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Abstract 

Using support vector regression (SVR) analytics, a novel method for evaluating 
the high-performance concrete (HPC) compressive strength (CS) containing fly ash (FA) 
and blast furnace slag (BFS) has been developed. Both Salp swarm optimization (SSA) 
and Grasshoppers optimization algorithm (GOA) were used in this research to look 
for critical SVR method variables that may be tweaked for better performance. The 
suggested approaches were created using 1030 trials, eight inputs (the primary com-
ponent of admixtures, mix designs, curing age, and aggregates), and the CS as the fore-
casting goal. After that, the findings were compared to those found elsewhere 
in the literature. Combined SSA-SVR and GOA-SVR analysis could work exceptionally 
well when it comes to estimating, according to the estimation findings. The root means 
square error (RMSE) value for the GOA-SVR faces a remarkable increment in comparison 
with the SSA-SVR. The comparison resulted that the GOA-SVR delivered a higher rate 
of accuracy than any previous published research. At the outset, the developed GOA-
SVR model might be considered a practical predictive system for the CS prediction 
of HPC admixed with FA and BFS.

Keywords:  Mechanical properties, High-performance concrete, Optimized SVR 
analysis, Fly ash, Simulation, Blast furnace slag

Introduction
High-performance concrete (HPC) is more efficient than conventional concrete (CC) 
in most cases, depending on the applications. The American Concrete Institute (ACI) 
states that HPC is a concrete kind that satisfies specified characteristics for homogeneity 
and performance. Neither standard mixing or curing methods nor standard components 
can produce these qualities [1, 2]. There is a possibility that the durability of this con-
crete will be improved. Maintainance costs are reduced as well as service life is extended. 
Consider the accessibility and cost of locally available resources while selecting the 
HPC mix characteristics. As a result, more trial mix quantities and analysis are neces-
sary than in CC [2]. Additional cementitious components and additives are added to CC 
to make HPC [2–4]. The compressive strength of HPC mixtures is critical. Establishing 
an appropriate estimation system for this critical attribute saves money and time while 
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also allowing for more efficient combination creation. Statistical regression approaches 
have been used by researchers in this regard [3, 4]. An experimental approach based on 
regression could have major flaws. There must be a formula in place before a regression 
analysis can be performed. Another significant limitation of the use of regression models 
is the necessity for continued regularity [2]. Nevertheless, there is disagreement on the 
experimental formulae used in codes and standards to establish CS . This is due to these 
formulae being developed by testing on concrete, which did not involve any components 
of additional cementitious materials.

Over the last decade, there has been a surge of interest in applying machine learning 
methods to tackle civil engineering challenges in both commercial and academic settings 
[5, 6]. Using machine learning methods, in which empirical efforts can create learning, 
could be highly beneficial in developing computer models [7, 8]. The most extensively 
utilized method for machine learning is artificial neural networks (ANNs). ANNs are 
often used to analyze a wide range of concrete qualities [9–12]. They have been used to 
forecast the CS and slump flow of HPC mixtures [13, 14]. Employing sequential learn-
ing NNs, Rajasekaran and Amalraj [15] and Rajasekaran et  al. [16] developed predic-
tion approaches for the power of HPC mixtures. A wavelet NN approach was utilized to 
analyze the HPC’s CS by Rajasekaran and Lavanya [17]. Since ANNs are unable to char-
acterize the prediction fundamentals, they are commonly referred to as black box sys-
tems. Despite their efficiency, since ANNs usually fails to give a good forecasting model, 
they are still considered as a black box. Various authors have forecasted the mechani-
cal features of HPC in previous years utilizing NNs and other AI approaches. Gradi-
ent-boosted ANN and Bagged ANN were employed by Erdal et al. [18] to simulate the 
HPC’s CS. When compared to previous trials, Chou and Pham’s ensemble approaches 
[19] fared well. So long as Erdal [20] built two connected ensemble decision trees, Cheng 
et al. [21] evaluated HPC CS using a tree. According to the previous study, AI techniques 
are more effective than traditional methods for precisely and quickly measuring the CS 
of HPCs [22, 23]. Rafiei et al. [24] propose the introduction of a unique deep machine 
as a replacement for back-propagation NN and SVR. This is done to determine the 
properties of concrete on the basis of the mixture percentages. Considering real testing 
results, they assess the 98% precise. Nguyen et al. [25] used a deep NN framework to 
determine the foamed concrete strength. Rafiei et  al. [26] used an optimization algo-
rithm to uniquely handle the optimal values in the concrete mix. Genetic programming 
is another machine learning approach (GP) [27]. The criteria of natural genetic advance-
ment lead GP to generate computer simulations on its own. In recent years, classical GP 
and its modifications have been used to deliver easier answers to civil engineering prob-
lems [28]. Mousavi et al. [2] combine GP and orthogonal minimum squares approaches 
to estimate the CS of HPC combinations. When creating CS, the amount of fine/coarse 
aggregate, the percentage of superplasticizer to samples’ age, and the binder were all 
considered. Gene expression programming is a more modern development of GP (GEP) 
[29]. The GEP approach may be used as a dependable and effective substitute for tradi-
tional GP. Some study has been conducted in an attempt to use GEP in civil engineering 
[30–33].

