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Abstract 

In ophthalmology, early fundus screening is an economical and effective way to pre-
vent blindness from eye diseases. Because clinical evidence does not exist, manual 
detection is time-consuming and may cause the situation to be delayed clinically. With 
the development of deep learning, a wide variety of eye diseases have shown promis-
ing results; however, most of these studies focus on only one disease. Therefore, focus-
ing on multi-disease classification based on fundus images is an effective approach. 
Consequently, this paper presents a method based on the multilevel glowworm swarm 
optimization convolutional neural network (MGSCNN) for the classification of multiple 
diseases. It is proposed that the proposed system has two stages, namely preproc-
essing and classification. In the beginning, the images are normalized, smoothed, 
and resized to prepare them for preprocessing. After pre-processing, the images are 
fed to the MGSCNN classifier to classify an image as normal or abnormal (covering 39 
different types of diseases). In the CNN classifier, with the help of Glowworm Swarm 
Optimizer (GSO), we optimally detect the structure and hyperparameters of CNN simul-
taneously. This approach achieves an excellent accuracy of 95.09% based on various 
metrics.

Keywords: Fundus screening, Deep learning, Multi-disease, Classification, MGSCNN, 
Glowworm Swarm Optimizer

Introduction
Globally, fundus diseases account for the majority of blindness [1]. In addition to glaucoma, 
diabetic retinopathy (DR), age-related macular degeneration (AMD), and cataract, there 
are several other types of ophthalmic diseases [2]. Furthermore, chronic diseases such as 
diabetes can also lead to ocular damage, infectious diseases of the eye, and diabetic retin-
opathy [3]. Although this is the case, it is important to remember that people of all ages 
may suffer from vision loss. The risk of becoming blind or suffering from vision impairment 
increases with age. An image of the retinal fundus can reveal lesions or other abnormalities 
that may indicate a disease [4]. However, early detection of a disease can save a person’s 
sight. The recommendation is therefore to conduct a comprehensive pathological examina-
tion on an annual basis. The retinal fundus image typically shows the retinal background, 
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blood vessels, macula, and fovea [5]. A fundus image can be used to identify specific dis-
eases within the retina. In addition to diabetes mellitus, systemic hypertension, leukemia, 
AIDS, and many others, cottonwool spots can result from a variety of medical conditions 
[6]. In the standard structure, the optic disc and cup may be affected by certain diseases.

The number of people with DR is expected to increase by more than 400 million by 2030, 
and the number of people with glaucoma will increase by 80 million by 2020 [7]. According 
to the World Health Organization, China has one of the highest rates of visual impairment 
in the world [8]. There is less than 10% screening for diabetic retinopathy in Chinese peo-
ple between the ages of 20 and 65, which is the leading cause of blindness among people 
between the ages of 20 and 65. It is estimated that by 2050, 50% of the global population 
will be affected by myopia, which is higher than the global average. Retinal tears and retinal 
detachments are the most common causes of blindness worldwide.

Eye diseases can cause irreversible blindness due to their irreversible nature. By early 
detection of vision disorders, about 80% of vision disorders can be prevented [9]. But the 
number of ophthalmologists is not balanced with the number of patients. Additionally, fun-
dus screening is a manual procedure that requires a lot of experience on the part of the 
ophthalmologist [10]. As a result of these factors, conducting large-scale fundus screening 
is difficult. It has already been demonstrated that some deep learning models are capable of 
achieving significant performance in the diagnosis of eye diseases [11]. However, most iden-
tification models focus on only one eye disease. To overcome the limitations listed above, 
this paper proposes a multi-disease classification method based on a multilevel glowworm 
swarm-optimized convolutional neural network (MGSCNN).

The following contributions are made to this work.

➢ Initially, images are collected from the RFMiD dataset and then the images are pre-
processed using the following stages, normalization, smoothing, and resizing.

➢ After pre-processing, images are fed to the MGSCNN classifier to classify the image 
as normal or abnormal (covering 39 types of diseases/pathologies).

➢ In the classification phase, the Glowworm Swarm Optimizer simultaneously finds 
the optimal structure and high parameter of the CNN.

➢ For experimental analysis, the Retinal Fundus Multi-Disease Image Dataset (RFMiD) 
is used and performance is analyzed with different metrics.

