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Abstract 

High-performance concrete (HPC) is commonly utilized in the construction industry 
because of its strength and durability. The mechanical properties of HPC, specifi-
cally its compressive and tensile strength, are crucial indicators. Accurate prediction 
of concrete strength is crucial for optimizing the design as well as the performance 
of concrete structures. In this investigation, a novel approach for strength prediction 
of HPC is proposed, employing the Support Vector Regression (SVR) algorithm in con-
junction with three optimizers: the Slime Mold Algorithm (SMA), Adaptive Opposition 
Slime Mold Algorithm (AOSM), and Equilibrium Slime Mold Algorithm (ESMA). The SVR 
algorithm is a robust machine-learning technique that has displayed promising results 
in various prediction tasks. The utilization of SVR allows for the effective modeling 
and prediction of the complex relationship between the strength properties of HPC 
and the influencing factors. To achieve this, a dataset comprising 344 samples of high-
performance concrete was collected and utilized to train and assess the SVR algorithm. 
However, the choice of suitable optimization algorithms becomes crucial to enhance 
prediction accuracy and convergence speed. Through extensive experimentation 
and comparative analysis, the proposed framework’s performance is evaluated using 
real-world HPC strength data. The results demonstrate that combining SVR with AOSM, 
ESMA, and SMA outperforms traditional prediction accuracy and convergence speed 
optimization methods. The suggested framework provides an effective and reliable 
solution for accurately predicting the compressive strength (CS) of HPC, enabling 
engineers and researchers to optimize the design and construction processes of HPC 
structures.

Keywords: High-performance concrete, Support vector regression, Slime mold 
algorithm, Adaptive opposition slime mold algorithm, Equilibrium slime mold 
algorithm

Introduction
Modern engineering structures predominantly utilize concrete as the most preva-
lent construction material [1]. In complex environments, the construction of con-
crete structures necessitates the use of HPC [2], which must meet elevated standards 
for workability, strength, and durability [3]. Possessing excellent durability, workability, 
and properties of strength, high-performance concrete (HPC) is a homogeneous com-
position of high-quality cement, water, aggregates, and active fine admixtures [4, 5]. 
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Reducing the size and weight of concrete structures, minimizing material requirements, 
enhancing durability, and extending the service life of structures are among the advan-
tages gained through the utilization of high-performance concrete (HPC) in various 
projects, such as bridge components and dams. The preparation of HPC involves the 
addition of mineral admixtures, chemical admixtures, and fibrous materials to the con-
crete mixture [6–8].

HPC has gained significant attention in the construction industry because of its excep-
tional strength, durability, and enhanced properties compared to conventional concrete. 
The strength of accurate prediction of HPC is of paramount importance for optimiz-
ing the design, construction, and maintenance of concrete structures [9–11]. Traditional 
empirical methods often fail to capture the complex relationships among the factors 
influencing concrete strength. Therefore, integrating advanced prediction models and 
optimization algorithms becomes crucial to achieve more accurate and reliable results 
[12–14].

The utilization of machine learning (ML) as well as artificial intelligence (AI) tech-
niques has been extensively explored in the area of experimental mechanics, encom-
passing the study of structures and materials for a wide range of purposes [15–18]. 
Researchers have explored integrating ML algorithms to predict and generate antici-
pated results based on experimental data [9]. ML encompasses various learning 
methods, including unsupervised, supervised, semi-supervised, and reinforcement 
learning. In the case of HPC, ML techniques have been employed to address real-
world HPC challenges effectively. Notable methods consist of support vector machine 
(SVM), artificial neural network (ANN), gene expression programming (GEP), mul-
tilayer perceptron neural network (MLP), and the multigroup approach for data 
management to predict the desired output data. ML has indicated great potential in 
predicting concrete strength in recent years [19–21]. Among these techniques, Sup-
port Vector Regression (SVR) [22] has emerged as a robust and efficient approach for 
modeling and forecasting complex nonlinear relationships. SVR has been successfully 
used in various fields because of its ability to handle high-dimensional data, handle 
nonlinearity, and mitigate the risk of overfitting [23]. While SVR has demonstrated 
promising results, optimizing its parameters is critical to further enhancing its predic-
tive performance [24].

To this end, researchers have explored the integration of various optimization algo-
rithms to enhance the accuracy as well as convergence speed of the SVR model. In this 
context, the Adaptive Opposition Slime Mold Algorithm (AOSMA), Equilibrium Slime 
Mold Algorithm (ESMA), and Slime Mold Algorithm (SMA) have emerged as effective 
optimizers in different domains. For appraising the performance of the suggested frame-
work, a dataset containing 344 samples of high-performance concrete was collected. 
This dataset was used to train and evaluate the SVR algorithm integrated with the men-
tioned optimizers. Comparative analyses assessed the proposed approach’s predictive 
accuracy and convergence speed against traditional optimization methods [25].