Several research have proposed alternative models for predicting the CS of HPCs, 
including the hybrid adaptive neuro-fuzzy inference system (ANFIS) with arithmetic 
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optimization algorithm (AOA) and equilibrium optimizer (EO). The findings suggest 
that the integrated systems exhibited robust estimate skills, as shown by R2 values of 
0.9941 and 0.9975 for the training and testing phases, respectively [34]. Four deep learn-
ing algorithms were offered in different research, which was unusual in the literature. 
When using deep learning models, the aforesaid R2 value was approximately 0.960 dur-
ing training and almost reached 0.940 after testing [35]. In research, a unique hybrid 
model combining artificial bee colony (ABC) optimization and cascade forward neural 
network (CFNN) technology was created for the CS prediction of HPC. The created 
model (CFNN-ABC) was able to correctly estimate the compressive strength of HPC 
with an R2 of 0.953, according to the results, and two layers is the ideal neural network 
architecture chosen by the ABC approach [36]. An incredibly accurate machine learn-
ing ( ML ) model was trained using the innovative eXtreme Gradient Boosting ( XGB ) 
approach. The baseline model tends to overfit, with values of 0.996 and 0.919 for the 
training and testing datasets, respectively [37].

The main objective of the current research is to supply a practical way to evaluate the 
effectiveness of intelligent machines in calculating HPC’s CS via stringent testing. Using 
the SVR technique, we attempted to construct models that might predict HPC’s qualities 
while it had fresh and hardened properties. It used the grasshoppers’ optimization algo-
rithm (GOA) and salp swarm optimization (SSA) algorithms in this work to pinpoint the 
most critical components of SVR that need to be changed. The created techniques were 
assessed using 1030 experiments, eight input parameters, such as concrete age, admix-
tures, the major constituent of mixes, and the compressive strength as the forecasting 
objective. The findings were then compared to other studies in the field [19, 28, 38–42].

Developed models offer several advantages compared to traditional mixed design 
methods in the field of materials science and civil engineering. These advantages stem 
from ML’s ability to analyze large datasets, discover complex patterns, and make predic-
tions based on learned patterns. Algorithms can analyze vast amounts of data to iden-
tify subtle relationships between various material properties and mix design outcomes. 
This can lead to mixed designs that are more accurate and precise, reducing the risk of 
defects and failures. Developed models can automate many aspects of mix design, such 
as optimizing the proportions of materials and predicting the properties of the resulting 
mixture. Models can adapt to different materials, conditions, and project requirements. 
Traditional mixed design methods often rely on simplified assumptions and linear mod-
els. Algorithms, on the other hand, can handle complex, nonlinear relationships between 
material properties and mix performance, leading to more accurate predictions. ML 
can help optimize mix designs to use materials more efficiently, minimizing waste and 
reducing costs associated with the overuse or underuse of materials. ML-based mix 
design can help reduce the cost of materials and construction by optimizing the use of 
resources, improving performance, and minimizing the need for expensive adjustments 
or revisions.