This article is organized as follows: The “Literature survey” section reviews some multi-
disease classification models. CNN is used to automatically classify retinal images for multi-
ple diseases as outlined in the “Proposed MGSCNN-based multi-disease detection model” 
section. The “Results and discussion” section discusses the effectiveness of MGSCNN. The 
results of the experiment are presented in the “Conclusions” section of the paper.

Literature survey
For this work, we reviewed several existing works. Some of them are given below; 
Smitha and Jidesh [12] have developed an end-to-end fundus image analysis system. 
To classify retinal fundus images into multiple categories, a semi-supervised genera-
tive adversarial network (GAN) was employed. In addition, non-spatial Retinex archi-
tecture was utilized to improve the fundus images without over-smoothing. The study 
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utilized a huge collection of raw funding data from several eye hospitals. The average 
accuracy of this method was 87% in comparison with the transfer learning method.

Bhati et  al. [13] proposed a discriminative kernel convolution network (DKCNet) 
that analyzes discriminating features in regions without incurring additional comput-
ing costs. Two modules comprise DKCNet: a module for attention and a module for 
pressing and stimulating (SE). As a result of the attention block, discriminative feature 
attention maps were generated from the backbone network. Through the SE module, 
channel interdependence is improved by taking discriminative feature maps. Based 
on the study of ODIR-5K fundus images, DKCNet showed the best performance with 
an Inception-Resnet backbone network, achieving an AUC of 96.08, an F1-score of 
94.28, and a Kappa score of 0.81.

Chen et al. [14] proposed a network consisting of several branches that are based 
on attention to classify diseases across four different subject groups. An integrated 
module for multi-scale feature fusion as well as an integrated module for dual focus is 
used in this method. A multiscale feature fusion module was used to identify small-
scale lesions. Combining the dual attention module and the global attention map 
allowed for a deeper exploration of the acquired features. To validate the performance 
of this model, extensive validations were conducted on private and public datasets. 
The method was found to be accurate.

Casado-García et al. [15] proposed analyzing retinal fundus images for the diagno-
sis of diabetic retinopathy and glaucoma. A model for detecting ERM automatically 
was developed by investigating several deep learning frameworks and various training 
methods. Thus, 86.82% F1 was obtained as a result of developing appropriate models.

Li et al. [16] developed a dataset of fundus image annotations that included multi-
ple diseases to reduce the lack of benchmark datasets preventing the automated clas-
sification of clinical fundus images. The dataset consists of 10,000 images that were 
collected from the left and right eyes of patients in 5000 clinical trials. The dataset 
was also used to evaluate some existing deep learning models, which may prove use-
ful for future research in this field. Multiple deep networks were combined in the 
experiments to enhance classification performance more than increasing the depth of 
a neural network alone.

Zhang et al. [17] proposed DeepUWF-Plus as a set of supplementary screening meth-
ods combining deep learning and UWF imaging technology. A fundus screening sub-
system, a fundus abnormality detection subsystem in four key fundus locations, and a 
fundus disease detection subsystem are included in the service. Experimentally, two-
level and one-level classification strategies were examined to overcome severe class 
disparities and homogeneity between classes. The results of DeepUWF-Plus tests dem-
onstrate that it is effective at detecting minor diseases, especially when used in a two-
stage approach.

Rodriguez et  al. [18] described the use of fundus images from different sources to 
diagnose multiple retinal diseases using a multi-label classification method. MuReD was 
constructed by combining several publicly available datasets for fundus disease classifi-
cation. Following the acquisition of the image data, several post-processing procedures 
were implemented to ensure the quality of the data as well as the range of diseases pre-
sent. The architecture of the system has been improved through several experiments. 
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Based on AUC scores, it outperformed the state-of-the-art by 7.9% and 8.1%, respec-
tively, in the diagnosis and classification of diseases.

Müller et  al. [19] investigated the performance impact of ensemble learning tech-
niques: augmenting, stacking, and packing. It includes nine deep convolutional neural 
network architectures, as well as sophisticated methods for preprocessing and enhanc-
ing images. The algorithm was applied to four popular medical imaging datasets of dif-
ferent complexity levels. Several different pooling functions were examined, ranging 
from unweighted averaging to support vector machines, which are more complex learn-
ing functions. Stacking improved F1scores by up to 13% according to our results.