By utilizing statistical metrics like Root Mean Square Error (RMSE), Mean Absolute 
Error (MAE), Mean Relative Absolute Error (MRAE), Coefficient Correlation (R2), and 
weight absolute percentage error (WAPE), the significance of optimization algorithms in 
enhancing the accuracy of the SVR prediction model is underscored. The SVR model’s 
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performance is evaluated both with and without these algorithms, and the outcomes 
demonstrate that the inclusion of optimization algorithms leads to superior perfor-
mance compared to the model without them. Overall, this study aims to contribute to 
the advancement of accurate strength prediction models for high-performance concrete. 
Accurate strength prediction models for HPC are of immense importance in the field of 
civil engineering, as they allow for the optimization of various parameters, consisting 
of the selection of concrete mix ingredients and proportions, to achieve desired perfor-
mance outcomes. By accurately predicting the strength properties of HPC, engineers can 
make informed decisions regarding structural design, material selection, and construc-
tion techniques, resulting in improved total performance, sustainability, and durability 
of concrete structures. Through advancing these prediction models, this study intends 
to empower engineers and researchers with robust tools that enable them to optimize 
the use of HPC, leading to structures that exhibit enhanced strength, resilience, and lon-
gevity. By optimizing the design and construction processes of concrete structures, the 
study ultimately contributes to improving the built environment, fostering sustainability, 
and positively impacting the infrastructure sector.

Methods
Data gathering

The data-gathering process for this study involved collecting information on vari-
ous input variables that influence the strength properties of HPC. These parameters 
include Natural Coarse Aggregate (NCA), Water (W), Cement (C), Recycled Coarse 
Aggregate (RCA), Self-Compacting Recycled Aggregate (SRCA), Fine Aggregate (FA), 
Superplasticizer (SP), Chemical Admixtures (CS), Waste Recycled Concrete Aggregate 
(WRCA), and Dense Recycled Concrete Aggregate (DRCA) [26]. To establish a com-
prehensive dataset, a meticulous approach was employed to procure data from diverse 
sources. Extensive scrutiny of pertinent literature, research articles, industry standards, 
and concrete mix design databases was conducted to acquire information regarding the 
input parameters. In addition, collaboration with experts and practitioners in the field 
of concrete technology provided valuable insights and data sources. The collected data 
included various samples representing different HPC mix designs, geographical loca-
tions, and experimental conditions. Care was taken to include laboratory-tested and field 
data from real-world construction projects. The dataset encompassed sufficient samples 
to ensure statistical significance and cover a diverse range of HPC compositions. The 
compiled dataset is a valuable resource for training and evaluating HPC strength predic-
tion models using the SVR and optimization algorithms. Table  1 shows the statistical 
properties of the dataset.

Support vector regression (SVR)

In the beginning, Vapnik VN developed the support vector machine (SVM) to address 
classification problems [22]. However, it was later improved to handle regression 
problems as well. Compared to the conventional Empirical Risk Minimization (ERM) 
principle, the structural risk minimization (SRM) principle is considerably more sophis-
ticated and is followed by SVM regression [27]. Utilizing the SRM principle in statisti-
cal learning is crucial as it strives to minimize the upper bound generalization error, a 
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pivotal aspect of the learning process. SVR, an extension of SVM, is applied to address 
regression issues [28]. Although SVR and SVM employ comparable algorithms, they 
are tailored to estimate different parameters. The primary discrepancy between the two 
methods is in implementing slack variables [29].

Linear support vector regression

Given a training dataset of {yi, xi, i = 1, 2, 3 … n}, where yi represents the output vector, xi 
represents the input vector, also n represents the dataset size, the local linear regression 
form of SVR can be represented as:

The Eq. above represents the dot product as (x, k) , where k shows the vector of weight, 
x represents the normalized test pattern, and b shows the bias. To implement the SRM 
theory, the empirical risk Remp (k, b) is minimized, which can be expressed by an equa-
tion. Equation (3) shows that the empirical risk is computed using an ε-insensitive loss 
function denoted by Lε(yi, f (xi, k)).

During the optimization process, the ε-insensitive loss function, denoted as 
Lε yi, f (xi, k) , measures the tolerance error between the target output yi and the esti-
mated output values f (xi, k) . The training pattern, xi , is also defined in this context. In 
linear regression problems using the ε-insensitive loss function, minimizing the squared 
norm of the weight vector, ‖k‖2 , can simplify the complexity of the SVR model. Addi-
tionally, a non-negative slack variable 

(

ϕ∗
i ϕi

)

 can be utilized to estimate the divergence of 
the training data outside the ε-insensitive zone, represented by ϕi.

To solve the previously mentioned problem, locating the Lagrange function saddle 
point is necessary.

The Lagrange function can be minimized through the application of the KKT condi-
tions, which involves performing partial differentiation of Eq.  (5) concerning k, b, ϕ∗

i , 
and ϕi.

