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Abstract 

Numerous components’ complex interrelationships and interconnectedness present 
a formidable obstacle in developing mix designs for high-performance concrete (HPC) 
formulation. The effectiveness of machine learning (ML) algorithms in resolving this 
paradox has been illustrated. However, they are classified as opaque black-box mod-
els due to the lack of a discernible correlation between blend ratios and compressive 
durability. The present study proposes a semi-empirical methodology that integrates 
various techniques, including non-dimensionalization and optimization, to overcome 
this constraint. The methodology exhibits a noteworthy level of accuracy when fore-
casting compressive strength (CS) across a spectrum of divergent datasets, thus 
evincing its extensive and all-encompassing efficacy. Moreover, the precise relation-
ship that semi-empirical equations convey is of great significance to practitioners 
and researchers in this field, especially with respect to their predictive abilities. The 
determination of CS in concrete is a critical facet of the design of HPC. An exhaustive 
comprehension of the intricate interplay between manifold factors is requisite to attain 
an ideal blend proportion. The study’s findings indicate that RF can accurately predict 
CS . Moreover, the combination of optimization algorithms significantly enhances 
the model’s effectiveness. Among the three Optimization Algorithms under considera-
tion, the COA optimizer has exhibited superior performance in augmenting the accu-
racy and precision of the RF prediction model for CS. As a result, RFCO obtained 
the more suitable value of R2 and RMSE obtained 0.998 and 0.88, alternatively.

Keywords:  Random forest, High-performance concrete, Rider optimization algorithm, 
Black widow optimization1algorithm, COOT optimization1algorithm

Introduction
Modern engineering constructions make extensive use of concrete as their main 
building material. The erection of concrete constructions within complex settings 
requires the utilization of high-performance concrete (HPC), which exhibits superior 
attributes to normal concrete, such as high strength, durability, etc. HPC is a het-
erogeneous material comprising superior-quality cement, coarse and fine aggregates, 
water, and admixtures. HPC, in which performance is not limited to strength but 
include construction, and this concrete displays superior characteristics in term of its 
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strength, workability, and durability [1–3]. HPC has been extensively utilized across 
various domains in the construction industry, exemplifying its applicability in devel-
oping diverse structures such as houses, bridges, and other significant components. 
The utilization of concrete admixtures can potentially lead to a reduction in the 
dimensions and weight of concrete structures. While it may contribute to lesser usage 
of building materials and enhanced durability, its direct impact on prolonged usability 
is subject to consideration and may vary. The development of HPC can be achieved by 
integrating various improving agents, such as chemical admixtures, fibrous materials, 
and mineral admixtures into the composition of the concrete mixture [4, 5].

Compressive strength (CS) of a material is determined by a number of parameters, 
including intrinsic qualities like porosity and density and material attributes like com-
position and grade. Additionally, the loading rate at which the loading force is applied 
acting a crucial role in determining the CS of the material. The CS of construction 
materials, notably concrete, plays a significant role in ascertaining the robustness and 
sustainability of the structure. The quantification of the CS of concrete is convention-
ally denoted in units of pounds per square inch (psi) and serves as a metric of its 
resistance to compressive forces [6]. The relationship between the CS of concrete and 
its load-bearing capacity can be established such that greater CS values correspond 
to an increased ability to sustain weight without succumbing to fracture or cracking. 
CS represents a vital parameter in engineering and construction, as it is imperative 
to ensure structures’ safe and steady performance. Consequently, it is imperative to 
thoroughly examine and validate the compressive resilience of materials before their 
integration into construction endeavors [7].

Accurately predicting specific strengths is paramount to civil infrastructure’s mate-
rial efficiency and structural stability. Inadequate recognition of the innate durabil-
ity of concrete could lead to unnecessary usage of cement, amplifying carbon dioxide 
emission [8]. A great deal of work has been done recently to create predictive models 
that show the link between the strength of concrete and its individual components. 
This approach has been adopted in light of the aforementioned scenario. A predic-
tion model should ideally offer significant explanations that improve tangible struc-
tures endowed with exceptional constructability and durability while minimizing 
cost expenditures [9–11]. As a result, many models have emerged that use physics or 
chemistry-based relationships as a foundation. While conventional techniques have 
been pivotal in ascertaining robust correlations between critical parameters such 
as cement dosage, aggregate fraction, and air void content, with regard to concrete 
strength, the analysis of the compound effects originating from these characteristics 
remains a complex and onerous task [12–15].

