Sd[k] , as outlined in Eq. (8)

(6)Rfc =

(

∑m

i=1

∣

∣Env
(

i · fc
)
∣

∣

)

/

((

1

M

)

∑M

i=1

∣

∣Env
(

i · f
)
∣

∣

)

(7)sd[m] = s2[m]− s[m− 1] · s[m+ 1]

Fig. 5 Block diagram for bearing fault detection using ITEO
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• Improved envelope spectrum: Utilizing the Teager energy operator (TEO) directly 
on the envelope spectrum Sd[k] serves to enhance the detection of bearing faults by 
emphasizing the characteristic pulse train. Subsequently, a second application of the 
TEO is carried out to derive the improved envelope spectrum denoted as Se[m] , and 
this process unfolds as described below:

• Fault diagnosis using FCFR calculation: By utilizing Eq. (10), we calculate the FCFR 
for the improved envelope spectrum Se[m] . The parameter Rfc , computed across 
various characteristic frequencies fc (where fc corresponds to the inner ring fault, 
fc = fi , or the outer ring fault, fc = fo ), serves as a diagnostic indicator for bearing 
faults, including their presence and type.

Applications and results
To confirm ITEO’s effectiveness in detecting bearing faults, two signal types are 
employed: simulated and measured. The results obtained from applying the ITEO pro-
cedure are compared with the results obtained from applying TEO and Hilbert trans-
form to assess its performance. Furthermore, the ITEO procedure is implemented in an 
FPGA circuit for practical application.

Application on simulation signals

A simulated signal is composed of two components: the shaft vibration signal 
denoted as vs(t) and the fault vibration signal known as vf (t) . First, the shaft vibra-
tion signal is expressed as vs(t) = Acos

(

2π fr t
)

 , where A represents the ampli-
tude, and fr represents the frequency. Second, the fault vibration is given by 
vf (t) =

∑

∞

k=0 Be
−α(t−kTc)sin

(

2π fn(t − kTc)
)

 , where B represents the amplitude, 
fc = 1/Tc represents the frequency of vibration fault, fn represents the resonance fre-
quency, and α represents the attenuation constant. According to [22, 23], and [24], the 
fault vibration signal is generated utilizing the subsequent equation:

n(t) denotes Gaussian white noise.
The parameters for creating simulated signals related to inner ring fault ( xin(t) ) and 

outer ring fault ( xout(t) ) are presented in Table 2. Figure 6a and b show the waveform 

(8)Sd[k] =
∑M−1

m=0
sd[m] · e−j2πmk/M

(9)Se[m] = Sd
2
[m]− Sd[m− 1] · Sd[m+ 1]

(10)Rfc =

(

∑3

i=1

∣

∣Se
(

i · fc
)∣

∣

)

/

((

1

M
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∑M

i=1

∣

∣Se
(

i · f
)∣

∣

)

(11)x(t) = vs(t)+ vf (t)+ n(t)
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of xin(t) with and without noise, respectively, while Fig. 6c displays the spectrum of 
xin(t) with noise. Notably, the characteristic frequency of inner ring faults is not vis-
ible in the spectrum. Similarly, Fig. 7a and b depict the waveform of xout(t) with and 
without noise, respectively, and the spectrum of xout(t) with noise is shown in Fig. 7c. 
In this context, the characteristic frequency associated with outer ring faults is also 
not observable within the spectrum [25].

In Fig.  8, the envelope spectrum obtained from the suggested approach, ITEO, is 
compared with other methods based on envelope analysis (HT and TEO).

The amplitudes of the first harmonic in the envelope spectra obtained by applying 
the HT, TEO, and improved Teager energy operator (ITEO) to the signals xin(t) and 

Table 2 Parameters of the simulated signals xin(t) and xout(t)

Simulated signals Simulated signals parameters

A f r [Hz] f n[Hz] f s[Hz] α B f c[Hz]

xin(t) 0.02 10 2500 12,000 90 0.15sin(2π fr t) fi = 150

xout(t) 0.05 10 4000 12,000 900 0.25 fo = 100

Fig. 6 a Temporal representation of xin(t) without noise, b temporal representation of xin(t) without noise 
xin(t) (SNR =  − 12 dB), c frequency representation of xin(t) with noise

Fig. 7 a Temporal representation of xout(t) without noise, b temporal representation of xout(t) without noise 
xout(t) (SNR =  − 12 dB), and c frequency representation of xout(t) with noise
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xout(t) are shown in Fig. 9a and b, respectively. Likewise, Fig. 10 illustrates the magni-
tudes of the initial three harmonics in the envelope spectra derived from applying the 
three different methods. Figures  9 and 10 demonstrate that the proposed approach 
significantly increases the magnitude of the fault frequency.