(1)f (x, k) = k × x + b

(2)Remp(k , b) =
1

n

n
∑

i=1

Lε(yi, f (xi, k))

(3)Lε
(

yi, f (xi, k)
)

=

{

ε, if
∣

∣yi − f (xi, k)
∣

∣ ≤ ε
∣

∣yi − f (xi, k)
∣

∣− ε, otherwise

(4)
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Here, k is linked to the parameter k in Eq. (1). Substituting Eq. (6) into the Lagrange 
function (5) yields the dual optimization function, presented in:

The Lagrange multiplier α∗
i  and αi are used to define the optimization problem [30]. 

Once Eq. (10) is solved under the constraints in Eq. (11), the ultimate linear regression 
function can be stated as:

Nonlinear support vector regression

Linear SVR may not be suitable for complicated real-world problems. To address this, 
nonlinear SVR can be implemented by mapping the input data into a feature space with 
a high dimensional data, where linear regression can be utilized. To transform the input 
training algorithm, xi , into the feature space, τ (xi) , the function of nonlinearity is uti-
lized. The algorithm is then utilized in a similar way to linear SVR. As a result, the for-
mulation of nonlinear SVR is represented as shown below:

The parameter vector is denoted by k and b, while the mapping function τ(x) is 
employed to convert input features into a feature space with higher dimensionality.

The diagram in Fig. 1 depicts the nonlinear SVR with an ε-insensitive loss function. 
The bold points represent the support vectors, which have the maximum distance from 
the decision boundary.

(6)
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The ε-insensitive loss function, which is depicted on the right side of Fig. 1, includes an 
error tolerance ε and upper and lower bounds computed using the slack variable ( ϕ∗

i ,ϕi ). 
In summary, nonlinear SVR may be represented in the following manner:

Due to the complexity of the inner product τ(xi).τ
(

xj
)

, it is possible to substitute it 
with the kernel function τ(xi).τ

(

xj
)

= H
(

xi.xj
)

.

Slime Mold Algorithm (SMA)

This optimizer focuses on Physarum polycephalum, a type of slime mold. The mold’s 
main nutrition phase is the Plasmodium stage, representing the dynamic and active 
stage. The slime mold’s organic material aggressively searches for food during this 
stage [31], envelops it, and then secretes several enzymes to aid in its breakdown 
and digestion. Because of their inherent characteristics and unique patterns, these 
organisms can construct a venous network connecting multiple food sources simul-
taneously. By utilizing both negative and positive feedback mechanisms, the slime 
organism can efficiently determine the best possible route for connecting to food [32]. 
As a result, in the study of graph theory and path networks, the use of mathematical 
modeling and slime mold’s practical implementation has been examined. This section 
will provide a detailed description of the proposed mathematical model and method 
[33].
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Fig. 1 The insensitive loss function of nonlinear SVR
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To mimic the contraction mode of slime mold’s approach behavior, the following for-
mulas are proposed, as it can locate food according to the odor in the air:

The parameter X denotes the position of the slime mold, 
−→
Xb denotes the location of the 

individual with the highest odor concentration currently detected ,
−→
vb has a range of − a 

to a, and −→vc decreases linearly from one to zero. Here, t denotes the present iteration, 
−→
U  

represents the weight of the slime mold, while the variables 
−→
XC and 

−→
XD denote two ran-

domly chosen individuals from the slime mold. The formula for p is given below:

The DF illustrates the best fitness gained across all iterations, and variables 
i ∈ 1, 2, . . . , n while (i) illustrate the fitness of X. The formula for 

−→
vb is given below:

The formula for 
−→
U   is presented below:

−→
U  is defined by the following formula: a random value in the range of 0 to 1 is denoted 

by r, bF denotes the optimum fitness achieved in the present iteration, wF illustrates the 
worst fitness value acquired in the current iterative procedure, and SmellIndex is the fit-
ness values pattern arranged in ascending order for minimizing the value. Additionally, 
condition denotes that (i) ranks in the first half of the population.

Equation (21) is a mathematical model that simulates how the venous tissue anatomy 
of slime mold contracts during its search for food. The model is based on the inter-
play between vein width and food concentration, where a thicker vein corresponds to 
a stronger wave initiated by the faster cytoplasm and flow bio-oscillator. Equation (19) 
introduces the variable r to account for the venous contraction mode uncertainty. The 
use of the component log serves to stabilize the numerical values of the contraction fre-
quency. The variable condition models the slime mold’s ability to adapt its search pattern 
based on the food’s quality. Specifically, when the food concentration is high, the weight 
of the nearby region increases; when it is low, the region’s weight decreases, prompting 
the exploration of alternative areas.

Drawing upon the aforementioned principle, updating the location of slime mold, a 
mathematical formula can be expressed as follows:

(15)
−−−−−→
X(t + 1) =

{−−−→
Xb(t)+

−→
vb .

(

−→
U .

−−−→
XC(t)−

−−−→
XD(t)

)

, r < p

−→
vc .