Naseri et al. [16] aimed to investigate the mixture design of sustainable concrete using 
six machine learning techniques, including a water cycle algorithm, soccer league com-
petition algorithm, genetic algorithm, artificial neural network, support vector machine, 
and regression. The accuracy of these methods was compared based on performance 
indicators, and the water cycle algorithm was found to be the most precise model, with 
a 2.86MPa mean absolute error. Six objective functions were defined and applied to inte-
grate sustainability criteria, including compressive strength, cost, embodied CO2 emis-
sion, and energy and resource consumption.
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Within the discipline of Artificial Intelligence, machine learning is the study of devel-
oping algorithms that can learn from datasets and become more proficient over time. 
Machine learning (ML) is a notable benefit in effectively handling extensive and sophis-
ticated datasets. This capability allows for identifying underlying patterns and produc-
ing precise predictions with remarkable accuracy. The advent of numerous ML methods, 
encompassing supervised and reinforcement learning, unsupervised learning, deep 
learning, and various others, has been documented [17–19]. ML has attained significant 
prominence and has been extensively implemented across varied sectors, encompassing 
healthcare, finance, manufacturing, and transportation. ML possesses the potential to be 
employed in the healthcare sector to analyze medical images as well as detect potential 
anomalies. In the finance domain, the implementation of ML has the potential to yield 
significant benefits in detecting fraudulent activities and reducing the risks associated 
with financial undertakings, as has been suggested in relevant literature [20–22].

Barkhordari et al. [23] compared different ensemble learner algorithms for predicting 
the compressive strength of fly ash concrete (FAC). Separate stacking with the random 
forest meta-learner achieved the most accurate predictions, with a coefficient of deter-
mination of 97.6% and the lowest mean square error and variance. The SSE-Random 
Forest algorithm performed well in prediction accuracy, with the largest R2 (0.976) and 
smallest MSE (0.0041) for the test set. The SSE-Gradient Boosting model also performed 
well, with an MSE of 0.005 and R2 of 0.997 for the training phase. Naseri et al. [24] tack-
led the challenge of pre-fabrication estimation of concrete compressive strength, advo-
cating for efficient alternatives to labor-intensive experimental methods. Investigating 
the influence of materials and sample age on fly ash concrete strength, a novel predic-
tive method was introduced, utilizing the water cycle and genetic algorithms. Compara-
tive analysis revealed the water cycle algorithm as the most accurate model, surpassing 
classical regression models. Concrete mixtures with less than 35% fly ash by weight of 
the binder displayed maximum CS, with a notable decline beyond this threshold. These 
findings shed light on optimizing concrete mixture proportions for enhanced strength, 
bolstering sustainability and efficiency in production.

The random forest (RF) algorithm is a widely applied ML field technique commonly 
used for regression and classification tasks. The proposed approach constitutes a form 
of collaborative learning mechanics whereby numerous decision trees are integrated to 
enhance the accuracy of prognostications [25]. In an RF model, the construction of each 
decision tree involves the utilization of a random subset of both the data entries and 
the features. The RF model operates by combining the outcomes of numerous decision 
trees, thereby diminishing the risk of overfitting and enhancing the overall precision of 
the model. The process of randomizing the data and features employed in individual 
decision trees contributes to enhancing the resilience and adaptability of the model. RF 
models have found application in diverse fields, ranging from finance and healthcare to 
environmental science [26]. These models have been leveraged to perform tasks such 
as forecasting stock prices, diagnosing illnesses, and pinpointing environmental factors 
that may trigger disease outbreaks. The RF algorithm is a potent and versatile ML meth-
odology that has demonstrated considerable efficacy across numerous domains [27].

The present study employs the random forest (RF) algorithm for compressive strength 
(CS) of HPC prediction owing to its proficient handling of intricate systems and 
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multifarious parameters through ML methods. Enhancement procedures remained addi-
tionally deployed to enhance the accuracy of the HPC organizations. In addition, optimiza-
tion algorithms are mathematical techniques utilized to locate the most optimal outcome 
for a particular problem. These algorithms have been extensively applied to optimize 
diverse parameters linked to the configuration of HPC systems. The subsequent section 
delineates three optimization algorithms, namely the rider optimization algorithm (ROA), 
black widow optimization algorithm (BWOA), and COOT optimization algorithm (COA). 
The present study introduces an innovative methodology for predicting CS by integrating 
RF with three optimization algorithms.1The present methodology holds substantial poten-
tial as a valuable instrument for geotechnical engineers to enhance the design of retaining 
structures made of CS . The paper introduces a novel hybrid approach, integrating non-
dimensionalization, optimization, and ML algorithms to enhance predictive models for 
HPC. It addresses the complexity of HPC mix designs by accurately forecasting compres-
sive strength and optimizing blend proportions. Notably, it emphasizes the interpretability 
of ML models, which is crucial for practical engineering applications. The study advocates 
for a comprehensive life-cycle assessment of HPC, considering long-term durability and 
sustainability. Collaborative interdisciplinary efforts involving material science, civil engi-
neering, and computer science are highlighted for advancing sustainable and efficient HPC 
formulations and practices.