He et  al. [20] developed a multidimensional feature extraction module for fundus 
images. Further, the OCT image contains large areas of background that make diagnosis 
impossible. To encode features of the retinal layer, we used a region-guided focus block, 
which ignored the background of the OCT images. To create a multi-model feature, a 
multi-model retinal image classification network is trained based on specific features. 
By combining the advantages of fundus imaging and optical coherence tomography, the 
model was able to provide an accurate diagnosis. A clinically acquired multimodal reti-
nal image dataset (fundus and OCT) was used to demonstrate the effectiveness of this 
MSAN (mode-specific attention network) in comparison to other well-known single-
modal and multi-modal retinal image classification algorithms.

Proposed MGSCNN‑based multi‑disease detection model
This work proposes a multi-disease classification of retinal images based on MGSCNN. 
Figure  1 presents the overall architecture for the proposed MGSCNN-based multi-
disease classification model. Initially, the images are pre-processed using normaliza-
tion, smoothing, and rescaling. Following pre-processing, the images are fed into the 
MGSCNN classifier for classification as normal or abnormal. In this classification model, 
with the help of GSO, MGSCNN can select the classifier structure and hyperparameter.

Preprocessing

Preprocessing is required to prepare image data for model input. In general, all images 
must be presented in equal-sized sequences for convolutional neural networks to fully 
connect. Additionally, model preprocessing can reduce the time required to train a 
model and speed up the rate at which it can be inferred. As a pre-processing step, we use 
techniques like normalization, smoothing, and resizing.

Normalization: During normalization, the range of intensity values of pixels is lin-
early changed.
Smoothing: Smoothing is used to smooth out input images that are noisy and/or bro-
ken. To achieve a smooth shape, some pixels must be added to the image.
Resizing: To determine the effects of different sizes on the recognition process, 
images are rescaled to different sizes. The best image size should be determined by 
carefully exploring the differences between different image sizes. To speed up pro-
cessing time, image resizing reduces the data size of the image. Image sizes vary from 
0.1 to 0.9 depending on the amount of resizing. If a small amount of resizing is per-
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formed on an image, many important features may be lost, particularly if image tex-
ture is used during classification.

MGSCNN

MGSCNN is a combination of CNN and GSO optimization algorithms. Here, the CNN 
acts as a classifier, and the GSO technique is used to improve the accuracy of CNN by 
optimizing the structure and hyperparameter of the CNN.

Glowworm swarm optimization (GSO)

 The GSO is a two-dimensional workspace in which each artificial glow, or agent, is car-
rying a light and has its view, known as the local resolution range. To determine Lucif-
erin’s position, it is necessary to consider its objective value. Agents with higher levels 
of intelligence are more likely to fly to better positions (have a higher objective value). 
A neighbor with luciferin intensity greater than its magnitude within the local deci-
sion range will be fanned toward by the agent when it detects a neighbor with lucif-
erin intensity greater than its magnitude. According to the number of neighbors, there 
is a different local decision limit. There is an increase in threshold when there are fewer 
neighbors, and a decrease in threshold when there are more neighbors. Regardless of 
which neighbor is selected, the agent always changes its direction of movement. As lucif-
erin levels increase, a neighbor becomes more attractive. In addition, most agents are 
located in several locations at the same time. There are three main phases to GSO: the 
luciferin update phase, the motion phase, and the decision threshold phase.

Fig. 1 Architectural diagram of proposed MGSCNN



Page 6 of 18Chavan and Pete  Journal of Engineering and Applied Science           (2024) 71:26 

Luciferin update phase: Luciferin is updated according to the value of the gloss state 
function. All glowworms begin with the same level of luciferin, but luciferin levels 
vary with the level of activity in the glowworm’s current state even though all glow-
worms have the same level of luciferin in the initial iteration. An individual’s per-
ception of the temperature and radiation levels at a particular location determines 
the value of luciferin. Each glowworm increases its level of luciferin in addition to 
its previous level. Luminescence values are subtracted from previous luminescence 
values to simulate decay in the glow. The updated rule of Luciferin value is as follows:

Luciferin level of a glowworm is represented by Lg (d) , in which ρ represents luciferin 
decay constant 0 < ρ < 1 , γ represents luciferin enhancement constant, and  Jg repre-
sents an objective function at the location of agent i at time t.