−−→
X(t), r ≥ p

(16)p = tanh|S(i)− DF |

(17)−→
vb = [−a, a]

(18)a = arctanh(−(
t

max_t
)+ 1)

(19)
−−−−−−−−−−−−→
U(SmellIndex(i)) =







1+ r.log
�

bF−S(i)
bF−wF

+ 1
�

, condition

1− r.log
�

bF−S(i)
bF−wF

+ 1
�

, other

(20)SmellIndex = sort(S)
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The lower and upper boundaries of the search range are represented by LB and UB, 
respectively. rand and r denote random values within the interval of [0,1]. Algorithm 1 
displays the pseudo-code for the SMA.

Algorithm 1. SMA Algorithms pseudo-code

Equilibrium Slime Mold Algorithm (ESMA)

The foraging behavior of slime mold presents a promising origin of innovation for devel-
oping effective and efficient optimization methods [34]. The starting position vector of 
each slime mold is randomly generated through a randomization process.

(21)
−→
X∗ =











rand.(UB− LB)+ LB, rand < z
−−−→
Xb(t)+

−→
vb .

�

U .
−−−→
XC(t)−

−−−→
XD(t)

�

, r < p

−→
vc .

−−→
X(t), r ≥ p

(22)−→
X i(t = 1) = r1.(UB− LB)+ LB, i = 1, 2, . . . ,N .
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The positioning model for the ith slime mold is represented as Xi ( j = 1, 2, ...,N  ), in 
the next iteration (t + 1), is established utilizing SMA as follows:

The 
−→
X Gbest denotes the value of the global best fitness achieved across iterations one 

to t. Additionally, the variables r1 and r2 correspond to random values within the range 
of [0, 1].

To eradicate and disseminate the slime mold, a probability denoted by z is utilized. 
Within the context of this study, z is a constant value of 0.03 [35]. Equation (24) is uti-
lized to sort the fitness values in ascending order.

Equation (25) is employed to calculate 
−→
U .

within the range of [0,1], a random number,r3 , uniformly distributed, is utilized. The 
local worst and best fitness values acquired during the present iteration are denoted by 
fLworst and fLbest , respectively. Equations (26–27) are employed to calculate these fitness 
values.

and

Below is the formula that defines the variable Pi , which represents the probability of 
choosing the ith slime mold’s trajectory:

For eachi = 1, 2, ...,N  , the fitness value of the i-th slime mold in Xi is determined by 
f (Xi). The first iteration’s global best fitness value up to the present iteration is repre-
sented by fGbest . The magnitude of the step size is indicated by −→stepa and is determined by 
a uniform distribution ranging from − a to a. Similarly, the size of the step, represented 
by−→stepb , is determined by a uniform distribution ranging from − b to b. The values of a 
and b are determined by Eq. (30), which is a function of the current iteration t as well as 
the maximum iteration T:

(23)
−→
X i(t = 1) =











r1.(UB− LB)+ LB, r1 < z
−→
X Gbest +

−→
stepa.

�

−→
U .

−→
X C −

−→
X D

�

, r2 < Pi(t)andr1 ≥ z
−→
stepb.

−→
X i(t), r2 ≥ Pi(t)andr1 ≥ z

(24)[sortf , sortIndex] = sort
(

f
)

,where f = {f1, f2, . . . ., fN }

(25)
−→
U (sortIndex

�

j
�

) =







1+ r3.log
�

fLbest−sortf (j)
fLbest−fLworst

+ 1
�

1 ≤ j ≤ N
2

1− r3.log
�

fLbest−sortf (j)
fLbest−fLworst

+ 1
�

N
2 < j ≤ N

(26)fLbest = sortf (1)

(27)fLworst = sortf (N )

(28)Pi = tanh
∣

∣f (Xi)− fGbest
∣

∣

(29)a = arctanh(−

(

t

T

)

+ 1)
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and

Despite the SMA’s promising results, there is still room for improvement in the search 
process, as indicated by Eq. (24). It is essential to note that incorporating random slime 
molds can alter the trajectory of the search. Local minima can constrain the efficacy of 
the search process when selecting individuals 

−→
X D and 

−→
X C from a sample of N slime 

molds. This section introduces a new optimization technique called the Equilibrium 
Slime Mold Algorithm (EOSM). This algorithm replaces the position vector 

−→
X A with a 

vector derived from an equilibrium pool of four superior position vectors. The Equilib-
rium Optimizer (EO) concept is then used to calculate the average position of this selec-
tion. Equation (31) precisely defines the components of the equilibrium pool.

A set of five-position vectors is utilized to construct the equilibrium pool, represented 
by 

−→
X eq,pool.

In ESMA, the position vector for the ith slime mold,Xi(j = 1, 2, ...,N ) , during the fresh 
iteration (t + 1) is represented by the following equations:

The position vector 
−→
X eq is obtained by randomly selecting a vector from the equi-

librium pool. The algorithmic tool z is employed to facilitate exploration in the search 
process, ensuring ESMA’s effectiveness by preventing minimal local occurrence. An 
experimentally determined threshold value of 0.03 is utilized to achieve this objective. 
It is important to note that the ESMA algorithm modifies the position vector in the fol-
lowing iteration through a combination of the global best position, the local best posi-
tion obtained from the best-so-far equilibrium pool, as well as a random vector. This 
approach allows for a balanced exploration–exploitation trade-off. Algorithm 2 details 
the proposed ESMA.