Methods
Data assembly

Supervised machine learning (ML) algorithms require numerous input variables to predict 
the compressive strength (CS) of HPC. The data in the present study were procured from 
antecedently published literature and the test data mentioned in Appendix 1 in Table 6 [28]. 
The employed models utilized a total of eight input variables, namely water (W), binder (B), 
fly ash (FA), micro silica (MS), coarse aggregate (RCA), superplasticizers (SP), total aggre-
gated (TA), and age. The dependent variable employed in the models under analysis was CS. 
The model’s results exhibit a considerable dependence on both the number of data points 
utilized and the number of input parameters. The present investigation employed 168 data 
points (i.e., mixes) to forecast the characteristics of HPC. The RF model was executed uti-
lizing Python programming language in the Anaconda environment, while the Python soft-
ware was employed to facilitate its implementation. An examination was conducted on the 
relative distribution of each parameter implemented in the1mixes, and a report contain-
ing the comprehensive descriptive statistical analysis of these parameters can be found in 
Tables 1 and 2 for training and testing, respectively.

Table  3 presents the correlation matrix showing the relationships between the input 
parameters (B, FA/B, MS/B, CA/B, CA/TA, W/B, SP/B, Age) and the output (CS). Correla-
tion values range from − 1 to 1, where − 1 indicates a perfect negative correlation, 0 indi-
cates no correlation, and 1 indicates a perfect positive correlation.

Random forest

Principle of RF

A collection of tree-structured classifiers expressed as a random forest classifier 
b(x,ℵl), q = 1, . . .  , where the preferred category for a provided input, denoted as x is 
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determined by each tree casting a unit vote. Here, the {ℵl} represent separate random vec-
tors with identical distributions.

Several tree-structured classifiers created with the use of a random variable and a training 
sample set make up a random forest, {ℵl} , for the q -th tree in Breiman’s model [29]. A classifier 
is produced as a result of the stochastic factors being sovereign and uniformly spread among 
a pair of trees.b(x,ℵl) , where the input vector is represented by x . By iterating the procedure 
l instances produce a sequence of classifier.sets 

{

b1(x), b2(x), ..., bq(x)
}

 is produced. It may 
be applied to generate several models of categorization. The decision function is computed in 
accordance with the typical majority vote that determines the system’s ultimate output.

The amalgamation of several distinct decisions tree replicas is represented by way 
of B(x) , with every tree having the ability to cast a ballot aimed at the superior choice 

(1)B(x) = argmaxp

q
∑

i=1

F(bi(x) = V )

Table 1  The training phase’s input and output variables’ statistical characteristics

Statistical 
features

Dataset components

B (Kg/m3) FA/B (%) MS/B (%) CA/B (%) CA/TA (%) SP/B (%) W/B (%) Age (day) CS (MPa)

Min 394 0 0 2.17 0.6 0.3  0  28  24

Max  500 0.55 0.11 2.91 0.68 0.5 2.6  180 107.8

Mean 429.6 0.25 0.03 2.66 0.63 0.41 1.05 78.5 65.09

St. Dev. 44.23 0.18 0.04 0.31 0.02 0.08 0.76 57.1 17.59

Table 2  The statistical properties of inputs and output variables in the testing phase

Statistical 
features

Dataset components

B (Kg/
m3)

FA/B (%) MS/B 
(%)

CA/B 
(%)

CA/TA 
(%)

SP/B (%) W/B (%) Age 
(day)

CS (MPa)

Min  394 0.15 0.09 2.91 0.62 0.3 1  28 46.5

Max  394 0.3 0.11 2.91 0.62 0.5  1  56 86.4

Mean  394 0.23 0.10 2.91 0.62 0.38  1 47.02 61.7

St. Dev. 0 0.05 0.01 4E-16 5E-16 0.08  0 13.19 8.42

Table 3  Correlation between the inputs and output
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categorization outcome for particular contribution parameters The indicator function 
is represented by the symbol F(.) , and the output variable is V  [30]. The procedure of 
depicting the optimal categorization result is demonstrated in the depicted Fig. 1.

RF’s characters

The purpose of boundary [31], which is used in RF  to determine how much the mean 
quantity of votes in favor of the right session at. X ,V  exceeds the amount for the 
wrong class, is as follows:

A larger value in the margin function indicates a higher degree of accuracy and con-
fidence in the classification forecast. According to the constraints given by the varia-
bles V  and l, the function mc(X ,V ) defined in Eq. (2) includes averaging certain values 
received from the function F  applied to bl (X) and comparing these values using a 
maximum operation. A deeper comprehension of the context and the particular func-
tions involved would be necessary to determine the precise interpretation and mean-
ing. This classifier’s generalization error is defined as follows:

(2)mc(X ,V ) = avlF(bl(X) = V )−maxj �=V avlF(bl(X) = j)

Fig. 1  Schematic of random forest
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LeoBreiman proved the unpredictability of bq(X) = b
(

x,ℵq

)

, obeys the strong rule of 
large numbers if there are enough number of decision trees. For nearly all sequences, 
OS∗ converges to a certain value as the quantity of choice arboreal structures rises of ℵ1 
Breiman furthermore, it was exemplified that RF  does not exhibit vulnerability to over-
fitting and could provide the generalization error’s limiting value.