Movement phase: The movement phase involves each glowworm determining the 
movement of a neighbor with a higher level of luciferin than itself through the use 
of a probabilistic mechanism. To attract glowworms, neighbors who emit a brighter 
glow are attractive. The probability of each glowworm g moving toward a neighbor h 
can be calculated as follows:

where h ∈ Kg (d), Kg (d) = h;Eg ,h(d) < r
g
E(d); Lg (d) < Lh(d)  is a set of neighborhood 

of glowworm g at time d. Eg ,h(d) denotes the Euclidean distance between glowworms g 
and h at time d, and rgE(d) denotes the variable neighborhood range associated with 
glowworms g at time d. Assume glowworm g selects a glowworm h ∈ Kg (d) with Pgh(d) 
given by (2). Therefore, glowworm movements can be described as follows:

where S represents the step size, and ‖ ‖ represents the Euclidean norm operator.

Decision range update: Every agent is associated with a neighborhood whose radial 
range rge   is dynamic in nature 0 < r

g
e < rS . The luciferin sensor has a radial range 

referred to as rS. It must be justified why there is no fixed neighborhood range. 
When glowworms are reliant only on local information for movement, the number 
of peaks captured will vary according to the range of the radial sensor. Agents whose 
sensors are capable of covering the entire search space will move to the global opti-
mum. There is no consideration of the local optimum in this case. As a result, deter-
mining a neighborhood range that is suitable for different function landscapes can 
be difficult without a priori knowledge of the objective function (e.g., peak number, 

(1)Lg (d + 1) = (1− ρ)Lg (d)+ γ Jg (d + 1)

(2)Pgh =
Lh(d)− Lg (d)

∑

n∈Kg (d)

Ln(d)− Lg (d)

(3)yg (d + 1) = yg (d)+ S(yh(
yh(d)− yg (d)

∥

∥yh(d)− yg (d)
∥

∥

)
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inter-peak distance, etc.). As a general rule, objective functions with minimum inter-
peak distances greater than re are preferred over those with minimum interpeak dis-
tances lower than re. Therefore, GSO detects multiple peaks by utilizing an adaptive 
neighborhood range in a multimodal function landscape. When the following rule is 
applied, performance appears to be significantly reduced:

This equation is expressed as a function of the constant parameter β and the number 
of neighbors parameter kd.

Convolution neural network (CNN)

There are several types of artificial neural networks (ANNs), including convolutional 
neural networks (CNNs). CNNs are capable of automatically learning hierarchies of fea-
tures from input image matrices as opposed to handcrafted features extracted by elabo-
rate algorithms. CNN models have achieved several revolutionary advances in computer 
vision in recent years, including classification, segmentation, and object tracking. As a 
result of fewer connections and fewer parameters, CNN architecture is capable of shar-
ing and pooling weight parameters.

Figure 2 illustrates the architecture of CNN. A typical CNN architecture consists of 
several convolution layers nested within one another, followed by a fully connected layer. 
This type of network can be presented as follows in a simplified manner:

Input: The input of a CNN typically consists of matrices of 3-channel color or 
1-channel gray images containing intensity values at each position.
Conv (convolution layer): The output of the last layer is filtered in a small region by 
each of the convolution layers. Moreover, the filters are usually small learnable matri-
ces of 3 × 3 or 5 × 5 dimensions. Using parameter sharing, one filter is convolved 
across all spatial dimensions to extract one feature from an image.