(30)b = 1−
t

T

(31)

−→
X eq(1) = X(sortIndex(1))
−→
X eq(2) = X(sortIndex(2))
−→
X eq(3) = X(sortIndex(3))
−→
X eq(4) = X(sortIndex(4))
−→
X ave =

−→
X eq(1)+

−→
X eq(2)+

−→
X eq(3)+

−→
X eq(4)

4

(32)
−→
X eq,pool =

{

−→
X eq(1),

−→
X eq(2),

−→
X eq(3),

−→
X eq(4),

−→
X ave}

(33a)−→
X i(t + 1) = r1.(UB− LB)+ LB, when r1 < z

(33b)
−→
X i(t + 1) =

−→
X Gbest +

−→
stepa.

(

−→
U .

−→
X eq −

−→
X D

)

, when r2 < pi(t) and r1 ≥ z

(33c)−→
X i(t + 1) =

−→
stepb.

−→
X i(t), when r2 ≥ pi(t) and r1 ≥ z
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Algorithm 2. ESMA Algorithms pseudo-code
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Adaptive Opposition Slime Mold Algorithm (AOSM)

The wavering mode of plasmodial slime mold (Physarum polycephalum) is utilized by 
the SMA, a stochastic optimizer, to find the optimal solution to a given function. On the 
other hand, the AOSM algorithm incorporates opposition-based learning with an adap-
tive decision-making process that modifies the slime mold’s approach behavior to suit 
the environment better, resulting in better solutions for a wider range of problems. Both 
algorithms are examples of bio-inspired optimization algorithms that leverage the behav-
ior of biological organisms to solve complicated optimization problems more effectively 
and efficiently. To connect with food, slime mold utilizes positive–negative feedback and 
the oscillation mode to determine the optimal path. The position of the ith slime mold 
in d-dimensions can be represented as Xi = (x1i , x

2
i , · · · , x

d
i ), where i is an element of the 

range [1, N]. The fitness or odor of the ith slime is denoted byf (Xi), for∀i ∈ [1,N ]. Sup-
pose there are N slime molds in the search space, with a lower boundary of (LB) as well 
as an upper boundary of (UB). Therefore, the fitness and location of N slime molds at the 
present iteration t can be represented as:

Equation  (36) is employed in SMA to update the location of the slime mold for the 
subsequent iteration (t + 1).

W is the weight factor, and Vb and Vc are the random velocity factors. XLB represented 
the individual with the best fitness value among the local population. In the present pop-
ulation, XA and XB are chosen randomly to represent two different slime molds [36]. The 
probability of the slime mold initializing at a random search location is denoted by δ, 
which remains fixed at 0.03. Random numbers r1 and r2 are generated within the range 
of [0,1]. pi is the threshold value of the ith slime mold that determines whether to use 
the best individual or its own position for the subsequent iteration. It can be computed 
as follows:

The global optimal fitness value fGbest , which is based on the global best position 
XGbest , is obtained using Eq. (38). (Xi) denotes ith slime mold’s fitness value, Xi.

In the present iteration t, use the following Eq. to calculate the weight W for N slime 
molds, use the following Eq.:

(34)X(t) =











x11 x21 . . . xd1
x12 x22 . . . xd2
...

x1n

...

xdn

...
· · ·

...

xdn











=









x1
x2
...
xn









(35)f (x) = [f (x1), f (x2), . . . , f (x3)]

(36)Xi(t + 1) =







rand.(UB− LB)+ LB, r1 < z
Xlb(t)+ vb.(W .XA(t)− XB(t)), r1 ≥ δ and r2 < pi

vc.xi(t), r1 > δ and r2 ≥ pi

(37)Pi = tanh
∣

∣f (Xi)− fGbest
∣

∣, ∀i ∈ [1,N ]

(38)fGbest = f (XGbest)
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When solving a minimization issue, the fitness values are arranged in ascending order, 
as displayed below. Then, the weight W is computed using the given Eq., where rand is a 
random number between 0 and 1, fLworst represents the local worst fitness value , andf Lbest 
represents the local best fitness value. Both of these values are derived according to the fit-
ness value. f, as defined in Eq. (40):

To determine its corresponding local best individual XLbest  and the best local fitness 
value fLbest Follow the steps below:

To obtain the local worst fitness value fLW, follow the steps below:

The random velocity factors Vb and Vc are obtained from a continuous uniform distribu-
tion in the intervals of [− b, b] and [− c, c], respectively. To determine the values of b and c 
for the current iteration t, use the following procedure:

and

To enhance convergence and prevent getting stuck in local minima, opposi-
tion-based learning (OBL) is utilized. In OBL, the position Xni  of each slime mold 
(wherei = 1, 2, · · · ,N  ) in the search space is compared with its exact opposite positionXoi . 
The difference is estimated to update the position for the succeeding iteration. The esti-
mated value of Xoi for the ith slime mold in the jth dimension is calculated using the follow-
ing formula:

Xsi can be defined as the position of the ith slime mold chosen for the minimization 
problem.