Leo Breiman also deduced that there exists an upper bound for the simplification 
mistake:

The generalization error of Random Forest (RF) is impacted by a pair of variables: the 
potency of individual trees within the forest, as indicated by (z), and the average cor-
relation value β , which shows the relationship between the trees. A reduced level of 
correlation indicates diminished mutual reliance among the trees, leading to enhanced 
performance of the Random Forest (RF) [32].

Rider optimization algorithm (ROA)

The ROA algorithm is typically formulated based on a group of riders collaborating to 
achieve a specific position [33]. The place where the zth rider at that moment V  is repre-
sented by V ti(z, s) . Furthermore, the composition of the rider team is determined by add-
ing the number of bypassers (Bi), followers (Fi), overtakers (Oi), and attackers (Ai) [34].

For the zth rider, the representation of the angles related to the location, steering, and 
vehicle coordinates by θz , (Vi)

ti+1
(z,s) and ϕ . Furthermore, significant vehicle characteristics 

for the zth accelerator is included with the rider ( aiz ), brake (brz) , and gear ( Eiz ). While 
the gear value runs from [0] to [4] , the brake and accelerator ranges from [0] to [1].

Let us say the bypass rider takes a conventional route instead of the leader’s. In such a 
scenario, using Eq. (7), the location update for this group is chosen at random, where � 
represents a random value between [0] and [1] , ϕ denotes a random number between [1] 
and D, ρ denotes a value between [1] and D , and η shows an arbitrary value between [1] 
and [0] of size C × 1.

Thus, in order to reach the objective, the positions of the bypass riders are updated, 
and the follower, using the coordinate selection given in Eq. (8), modifies their place-
ment in accordance with the location of the leading rider. In this equation, the coordi-
nate selector is denoted by XRi represents the location of the leader, Ri represents the 
leader’s index, Diti+1

z,s  denotes the steering angle of the zth rider in the qth coordinate, and 

(3)OS∗ = OX ,V (mc(X , F) < 0)

(4)Ox,V (Oθ (bl(x, θ) = V )−maxj �=VOθ (b(x, θ) = j) < 0)

(5)OS∗ ≤ β(1− z2)/z2

(6)V ti =

{

V ti(z, s)
}

; 1 ≤ z ≤ D; 1 ≤ c ≤ C .

(7)XCi
ti+1(z, s) = �[V ti(t, s) ∗ η(s)+ V ti(ρ, s) ∗ [1− η(s)]].
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gtiz  a represents the distance that the ztha rider needs to cover, computed by multiplying 
the off-time rate by the rider’s velocity.

Based on the three factors listed in Eq. (9) the motorcyclists who are overtaking change 
their position: the direction indication, relative success rate, and coordinate selector. In 
this equation, Xti(z, q) represents the location of the zth rider in the qth coordinate, while 
CiItti (z) denotes the direction indicator of the rider’s movement.

The generalized distance vector is calculated to determine the coordinate selection it 
entails deducting the place of the ztha rider from that of the leader. Similarly, the attacker 
rider uses the same updating mechanism as the follower in an attempt to take the lead 
[35]. But unlike the follower, the attacker changes all coordinates instead of only a subset 
of them, as shown by Eq. (10):

According to Eq. 11: the activity counter uses a value of [1] when the “on” rider’s suc-
cess rate exceeds the predefined rate and [0] for trailing.

The steering angle is updated by the activity counter, as shown in Eq. (12).

As stated in Eq. (13), updating the gear entails selecting the greater value depending 
on the activity counter.

Black widow optimization algorithm (BWOA)

The BWOA  is a meta-heuristic algorithm that integrates evolutionary algorithms 
with distinct criteria based on the reproductive behavior exhibited by black widow 
spiders [36]. The BWOA algorithm emulates the procreation behavior of Latrodec-
tus mactans, commonly known as black widow spiders, which entails a multifaceted 
mechanism of assortment and propagation aimed at generating novel progeny. The 
BWOA algorithm presents a distinctive and efficacious methodology for address-
ing intricate optimization problems, rendering it capable of circumventing local 
optima and converging promptly towards optimal solutions, thanks to its aptitude for 

(8)XRi
ti+1(z, q) = XRi(Ri, q)+

[

cos
(

Diti+1
z,s

)

∗ XRi(Ri, q) ∗ gitiz

]

(9)X
qi
ti+1(z, q)+ Xti(z, q)+

[

CiIiti(z) ∗ X
Ri(Ri, q)

]

(10)XiAiti+1(z, s) = XLi(Li, s)+
[

cos
(

Hiti+1
z,s

)

∗ XLi(Li, s)+ gitiz

]

(11)Aiti+1
n (z) =

{

1; if pTI+1(z) > pti(z)
0; otherwise

(12)Hiti+1
z,s =

{

Hitiz+1,s if Aiti+1
n (z) = 1

Hitiz−1,s if Aiti+1
n (z) = 0

(13)Eiti+1
z =







Eitiz + 1 if Aiti+1
n (z) = 1,Eitiz �= |Ei|

Eitiz − 1 if Aiti+1
n (z) = 0,Eitiz �= 0

Eitiz , otherwise
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upholding equilibrium between its exploration and exploitation phases. Such a com-
bination of attributes contributes to its remarkable effectiveness [37, 38]. Further-
more, Fig. 2 displays the BWO flowchart.