(4)r
g
e (d + 1) = min

{

rS, max
{

0, r
g
e (d)+ β(kd − |Kg(d)|)

}}

Fig. 2 Architecture of CNN
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ReLU (Rectified Linear Units): In convolutional and fully connected layers, ReLUs are 
commonly used as activation functions for introducing non-linear transformations. 
The formula for this function is f (x) = max (0, x). It has been demonstrated experi-
mentally that ReLU is superior to conventional sigmoid-like activation functions in 
the development of deep networks in recent years as it prevents training convergence 
and gradient saturation while maintaining as much original value as possible.
Pool: It is possible to reduce the spatial size of the output by downsampling both spa-
tial dimensions in a nonlinear manner by using the pooling layer. To reduce the com-
putation costs and parameters of the network, it is necessary to reduce its param-
eters. When the input feature map is placed between two successive convolution 
layers, max pooling can produce the maximum value.
FCL (fully connected layer): The FCLs are the endpoints of an artificial neural net-
work. There is an interconnection between each neuron in the FCL at the last layer. 
There are N neurons in the last FCL of this network that generate the output from 
all the input labels. The probability of appearing for each label in the N-dimensional 
output is calculated using the softmax function.

In the second last layer, P(zi) denotes the probability of predicting the ith value. To 
make decisions, all layers must be stacked together to form a CNN.

The proposed MGSCNN

This section provides an overview of the proposed MGSCNN, along with flow dia-
grams, algorithms, and architecture. Using multiple swarms, MGS constructs the CNN 
structure and its higher parameters. Glowworms represent possible configurations of 
the CNN. To determine the probability that samples from each class will appear in a 
CNN, a softmax classification layer is applied as the final layer. The merit value of each 
glowworm is determined by the accuracy of the results obtained. To determine the best 
configuration for a CNN, GSO optimizes the hyperparameters. An optimal set of high 
criteria can be used in the design of the CNN framework to allow it to be trained in one 
step using a large number of training samples. To classify unknown samples, an opti-
mized CNN based on trained parameter values is used. The MGSCNN basic architec-
ture is given in Fig. 3.

Figure  4 illustrates the workflow diagram of MGSCNN. Stage 1 initial-
izes a set of layers [G1,G2, · · · , Gi] with random values for pooling, con-
volution, and fully connected layers. At swarm level 2, multiple swarms 
([

G11,G12, · · · , G1j

]

,
[

G21,G22, · · · , G2j

]

, · · · ,
[

Gi1,Gi2, · · · , Gij

])

 consisting of j glow-
worms each are set up. In swarm level 2, glowworms are randomly initialized by the 
number of filters, stride size, filter size, padding for the convolution layer requirements 
for the pooling layer, and the number of output neurons for the fully connected layers. 

(5)P(zi) =
exp(zi)

∑N
i=1 exp(zi)
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Using CNN, features are extracted from each glowworm of level 2, and the softmax layer 
calculates the accuracy of each glowworm (fitness value).

It is necessary to repeat this procedure for the first level of swarming and then for 
the second level of swarming to achieve maximum accuracy for the CNN based on the 
given search space. It is represented by [Gm,Gmk ] that the glowworms traversed so far 
have been traversed with the lowest error value, where Gm is the number of layers of the 
swarm level-1 glowworm and Gmk represents the amount of layers of every type in an 
evolved CNN, and Gmk provides all hyperparameters required at each layer. The work-
flow diagram of MGSCNN is presented in Fig. 4 and step-by-step process is explained 
below section.

Step 1: Swarms initialization in hyperparameter search space A convolutional neural 
network (CNN) is optimized by a method known as GSO, which optimizes 11 hyper-
parameters. In a glowworm, the first level consists of three hyperparameters: number 
of convolution layers (Cn), number of fully connected layers (Fn), number of pooling 
layers (Pn), and the second level of a swarm contains eight hyperparameters: size of fil-
ter/kernel in the convolutional layer (s_fc), number of filters in the convolutional layer 
(n_fc), size of stride in the convolutional layer (s_sc), padding (valid or same) require-
ment in the convolutional layer (p_pc), size of stride in the max-pooling layer (s_sp), 
size of a filter in the max-pooling layer (s_fp), padding pixels in pooling layer (p_pp), 
and the number of output neurons in the fully connected layer ( n_of ). An optimal CNN 

Fig. 3 MGSCNN basic architectural diagram
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hyperparameter set is determined by randomly initializing glowworms within the speci-
fied range. According to Table  1, the dimensions of the glowworms are controlled by 
hyperparameters whose minimum and maximum values are described.