(39)W(sortIndf (i)) =







1+ rand . log
�

fLbest−f (Xi)

fLbest−fLworst
+ 1

�

1 ≤ i ≤ N
2

1− rand . log
�

fLbest−f (Xi)

fLbest−fLworst
+ 1

�

N
2 < i ≤ N

(40)
[

sortf , sortlndf
]

= sort(f )

(41)fLbest = f (sortf (1))

(42)XLbest = x(sortf (1))

(43)fLworst = f (sortf (N ))

(44)b = arctanh(−

(

t

T

)

+ 1)

(45)c = 1−
t

T

(46)Xo
j
i(t) = min(Xni(t))+max(Xni(t))− Xn

j
i(t)

where i = 1, 2, . . . ,Nandj = 1, 2, . . . , d.

(47)Xsi(t) =

{

Xoi(t) if f (Xoi(t)) < f (Xni(t))
Xni(t) if f (Xoi(t)) ≥ f (Xni(t))
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When the slime mold is following a nutrient path that has been explored before, an 
adaptive decision strategy is used. This strategy considers both the corresponding previ-
ous fitness value ((t)) and the current fitness value (Xni(t)). To enable additional explora-
tion as needed, OBL is incorporated into the adaptive decision strategy of AOSM. The 
updated position for the next iteration is determined utilizing this strategy, which can be 
represented as follows:

By utilizing an adaptive decision strategy to assess the necessity of OBL during the 
search trajectory, the AOSM method effectively enhances the efficiency of SMA. In 
addition, Fig. 2 shows the flowchart of AOSM.

Performance evaluators

This section provides various measures to assess hybrid models by measuring their 
degree of error and correlation. The metrics covered here comprise Mean Relative 
Absolute Error (MRAE), Root Mean Square Error (RMSE), Coefficient Correlation (R2), 
weight absolute percentage error (WAPE), and Mean Absolute Error (MAE). The formu-
las for each of these metrics are listed below.

(48)Xi(t + 1) =

{

Xni(t) if f (Xni(t)) ≤ f (Xi(t))
Xsi(t) if f (Xni(t)) > f (Xi(t))

Fig. 2 Flowchart of AOSM
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Equations (49–53) use the variable n to indicate the samples’s number, bi to represent 
the predicted value, b and m to denote the mean measured and predicted values, respec-
tively, and mi to indicate the measured value alternatively.

Results and discussion
In this research, three models were used to predict CS, and their performance was 
evaluated against experimental measurements obtained during the testing and train-
ing phases. The models employed were SVR-adaptive opposition slime mold algorithm 
(SVAM), SVR-equilibrium slime mold algorithm (SVES), and SVR-slime mold algorithm 
(SVSM). Five statistical metrics (R2, RMSE, WAPE, MRAE, and MAE) were employed 
to assess and contrast the algorithms used in this investigation comprehensively. The 
experimental data was split into testing (30%) and training (70%) sets, as shown in 
Table 2, to ensure that the models were assessed on previously unseen data and provide 
an unbiased evaluation of their performance. A high R2 value close to 1 indicates the 
excellent performance of the algorithm in both the testing and training phases, while 

(49)R2 =













�n
i=1

�

bi − b
�

(mi −m)
�

�

�n
i=1

�

bi − b
�2

�

�
�n

i=1(mi −m)2
�













2

(50)RMSE =

√

√

√

√

1

n

n
∑

i=1

(mi − bi)
2

(51)MAE =
1

n

n
∑

i=1

∣

∣bi −mi

∣

∣

(52)WAPE = max

[
∣

∣bi −mi

∣

∣

bi

]

(53)MRAE =
1

n

n
∑

i=1

∣

∣ej
∣

∣

∣

∣Aj − A
∣

∣

Table 2 Developed assessment outcomes of models by evaluators

Models SVAM SVES SVSM

States Train Test Train Test Train Test

R2 0.9779 0.9855 0.9908 0.9894 0.9740 0.9687

RMSE 2.3236 2.2261 1.4815 1.8396 2.7076 3.5590

MAE 1.2973 1.2551 0.646 0.8506 1.1112 1.364

WAPE 0.0293 0.028 0.0146 0.019 0.0251 0.0304

MRAE 0.3623 0.2499 0.1495 0.1752 0.24 0.1976
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lower values of metrics such as RMSE, WAPE, MRAE, and MAE indicate a desirable 
error level in the model. These metrics were used to evaluate the effectiveness of the 
algorithms used in this study.