The primary phases of BWO may be summed up as follows in brief:

1: Initialization

Each widow can be represented in the population in this stage, which is made up of 
the number of widows with size M as an array of 1×Mvar representing the solution 
to the problem. This array can be defined as widow = (x1, x2, . . . , xMvar ) , where Mvar 
is the dimension of the optimization problem. Also, Mvar can be defined as the quan-
tity of threshold values that the program must obtain, while xi is the i − th candidate 
solution.

The fitness of a widow is obtained by evaluation of the fitness function of f  of each 
widow of the set (x1, x2, . . . , xMvar ) . Then fitness = f (widow), which can be represented 
by: fitness = (x1, x2, . . . , xMvar ) . Subsequently, the procreation process entails ran-
domly selecting pairs of parents who engage in the mating process, during which the 
female black widow consumes the male, either during or after copulation.

2: Procreate

In the procreation step, an alpha should be created as long as a widow array containing 
random numbers. Then, offspring are produced by using α and Eq. (14) in which x1 and 
x2 are parents, y1 and y2 are offspring. The crossover result is evaluated and stored.

(14)y1 = β × x1 + (1− β)× x2andy2 = β × x2 + (1− β)× x1

Fig. 2  Flowchart of the Black Widow Optimization algorithm
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COOT optimization algorithm(COA)

The COOT optimization algorithm is predicated on the distinct movement patterns 
exhibited by coot populations on water surfaces. Coots are diminutive avian species 
that exhibit collective behaviors on aquatic surfaces, primarily aimed at approaching 
food sources or predetermined locations [39]. The algorithm’s procedural set of instruc-
tions is stipulated as follows:

The population shall be initialized through a randomized process following Eq. (15):

CP(i) represents the position of the i − th coot, while d refers to the number of var-
iables or dimensions in the optimization problem. The search space is defined by the 
upper bound vc and lower bound kc , which determine the maximum and minimum val-
ues for each variable in the problem space. Specifically, vc and kc define the range of the 
search space for the optimization problem.

Once the population is initialized, the position of each coot undergoes updates based 
on four distinct movement behaviors.

Random movement

Equation (17) is used to randomly initialize a position Q for the first step of this 
movement.

To prevent being stuck in a local optimum, the position is modified using Eq. (18):

Eq. (18) is used to determine the value of E, which is then utilized in Eq. (19) along 
with a random number S2 in the range of [0, 1].

The variable Iter represents the upper limit of iterations, while Z denotes the current 
number of iterations.

Chain movement

To execute the chain movement, the average position of two coots can be determined by 
utilizing Eq. (20):

(15)CP(i) = rand(1, b)× (vc − kc)+ kc

(16)vc = [vc1, vc2, . . . , vcb], kc = [kc1, kc2, . . . , kcb]

(17)G = rand (1, b)× (vc − kc)+ kc

(18)CP(i) = CP(i)+ E × S2 × (G − CP(i))

(19)E = 1− Z × (
1

Iter
)

(20)CP(i) =
CP(i − 1)+ CP(i)

2
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where CP(i − 1) is the location of the second coot bird.

Adjusting position according to the leader

During the leadership movement, a coot bird updates its position based on the position 
of the leader within its group. Specifically, a coot bird follower moves towards the leader 
in its group. The leader is chosen using Eq. (21):

Eq. (21) utilizes P to denote the leader’s number, i for the follower’s number, and MZ 
for the total number of leaders [40].

During the switch movement, the position of a coot bird is updated by utilizing Eq. (22):

Eq. (22) employs CP(i) to represent the current position of the coot bird, LP(P) for the 
position of the chosen leader, S1 for a random number in the range of [0, 1], and R for a 
random number in the interval of [− 1, 1].

Leander movement

The leader must transition from the current local to the global optimal position to locate the 
optimal position [41]. This is accomplished by updating the leader’s position using Eq. (23):

Eq. (23) utilizes qBest to denote the best possible position, S3 and S4 as random num-
bers in the range of [0, 1], and S as a random number in the interval of [-1, 1]. Eq. (24) is 
utilized to determine the value of B.

Performance evaluation methods

As previously stated, this study employs a number of measures, including the coefficient 
of persistence (CP), mean square error (MSE), mean absolute relative error (MARE) , cor-
relation coefficient (R2), and root mean square error (RMSE) , to assess the models. To 
compute these metrics, apply Eqs. (25), 26, (27), (28) and (29):

(21)P = 1+ (iMODMZ)

(22)CP(i) = LP(P)+ 2× S1 × cos(2sπ)× (LP(P)− CP(i))

(23)LP(i) =

{

B× S3 × cos(2πS)× (qBest − LP(i))+ qBestS4 < 0.5
B× S3 × cos(2πS)× (qBest − LP(i))− qBestS4 ≥ 0.5

(24)B = 2− Z × (
1

Iter
)

(25)R2 =





�u
i=1(zi − z)(ei − e)

�

�
�w

i=1(zi − z)2
��
�u

i=1(ei − e)2
�





2

(26)RMSE =

√

1

U

∑u

i=1
(ei − zi)

2
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Here, ei and zi show the experimental and predicted parameters, correspondingly. The 
cruel standards of the experimental and predicted data points are symbolized through e 
and z . On the other hand, U indicates how many samples are being taken into account.