Step 2: Structure of swarm Figures 5 and 6 illustrate the architecture of multilevel, mul-
tidimensional swarms at swarm levels 1 and 2 to provide a deeper understanding of their 
behavior. At level 1, each type of layer is represented by a swarm with five glowworms. 
A CNN can reach a level-2 extension of hyperparameters at the end of its evolution. 
A glowworm is represented in stage 1 by a swarm of layers. In stage 2, we explore five 
swarms based on the number of layers within each swarm. Stage 2 will result in the crea-
tion of five swarms. There are five glowworms in each swarm of level 2, and each glow-
worm has a dimension of Cn × 8. As a result, the swarm at stage 2 has a dimension of 
5 × Cn × 8. There are eight parameters to optimize in a convolutional layer and fully con-
nected layer: filters, padding bits, strides, padding bits, and output neurons.

Fig. 4 Workflow diagram for MGSCNN
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Step 3: Fitness evaluation Glowworm fitness is evaluated using a CNN followed by a 
softmax layer in MGSO. Comparing CNN hyperparameters with those from another 
glowworm that provides a lower level of accuracy, the CNN configuration that provides 
the best accuracy is the most optimal. It can be defined using Eq. (7)

Table 1  Range of hyperparameters

Fig. 5 Structure of glowworm at level 1
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Step 4: Update the solution After fitness calculation, the solutions are updated using 
the GSO algorithm. In this stage, luciferin range, movement phase, and the decision 
range are updated using Eqs. (1), (3), and (4).

Step 5: Termination To terminate the GSO, the best luciferin range, moment, and deci-
sion must be obtained to fulfill the termination criteria. The algorithm will be termi-
nated once the solution has been obtained.

Results and discussion
This work proposes MGSCNN-based multilevel classification using fundus images. The 
evaluation parameters for the proposed work are shown in Table 2. An Intel Core i7 pro-
cessor with 8  GB of memory was used with Windows 10 as the operating system for 
simulating the proposed multi-stage disease.

Dataset description

It contains approximately 3200 retinal fundus images interpreting 46 conditions. The 
data is included in the Retinal Fundus Multi-Disease Image Dataset (RFMiD). In our 
proposed work, 39 conditions are detected from these 46 conditions. There are a vari-
ety of diseases that can be found in routine clinical settings in RFMiD, which is a pub-
licly available dataset. Due to this challenge, general models for retinal screening are 
being developed, in contrast to previous efforts focused on detecting specific diseases. 
Experimental used sample images are listed in Fig. 7. There are five classes of diseases 
represented by Fig.  7: age-related macular degeneration (ARMD), central retinal vein 
occlusion (CRVO), optic disc center (ODC), diabetic retinopathy (DR), and branch reti-
nal vein occlusion (BRVO).

(7)Fitness = max[accuray]

Fig. 6 Level 1 and level 2 architectures of swarms
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Experimental results

The results obtained from the proposed model are presented in this section. Table 3 
shows the model comparison metrics evaluation for DR with existing techniques. Our 
proposed work achieved an accuracy of 94.02%. Our proposed task is improved by 
3.67% from CNN, 4.6% from SVM, and 24.4% from LSTM. The sensitivity of our pro-
posed method is 95.18%, which is improved by 3.46% from CNN, 4.55% from SVM, 
and 30.28% from LSTM. The specificity of the proposed MGSCNN is 92.98%, which 
is improved by 3.99%, 4.83%, and 17.45% from the existing CNN, SVM, and LSTM. 
The accuracy of our proposed method is 92.5%, which is improved by 3.24% from 
CNN, 4.35% from SVM, and 15.67% from LSTM. The recall rate of our proposed task 
is 95.16%, and our proposed task is improved by 3.46%, 4.55%, and 30.28 from the 

Table 2 Parameter values of the proposed model

Parameters Range

Input size 256 × 256 × 3

Output size 5

Epoch 50

Optimizer Adam

Learning rate 0.0010340233 (using 
glowworm swarm optimi-
zation)

Loss function Categorical_Crossentropy

Convolutional kernel size 3

Pooling kernel size 2

Activation function for activation layer “relu”

Batch size 64

Activation function Softmax

Fig. 7 Sample results for the proposed work with five classes: a DR, b ARMD, c ODC, d CRVO, and e BRVO
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existing CNN, SVM, and LSTM techniques. We have an F-score of 93.82%, which is 
an improvement over CNN by 3.35%, an improvement over SVM by 4.45%, and an 
improvement over LSTM by 23.45%. From the results, it is clear that the presented 
model attained better results compared to the existing algorithms.