The three hybrid models, SVAM, SVES, and SVSM, were evaluated based on their 
performance in predicting the High-Performance Concrete (HPC) properties. The mod-
els in question were assessed using the R2 value, a statistical measure indicating the 
amount of variance in the dependent variable that the independent variable can explain. 
SVES exhibited the highest R2 values, with 0.9908 and 0.9894 in the training and testing 
phases, respectively, indicating outstanding predictive accuracy. SVAM also performed 
well, with R2 values of 0.9779 and 0.9855 in the training and testing phases, respectively, 
demonstrating high predictive accuracy. Meanwhile, SVSM showed slightly lower R2 val-
ues of 0.970 and 0.9687 in the train and test phases but still demonstrated acceptable 
predictive accuracy.

While R2 is a valuable metric for evaluating model performance, it should not be the 
sole criterion for assessment. Critical metrics such as RMSE, WAPE, MRAE, and MAE 
should also be considered to manage a more comprehensive evaluation. The outcomes 
show that the SVES model demonstrated lower error indicators in both the testing and 
training phases, suggesting better performance compared to the SVSM and SVAM mod-
els. Conversely, the SVSM model generally performed poorly, with higher error indica-
tors and the lowest R2 values. Overall, the outcomes suggest that SVES and SVAM may 
be better suited for CS prediction of HPC than SVSM. However, it is worth noting that 
other factors, such as model complexity, computational efficiency, and ease of imple-
mentation, should also be considered when selecting a model for practical applications. 
Nonetheless, the outcomes of this comparison provide valuable insights into the relative 
strengths and weaknesses of these three hybrid models for predicting HPC properties.

In Fig.  3, a scatter plot is presented, which compares the predicted values with the 
actual values for three hybrid models: SVAM, SVES, and SVSM. The scatter plot con-
tains a center line and two linear fits representing the testing and training phases. It can 
be observed that all three models show a strong positive correlation between the actual 
and predicted values. However, SVES displays the most tightly clustered data points 
around the linear fit lines, indicating that it is the most accurate of the three models. 
Although SVAM and SVSM exhibit a strong correlation, their data points are slightly 
more scattered. The linear fit lines for both models have a similar slope and intercept, 

Fig. 3 The scatter plot for the hybrid models in the testing and training phase
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indicating that their predictive capabilities are similar. Overall, the scatter plot visually 
represents the models’ performance and highlights that SVES is the most effective in 
predicting CS.

Figure 4 presents a line series plot that compares the performance of three models 
(SVAM, SVES, and SVSM) in predicting high-performance concrete (HPC) strength. 
The x-axis represents the measured and training data, while the y-axis represents the 
compressive strength of concrete (CS) in mega-pascals (MP). The plot shows that all 
three models can accurately predict HPC strength, with the predicted values closely 

Fig. 4 The line series plot for presented hybrid models
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following the measured values. However, there are some differences in performance 
among the models. SVES performs slightly more well than the other two models, as 
its predicted values are consistently closer to the measured values. SVAM and SVSM 
exhibit fluctuations in their predicted values, particularly at higher CS values. Over-
all, the line series plot provides a clear and concise visualization of the model’s perfor-
mance in estimating HPC strength and suggests that SVES may be the most accurate 
of the three models.

Figure 5 presents a graphical representation of the error percentage for the devel-
oped models during the training and test phases. The x-axis displays the models as 
well as the training/testing phases, while the y-axis indicates the error percentage. 
The violin plot for SVES illustrates the smallest range of error percentages, indicating 
that it is the most accurate of the three models. On the other hand, SVAM and SASM 
models demonstrate larger ranges of error percentages, suggesting that they are less 
precise than SVES. However, the violin plot also reveals that all three models display 
significantly lower error percentages during the testing phase than during the train-
ing phase. This suggests that the models may be overfitting to the training data and 
that their predictive capabilities may be limited when applied to new data. Overall, 
the graphical representation in Fig. 5 visually compares the models’ error percentages 
and highlights the potential limitations of overfitting during the training phase.

Figure  6 presents a line and symbol plot that compares the performance of three 
models (SVAM, SVES, and SVSM) in estimating the CS of HPC in terms of error per-
centage. The x-axis depicts the sample number, while the y-axis depicts the error per-
centage. The plot illustrates that all three models are capable of estimating the HPC 
strength with a relatively low error percentage. However, there are differences in 
performance among the models. SVES exhibits the lowest error percentage, indicat-
ing that it is the most accurate model. SVAM and SVSM, on the other hand, display 
slightly higher error percentages, indicating that they are less precise than SVES.