Discussion and results
This unit deals with the assessment of the recently launched cross cars. Training and 
testing include the two categories of performance metrics; 70% of the instances in the 
dataset are used intended for the purpose of instruction, with the remainder 30.% used 
for challenging. A greater number is desirable in the case of the R2 measure; as for the 
various measurements, the goal is to minimize the fault and get the best possible result. 
Slightly increase or decrease in the presentation measures during the trying stage is 
indicative of how well or poorly the model was trained during the training stage. Table 4 
presents an evaluation of the models’ performance. RFCOtrain = 0.9981 had the great-
est R^2 value, while RFROtest = 0.9778 had the lowest value. The RFCOtest yielded the 
most appropriate values in RMSE and CP , which were 0.8766 and 0.327 , respectively. 
RFCOtest obtained the greatest value in MARE , 0.0096, while RFROtrain got the lowest 
value, 0.0342 , similar to the other two error assessors. RFROtest had the most acceptable 
result with a score of 6.829 with regard to MSE , which is the the greatest worth of the 
relevant presentation criteria; RFCOtest obtained the lowest score of 0.7685.

(27)MSE =
1

U

u
∑

i=1

|zi − ei|
2
i

(28)MARE =
1

U

u
∑

j

|zi − ei|

|z − e|

(29)CP = 1−

∑u
i=2 (z − ei)

2

∑u−1
i=1 (zi+1 − ei)

2

Table 4  The consequences obtained excluding the amalgamated designs

Metric Phase Hybrid model

RFBW RFCO RFRO

R
2 Train 0.9895 0.9981 0.9846

Test 0.9795 0.9972 0.9778

RMSE(MPa) Train 1.9975 0.8800 2.4496

Test 1.8841 0.8766 2.6126

MSE(MPa) Train 3.99 0.7745 6.0009

Test 3.55 0.7685 6.826

CP Train − 72.811 − 11.247 − 100.17

Test − 3.9363 0.327 − 4.944

MARE(%) Train 0.0268 0.0124 0.0342

Test 0.0231 0.0096 0.0277
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Table 5 provides a comparative analysis between the current study and previously pub-
lished articles concerning compressive strength prediction. The table presents the mod-
els used in each study and the corresponding performance metrics, including R2 and 
RMSE. The models used in the present study (RFCO) achieved a high R2 of 0.9981 and 
a low RMSE of 0.880 compared to those used in the referenced published papers. This 
demonstrates the effectiveness and accuracy of the RFCO model in predicting CS.

A scatter plot comparing the expected and actual results for three different hybrid 
models RFCO, RFBW, and RFRO is shown in Fig. 3. To depict the separate training and 
testing stages, the current methodology uses two linear fits, a scatter plot, and a cen-
terline. The scatter plot that is displayed shows a pronounced affirmative correlation 
between the actual and anticipated standards for each of the three models, indicating 
that the models are highly accurate in predicting the values Nonetheless, the scatter plot 
reveals that RFCO exhibits the highest degree of data point clustering around the linear 
fit lines, implying superior accuracy among the three models. The correlation between 
RFBW and RFRO is strong, although the data points exhibit greater dispersion. Both 
models’ linear regression lines show a similar slope and intercept, suggesting that they 
have similar predictive abilities.

Figure  4 depicts a column plot that presents a comparative analysis between three 
hybrid models’ predicted and measured samples. The plot exhibits the degree to which 
the anticipated values conform with the observed values, effectively spotlighting the 
efficacy of the models. The results demonstrate that RFCO achieves a notable degree 
of precision, as evidenced by the close correspondence between predicted and meas-
ured values across the entirety of the dataset. The findings suggest a robust association 
between the projected and observed outcomes in both RFBW and RFRO, albeit with 
a marginally higher degree of discrepancies from the empirical data. This observation 
indicates that although RFBW and RFRO exhibit efficacy, they may lack the accuracy 
offered by RFCO.