Figure  8 represents the receiver operating characteristic curves associated with the 
proposed and existing techniques. Figure  9 represents the accuracy, loss, and ROC 
curves associated with the proposed and existing techniques, and the confusion matrix 
is presented in Fig. 10.

Comparative analysis with published research works

The proposed work is compared with existing work to demonstrate its accuracy, sensi-
tivity, specificity, precision, recall, and F1 score values.

An analysis of the proposed results in comparison with those of the present is shown 
in Table 4. A method for analyzing fundus images was developed by Smitha and Jidesh 
[12]. In this study, retinal fundus images were classified into multiple categories using 

Table 3 Comparative result evaluation for DR

Accuracy Sensitivity Specificity Precision Recall F-score

Proposed 94.02 95.18 92.98 92.5 95.18 93.82

CNN 90.35 91.72 88.99 89.26 91.72 90.47

SVM 89.42 90.63 88.26 88.15 90.63 89.37

LSTM 69.62 64.9 75.53 76.83 64.9 70.37

Fig. 8 ROC curve for a proposed MGSCNN, b CNN, c SVM, and d LSTM
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Fig. 9 Experimental results. a Training and validation accuracy. b Training and validation loss for the 
proposed work
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semi-supervised generative adversarial networks (GANs). Based on these results, the 
accuracy rate of this study was 87% and the F1 score was 85%. As a result of the pro-
posed work, the accuracy and F1-score were improved by 8.09% and 10.07%, respec-
tively. According to Chen et  al. [14], a network with multiple branches corresponds 
to the attention given to classifying diseases in four different domains. Our proposed 
work improves precision, accuracy, recall, and F1 scores from this work by 2.79%, 
0.98%, 3.31%, and 2.16%. For the diagnosis of diabetic retinopathy and glaucoma, Cas-
ado-García et  al. [15] proposed analyzing retinal fundus images. Our proposed work 
improved the F1 score by 8.25% from this work. He et al. [20] developed a multidimen-
sional feature extraction module for fundus images. The precision, recall, and F1 scores 
of the proposed work are improved by 16.68%, 25.08%, and 24.65% from this work. From 
the results, it is clear that the presented model attained better results compared to the 
existing algorithms.

Fig. 10 Confusion matrix. a Proposed MGSCNN, b CNN, c SVM, and d LSTM

Table 4 A comparison of the proposed work with existing work is necessary

Ref. No Accuracy Sensitivity Precision Recall Specificity F1-score

[12] 87% - - - - 85%

[14] 92.3% - 92.55% 93.36% - 92.91%

[15] - - - - - 86.82%

[20] - 76.85% 71.59% - 70.42%

Proposed 95.09% 96.59% 93.53% 96.67% 93.59% 95.07%
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Conclusions
The purpose of this work was to demonstrate how MGSCNN can be used to classify 
multi-diseases based on retinal images. Initially, the images were pre-processed using 
normalization, smoothing, and resizing. A preprocessed image is fed into the MGSCNN 
classifier to determine whether it is normal or abnormal. By tuning the parameters of 
the CNN, the GSO algorithm optimizes its structure and hyperparameters. To imple-
ment this work, Python is used. A performance evaluation of the proposed solution is 
based on RFMiD data. Our proposed work achieved overall performance in terms of 
95.09% accuracy, 96.59% sensitivity, 93.59% specificity, 93.53% precision, 96.67% recall, 
and 95.07% F measure.

Abbreviations
DR  Diabetic retinopathy
GSO  Glowworm Swarm Optimizer
AMD  Age-related macular degeneration
GAN  Generative Adversarial Network
ACO  Approach to continuous optimization
FCL  Fully connected layer
CNN  Convolution neural network
SE  Stimulating
RFMiD  Retinal Fundus Multi-Disease Image Dataset
CRVO  Central retinal vein occlusion
ODC  Optic disc center
BRVO  Branch retinal vein occlusion
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