Fig. 5 The violin diagram for error% in testing and training of developed models
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Conclusions
In recent years, ML algorithms have become increasingly popular for estimating the 
CS of HPC. One such algorithm, the SVR model, has demonstrated potential in accu-
rately predicting HPC strength. Nevertheless, the performance of the SVR model can be 
improved by selecting suitable optimization algorithms. In this investigation, the per-
formance of the SVR model was compared with three optimization algorithms: slime 
mold algorithm (SMA), equilibrium slime mold algorithm (ESMA), and adaptive oppo-
sition slime mold algorithm (AOSMA). The findings revealed that all three optimization 
algorithms were successful in enhancing the SVR model’s performance in predicting the 
compressive strength of HPC. Nevertheless, the ESMA algorithm performed the most, 
displaying the MAE and the highest R2. The primary outcomes of the investigation are as 
follows:

(1) This investigation discovered that the SVR models, including SVES, SVSM, and 
SVAM, have a significant potential to predict CS, with a minimum R2 value of 
0.9740 during the training stage and 0.9687 during the testing phase. However, 
analyzing the distribution of data samples around the best-fit line revealed that the 
SVSM and SVAM models displayed lower performance in predicting CS values 
compared to the SVES model. It was observed that the ESMA optimization algo-
rithm outperformed the other optimization algorithms.

(2) All statistical indices suggest that the performance of SVES is superior to the other 
SVR models with R2, RMSE, WAPE, MRAE, and MAE values of 0.9894, 1.8396, 
0.8506, 0.019, and 01752, respectively. On the other hand, the SVSM model dis-
plays the most inferior performance, with the lowest R2, RMSE, WAPE, MRAE, and 
MAE values in both the testing and training phases.

In conclusion, combining the SVR model with the ESMA optimization algorithm 
can accurately forecast the compressive strength of HPC, which has significant impli-
cations for the construction industry regarding cost-effective and efficient construction 

Fig. 6 The error percentage of the presented models based on line-symbol
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processes. The ESMA algorithm shows great potential as an effective optimization algo-
rithm in various engineering and scientific applications. Further research is necessary to 
investigate its potential in other optimization problems.

Advice for structural engineers

In navigating the dynamic landscape of construction and design, new opportunities 
for enhancing the accuracy and efficiency of predictions, particularly in the realm of 
HPC, are presented through the integration of machine learning algorithms and opti-
mization techniques. The following advice is offered, drawing from the outcomes of this 
investigation:

(1) Embrace ML Technologies: Embrace the use of machine learning technologies, such 
as the SVR model, as powerful tools for predicting the CS of HPC. These technolo-
gies have shown significant potential in capturing complex relationships within 
concrete properties.

(2) Optimize Model Performance: Recognize the importance of optimization algo-
rithms in refining the performance of ML models. The findings highlight that the 
choice of an optimization algorithm, with ESMA demonstrating superior results in 
this study, can substantially improve the accuracy of predictions.

(3) Consider Model Variations: When deploying SVR models, be mindful of variations 
such as SVES, SVSM, and SVAM. Understanding the strengths and limitations of 
each variation is crucial for selecting the most suitable model for specific applica-
tions.

(4) Continuous Evaluation and Improvement: Engage in a continuous process of evalu-
ation and improvement. Regularly assess the performance of ML models against 
real-world data and be open to refining approaches based on evolving industry 
standards and technological advancements.

(5) Explore ESMA in Other Applications: Given the promising performance of the 
ESMA, consider exploring its potential in various engineering and scientific appli-
cations beyond concrete strength prediction. This algorithm may prove valuable in 
optimizing solutions for diverse optimization problems.

(6) Collaborate and Share Knowledge: Foster a culture of collaboration within the 
structural engineering community. Share knowledge and insights gained from the 
integration of ML algorithms, promoting a collective effort to advance the field and 
address emerging challenges.

Suggestions for future work

As this investigation is concluded, several avenues for future research emerge, providing 
opportunities to deepen the understanding and refine the application of machine learn-
ing in structural engineering. The following directions for future work are proposed:

(1) Exploration of multifactorial influences: Extend research efforts to explore the influ-
ence of additional factors on the predictive accuracy of machine learning models 
for concrete strength. Consider variables such as curing conditions, environmen-
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tal factors, and mix design intricacies to create a more comprehensive predictive 
framework.

(2) Integration of real-time data: Investigate the feasibility of incorporating real-time 
data into machine learning models. The inclusion of up-to-the-minute information 
during the construction phase could enhance the adaptability and responsiveness 
of predictive models.

(3) Long-term performance predictions: Shift focus towards the long-term performance 
predictions of concrete structures. Evaluate the ability of machine learning models 
to anticipate changes in compressive strength over extended periods, considering 
factors like aging, environmental exposure, and structural loading.

(4) Robustness under limited data conditions: Explore the robustness of machine learn-
ing models, particularly SVR with optimization algorithms, under conditions of 
limited data availability. Develop strategies to enhance model performance when 
faced with sparse datasets, common in certain construction scenarios.

(5) Incorporation of uncertainty analysis: Integrate uncertainty analysis techniques into 
the predictive models to provide a more nuanced understanding of the confidence 
levels associated with predictions. This can contribute to more informed decision-
making in practical engineering applications.

(6) Implementation in industry practices: Explore the practical implementation of 
machine learning models in real-world construction projects. Investigate the chal-
lenges and opportunities associated with integrating these models into existing 
industry practices, with a focus on scalability and usability.
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