The box plot in Fig. 5 illustrates the percentage of errors for the models presented. 
During the training phase, RFCO exhibited a mean error rate of 0%, accompanied by 
a distinct normal distribution and demonstrated minuscule dispersion. The distribu-
tion of errors exhibited favorable characteristics, as the values remained below the 
10% threshold. In contrast, RFBW exhibited dispersion in both phases, and a more 
symmetrical and uniform normal distribution was observed. However, the attained 

Table 5  The comparison between the present work and published articles

Num Paper Model Compressive strength

R2 RMSE

1 [42] MARS-PSOBBO 0.9422 4.3169

2 [43] AORBF 0.9686 2.5886

3 [44] DMLP-I 0.9897 1.7634

4 [45] EOANN 0.981 2.0179

5 [46] HGSO-SVR 0.9800 2.1096

6 [47] FDA-SVR 0.9837 1.8712

7 [48] ANFIS-DA 0.9841 2.1375

8 Present work RFCO 0.9981 0.880
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model exhibited an error percentage that did not exceed 10% maximum. The RFRO 
exhibited the most notable and varied discrepancies; however, an aberrant datum 
was solely obtained during the assessment stage and constituted more than 10% of 
the dataset, a rarity in statistical analysis. The Gaussian distribution concerning the 
RFBW exhibited a greater degree of dispersion compared1to the1other two1models 
and a reduced frequency of incidence in the vicinity of zero. As a broad observation, 
each of the three models exhibited satisfactory performance; however, the model 
denoted as RFCO demonstrated the preeminent outcomes among them.

Figure 6 shows the analysis using the Taylor diagram. The Taylor diagram compre-
hensively compares multiple models based on correlation, standard deviation, and 
RMSE. RFCO demonstrated the highest performance among the models assessed, 
followed by RFBW and RFRO. The superior performance of RFCO, as indicated by 
its placement in the Taylor diagram, suggests that it achieved a remarkable balance 
between correlation, standard deviation, and RMSE in compressive strength predic-
tion. The RFBW model also showcased commendable performance, securing a close 
second in overall performance. RFRO, although slightly below RFBW, displayed a 
notable level of accuracy and reliability in predicting compressive strength.

Fig. 3  The hybrid model’s created scatter plot
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Fig. 4  A comparison between the measured and anticipated samples

Fig. 5  The violin-scatter plot shown in the picture illustrates the distribution of errors among the hybrid 
models
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The insights gained from the hybrid models, integrating ML algorithms with tech-
niques like non-dimensionalization and optimization, can be applied in several prac-
tical engineering applications within the field of HPC formulation:

1.	 Optimal mix design: the hybrid models can guide engineers in selecting optimal mix 
designs for HPC, considering various components and their interrelationships. This 
can lead to formulations with improved CS and other desired properties.

2.	 Resource optimization: by accurately predicting CS, engineers can optimize the use 
of raw materials, minimizing waste and reducing costs while maintaining the desired 
performance of the concrete.

3.	 Structural design and durability assessment: CS predictions are crucial in structural 
design. Hybrid models can aid in assessing the durability and performance of HPC in 
specific structural applications, allowing for better design choices and enhancing the 
lifespan of structures.

4.	 Quality control and assurance: predictive models can be utilized for quality control 
during the production of HPC, ensuring that the concrete meets the desired strength 
requirements before it is used in construction projects.

5.	 Real-time monitoring and decision-making: ML algorithms can be adapted to con-
tinuously monitor and predict concrete strength during curing or after construction. 
This real-time feedback can help adjust construction schedules or make necessary 
modifications to ensure structural integrity.

Fig. 6  Taylor diagram for the presented models
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In addition, potential limitations and areas for further research:

1.	 Data availability and quality: the availability of comprehensive and high-quality data 
is critical for the accuracy and effectiveness of predictive models. Further research 
should focus on improving data collection and standardization within the concrete 
industry.

2.	 Model interpretability: addressing ML models’ ‘black-box’ nature is essential for 
broader adoption. Research should aim to enhance the interpretability of these mod-
els, making the predictions more understandable to engineers and stakeholders.

3.	 Incorporating additional parameters: Extending the models to consider more param-
eters, such as environmental conditions, curing processes, and construction prac-
tices, can enhance the accuracy and applicability of the predictions.

4.	 Generalization and transferability: research should focus on enhancing the generali-
zation of models across diverse geographical and climatic regions, considering differ-
ent raw materials and mixed design practices.

5.	 Robustness to variability: investigate the robustness of models to variations in raw 
material properties and other external factors, ensuring that predictions remain 
accurate and reliable under different conditions.