The effectiveness of the proposed approach is presented in Table 3, where FCFR out-
comes for xin(t) and xout(t) are provided using three distinct techniques: HT, TEO, and 
ITEO. This highlights the superiority of the suggested method, even surpassing the 
widely recognized HT technique often employed in bearing diagnostics.

Table  3 presents the FCFR results for xin(t) and xout(t) achieved using three differ-
ent methods: HT, TEO, and ITEO. The table clearly demonstrates the effectiveness of 
the proposed approach, surpassing even the well-known HT method commonly used in 
bearing diagnostics. This superiority is evident through significantly higher FCFR val-
ues compared to the other methods. Additionally, the larger FCFR indicator indicates 

Fig. 8 Envelope spectra of xin(t) and xout(t) obtained using a Hilbert transform, b TEO, and c ITEO methods

Fig. 9 Amplitudes of the first harmonic of each envelope spectra obtained by applying HT, TEO and ITEO on 
a xin(t) and b xout(t)

Fig. 10 Amplitudes of the initial three harmonics in the envelope spectra obtained by applying HT, TEO, and 
ITEO on a xin(t) and b xout(t)
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a stronger ability to extract faults, further highlighting the advantages of the proposed 
approach ITEO.

Application on experiment signals

As in the preceding section, we applied the three methods to the measured signals S1in 
from the bearing containing fault within its inner ring. and S1out from the bearing con-
taining fault within its outer ring shown in Figs. 4b and 5b, respectively. Tables 5 and 6 
describe the properties of S1in and S1out , respectively. While Figs. 11a and 12a display 
their respective spectra. The Figs. 11b–d and 12b–d show the envelope spectra of S1in 
and S1out respectively, obtained using the HT, TEO, and ITEO methods.

Table 4 presents the FCFR values of S1in and S1out obtained using the three previous 
methods. Notably, the table highlights the superior efficacy of the ITEO method in con-
trast to the alternative approaches.

Table 3 FCFR of xin(t) and xout(t) , using three envelope detection methods

Fault characteristic frequency ratio FCFR Envelope detection Methods

HT TEO ITEO

Simulated signalxin(t) 7.65 11.84 25.93

Simulated signalxout(t) 11.61 14.07 36.51

Fig. 11 a Amplitude spectrum of S1in , b the envelope spectrum of S1in obtained using HT, c TEO, and d ITEO



Page 12 of 19Rebiai et al. Journal of Engineering and Applied Science            (2024) 71:3 

Moreover, the effectiveness of the suggested approach is confirmed through the vali-
dation process using a multitude of experimental vibration signals acquired from faulty 
bearings in diverse states, gathered by WCRU [9]. These signals are categorized into two 
subsets: the first set includes vibration signals from bearings afflicted with inner ring 
defects, while the second set encompasses signals from bearings afflicted with outer 
ring faults. The respective data is presented in Table 5 and 6. The sampling frequency 
for all the collected data is 12 kHz. The ITEO method demonstrates significantly higher 
FCFR values compared to other methods, indicating its effective detection of outer ring 
and inner ring faults by significantly increasing the amplitude for the 20 analyzed cases. 
Consequently, the average FCFR value of these signals obtained by ITEO is between 
160 and 330% higher than that obtained by TEO and HT methods. Figure 13a and b 
graphically depict the FCFR results obtained by different methods (ITEO, HT, and 
TEO) for signals with inner ring faults ( S1in to S12in ) and signals with outer ring faults 
( S1out to S8out ), respectively.

FPGA implementation of the proposed ITEO method

Co‑simulation

In this section, we employed Matlab/Simulink with Xilinx System Generator (XSG) to 
implement the ITEO method on the ZYNQ FPGA board. The hardware implementa-
tion design flow using XSG is shown in Fig. 14. We utilized Vivado System Generator 

Fig. 12 a Amplitude spectrum of S1out , b envelope spectrum of the signal S1out obtained using HT, c TEO, 
and d ITEO

Table 4 FCFR of S1in and S1out using HT, TEO, and ITEO methods

Fault characteristic frequency ratio FCFR Envelope detection methods

HT TEO ITEO

Measured signalS1in 48.08 45.85 165.68

Measured signalS1out 58.22 52.32 174.88
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Table 6 FCFR of signals with outer ring faults ( S1out to S8out ), obtained through diverse methods