Conclusions
High-performance concrete, or HPC , is well known for its remarkable strength, durabil-
ity, and workability. In construction engineering, concrete’s compressive strength (CS) is 
widely acknowledged as a crucial mechanical attribute. One practical approach to dealing 
with this specific problem is to apply machine learning (ML) . The aim of this work was to 
forecast the fatigue life of coiled tubing in HPC applications using the random forest (RF) 
ML technique. In order to increase the accuracy of the findings, the current study used 
an amalgamation strategy fusing the. RF model by optimization methods, for example, 
COA, ROA, and BWOA. The presentation of the model was assessed by means of the R2, 
RMSE, CP, MSE, and MARE indices. The findings show that, in comparison to the RFRO 
and RFBW models, the RFCO models perform better, showing fewer error signs. The best 
RMSE values were shown by the RF with RFCO models in both the training and testing 
stages. The restricted distribution range displayed by these models suggests a precise and 
dependable capacity to forecast HPC. All models, however, showed a consistent percent-
age of mistakes, indicating that more improvements are required. Research indicates that 
RF hybrid models., more particularly the RFCO models., are highly effective at forecast-
ing HPC., which provides accurate and consistent results for a range of engineering uses. 
Future research can enhance predictive models for HPC, incorporating diverse factors 
like environmental conditions, curing techniques, and sustainable materials. Integration 
of real-time sensor data and advanced imaging can enrich model insights. Addressing ML 
model interpretability in HPC is crucial. A comprehensive life-cycle assessment of HPC, 
considering durability and sustainability beyond early strength, is essential. Collaborative 
interdisciplinary efforts involving material science, civil engineering, and computer sci-
ence are key to advancing sustainable, resilient, and efficient construction practices.
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Appendix

Table 6  The test data

B FA MS CA TA W SP Age CS

394 0.25 0.110 2.906 0.615 0.4 1 28 59.9

394 0.3 0.110 2.906 0.615 0.4 1 28 46.5

394 0.15 0.100 2.906 0.615 0.4 1 28 50.37

394 0.15 0.110 2.906 0.615 0.4 1 28 54.24

394 0.2 0.110 2.906 0.615 0.4 1 28 58.14

394 0.2 0.090 2.906 0.615 0.3 1 28 61.45

394 0.25 0.090 2.906 0.615 0.3 1 28 59.97

394 0.3 0.090 2.906 0.615 0.3 1 28 55.94

394 0.2 0.100 2.906 0.615 0.3 1 28 64.29

394 0.25 0.100 2.906 0.615 0.3 1 28 69.71

394 0.3 0.100 2.906 0.615 0.3 1 28 59.81

394 0.2 0.110 2.906 0.615 0.3 1 28 77.79

394 0.25 0.110 2.906 0.615 0.3 1 28 68.07

394 0.3 0.110 2.906 0.615 0.3 1 28 52.84

394 0.15 0.100 2.906 0.615 0.3 1 28 57.24

394 0.15 0.110 2.906 0.615 0.3 1 28 61.64

394 0.2 0.110 2.906 0.615 0.3 1 28 66.07

394 0.2 0.090 2.906 0.615 0.5 1 56 54.62

394 0.25 0.090 2.906 0.615 0.5 1 56 53.3

394 0.3 0.090 2.906 0.615 0.5 1 56 49.73

394 0.2 0.100 2.906 0.615 0.5 1 56 57.14

394 0.25 0.100 2.906 0.615 0.5 1 56 61.97

394 0.3 0.100 2.906 0.615 0.5 1 56 53.16

394 0.2 0.110 2.906 0.615 0.5 1 56 69.14

394 0.25 0.110 2.906 0.615 0.5 1 56 60.5

394 0.3 0.110 2.906 0.615 0.5 1 56 46.97

394 0.15 0.100 2.906 0.615 0.5 1 56 50.88

394 0.15 0.110 2.906 0.615 0.5 1 56 54.79

394 0.2 0.110 2.906 0.615 0.5 1 56 58.73

394 0.2 0.090 2.906 0.615 0.4 1 56 60.09

394 0.25 0.090 2.906 0.615 0.4 1 56 58.63

394 0.3 0.090 2.906 0.615 0.4 1 56 54.7

394 0.2 0.100 2.906 0.615 0.4 1 56 62.86

394 0.25 0.100 2.906 0.615 0.4 1 56 68.16

394 0.3 0.100 2.906 0.615 0.4 1 56 58.48

394 0.2 0.110 2.906 0.615 0.4 1 56 76.06

394 0.25 0.110 2.906 0.615 0.4 1 56 66.55

394 0.3 0.110 2.906 0.615 0.4 1 56 51.66

394 0.15 0.100 2.906 0.615 0.4 1 56 55.97

394 0.15 0.110 2.906 0.615 0.4 1 56 60.27

394 0.2 0.110 2.906 0.615 0.4 1 56 64.6

394 0.2 0.090 2.906 0.615 0.3 1 56 68.28

394 0.25 0.090 2.906 0.615 0.3 1 56 66.63

394 0.3 0.090 2.906 0.615 0.3 1 56 62.16

394 0.2 0.100 2.906 0.615 0.3 1 56 71.43

394 0.25 0.100 2.906 0.615 0.3 1 56 77.46
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B FA MS CA TA W SP Age CS

394 0.3 0.100 2.906 0.615 0.3 1 56 66.45

394 0.2 0.110 2.906 0.615 0.3 1 56 86.43

394 0.25 0.110 2.906 0.615 0.3 1 56 75.63

394 0.3 0.110 2.906 0.615 0.3 1 56 58.71

394 0.15 0.100 2.906 0.615 0.3 1 56 63.6

394 0.15 0.110 2.906 0.615 0.3 1 56 68.49

394 0.2 0.110 2.906 0.615 0.3 1 56 73.41
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