Vibration signals originating from bearings exhibiting outer ring faults

S1out S2out S3out S4out S5out S6out S7out S8out

Fault size [mm] 0.18 0.18 0.18 0.18 0.53 0.53 0.53 0.53

Motor Load [PH] 0 1 2 3 0 1 2 3

Motor speed
[

rpm
]

1797 1772 1750 1730 1797 1772 1750 1730

Fault frequency [Hz] 107.36 105.87 104.56 103.36 107.36 105.87 104.56 103.36

FCFR obtained by HT 58.22 55.24 80.94 58.58 20.57 26.67 20.43 26.05

FCFR obtained by TEO 52.32 49.31 64.11 51.73 17.40 21.23 15.88 19.98

FCFR obtained by ITEO 174.88 159.19 209.71 162.36 38.8767 54.38 33.96 47.67

Fig. 13 FCFR obtained by different methods (ITEO, HT, and TEO) of a signals with inner ring faults ( S1in to 
S12in ) and b signals with outer ring faults ( S1out to S8out)

Fig. 14 Hardware implementation of ITEO method using XSG
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2018.2 and Matlab version 2018a for this purpose. In software co-simulation, the con-
nection of Xilinx blocks occurs through two interfaces known as “Gateway In” and 
“Gateway Out.” These interfaces serve as input and output, respectively, for the hard-
ware design. Figure  15 shows the ITEO method, constructed using standard XSG 
blocks.

Implementation results

Figure 16 illustrates the block diagram of the hardware architecture for diagnosing bear-
ing faults using ITEO. The hardware architecture is constructed from a dual set of block 
categories: the first type is composed of blocks acquired from the library of Xilinx IP 
core, while the second type is made up of personalized IP cores incorporated as co-pro-
cessing units within the suggested design. For instance, the TEO block, which is cru-
cial for the diagnosis, is a personalized IP-core specifically developed for this system and 
added to the design.

To validate the proposed architecture, it is tested using the measured signal S1IR 
obtained from the bearing with an inner ring defect. The test results, shown in Fig. 17b, 
exhibit similarity to the previously obtained results (Fig. 17a).

Resource estimation

A summary of the synthesis and implementation outcomes for the ITEO technique is 
presented in Table  7. The outcomes show that the DSP slices are the sole component 
reaching 75% utilization of the available resources. Additionally, the architecture effi-
ciently uses other FPGA resources, with 49% of the LUT resources, 62% of the BRAM 
blocks, 37% of the FF blocks, 3% of BUFG blocks, and 31% of LUTRAM blocks being 
utilized. These utilization percentages demonstrate that the design is well-balanced in 
terms of logic, memory, and clock distribution resources.

Fig. 15 System generator implementation of ITEO method
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Conclusions
This study presented a new approach for envelope detection in bearing vibration signals 
using the Teager energy operator. The proposed approach was compared to the tradi-
tional Hilbert method to evaluate its effectiveness. The results demonstrated that the 
Teager energy operator-based approach outperformed the Hilbert method in terms of 
early and reliable bearing fault detection. Furthermore, the implementation of this new 
approach on an FPGA platform highlighted its practicality and efficiency in real-time 
applications. The FPGA implementation provided faster processing times and lower 
power consumption compared to other platforms.

We acknowledge that this study, like any research, has certain limitations. One such 
limitation pertains to the necessity for prior knowledge of characteristic defect frequen-
cies. This constraint may offer opportunities for resolution in future investigations. Nev-
ertheless, our research significantly contributes to the improvement of machinery health 
monitoring and the enhancement of predictive maintenance practices.

Fig. 17 Envelope spectrum of S1IR obtained using a the ITEO method under Matlab and b FPGA 
implementation of the ITEO method

Table 7 Implementation results of the ITEO method

Resource Function Used Available Percentage [%]

LUT (lookup table) Allows the implementation of 
complex logic functions

8675 17,600 49.29

DSP slices (digital signal processing) Efficiently perform mathematical 
operations usually used in signal 
processing

60 80 75

BRAM (block RAM) Provide a fast and efficient way to 
store data during FPGA operations

37 60 61.67

LUTRAM blocks (lookup table RAM) Provides faster access but is limited 
in size and suitable for smaller 
tables

1862 6000 31.03

BUFG (buffered universal global 
clock buffer)

Used to distribute clock signals 
across different parts of the FPGA 
design

1 32 3.13

FF blocks (flip-flop blocks) Creating memory elements and 
storing states in an FPGA design

13,133 35,200 37.31
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