Methods
Dataset preparation and description

Over a thousand HPC sample datasets were investigated in this research [4, 43–46]. 
Regular Portland cement was used to build all specimens, which were then permitted 
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time to dry out. Several different types and sizes of samples have been used in the HPC 
data that has been released so far. In this study, the HPCCS is based on the following 
eight factors:

(1)	 C Contents of cement
(2)	 BFS Blast furnace slag
(3)	 FA Fly ash
(4)	 W Water
(5)	 SP Superplasticizer
(6)	 CA Coarse aggregate
(7)	 FA Fine aggregate
(8)	 AC HPC age

Figure 1 shows the training and evaluation datasets’ charts with their Lognormal distribu-
tion, and Table 1 shows the collection range for these items. When it came time to divide up 
everything that was needed, 70% of the 1030 data was used for learning and the remainder 
for testing. Subgroups from the original dataset were selected at random using a uniform dis-
tribution for training and testing. The 70:30 train/test ratio was chosen for this investigation 
even though many other train/test ratios were able to be used, as suggested in previous stud-
ies [47, 48]. In order to show that the choice of these inputs was enough, a statistical study 
was carried out. As a consequence, no substantial cross in the eight-dimensional input space 
was found [45, 49], which is needed to train AI networks with good generalization abilities.

Fig. 1  Distribution of dataset and their Lognormal distribution
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Considered techniques

Grasshoppers optimization algorithm (GOA)

Meta-heuristic methods are built on simulating nature (Fig. 2). Universal optimization 
issues are typically solved using these methods. Different categories of meta-heuristic 
methods include those based on evolution, physical and chemical, swarm intelligence, 
and human-based methods. We optimized using GOA in this research. Saremi et al. [50] 
introduce GOA to the research. The efficient meta-heuristic method GOA uses opti-
mization based on a swarm, which was motivated by natural processes. Based on this 
study, GOA is utilized to determine the input variables’ ideal values (ideal factor rates). 
The optimization process is then applied to GOA using these models. As a consequence, 
we employed GOA to look for these regression models’ ideal factor rates.

GOA imitates the organic manners of grasshopper swarms. The two steps of nature-
inspired optimization methods are exploitation and exploration. Sudden movements 
throughout the exploration are made by the search agents of the optimization method. 
Although they migrate more locally throughout exploitation. The following formulae 
represent the manners of the grasshopper and the theory of optimization search [50]:

In this equation, i stands for every grasshopper and Xi indicates where the ith grass-
hopper is located. Si is a symbol of how grasshoppers connect. Similarly, to this, Gi 
and Ai stand in for gravity power and wind advection. The random numbers in the 
range [0, 1] are the r variables. Equation (2) [50] provides information on the grass-
hoppers’ social manner (attraction–repulsion):

(1)Xi = r1Si + r2Gi + r3Ai

(2)Si =
N

j = 1

j �= i

s dij dij

Fig. 2  Patterns of relations between individuals in a group of grasshoppers [51]
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Based on this equation, s stands for the power of social forces 
(
sr = fe−r/1

− e−r
)
 , l 

stands for the seductive interval scale, and f  for attraction’s potency [50]. N  shows the 
grasshoppers’ number. A vector among both two grasshoppers is called dij (
dij =

∣∣xj − xi
∣∣) , and d̂ij represents the exact interval among the ith and jth grasshopper (

d̂ij =
(
xj − xi

)
/dij

)
 . Artificial grasshoppers’ social interactions are influenced by the s 

function. This function divides the interval among every duo of grasshoppers into three 
pieces (attraction region, repulsion region, and comfort zone). In their investigation of 
intervals from 0 to 15, Saremi et al. [50] found repulsion among [0 2.079]. They proposed 
calculating the safe interval as the separation of two artificial grasshoppers by 2.079 
units. The safe area is not where attraction or repulsion operate. This area is altered by 
the f  and l . However, the s function turns to zero if this interval exceeds 10. Conse-
quently, this function cannot generate powerful pressures throughout long intervals 
among grasshoppers. Another element of Xi is Gi (gravitational power) [50]:

In Eq. (3), g stands for the gravity constant and êg for the unity vector pointing toward 
the middle of the earth. The last element of Xi is Ai (wind advection):

According to this equation, respectively, êw  and u represent a unity vector and con-
stant drift in the direction of the wind. Traditional swarm-based methods imitate the 
swarm as it explores and uses the search area all over an answer. The GOA model of Xi 
replicates the interactions of a swarm of grasshoppers since the mathematical formulas 
are in a free area. It emulates how a grasshopper might act in multiple spatial dimen-
sions, including 2D, 3D, and hyper-dimensional areas [50].

The lower and upper boundaries in the Dth dimension sr are known as lbd and ubd . The 
comfort, repulsion, and attraction areas are reduced by the lowering coefficient c , which 
makes T̂d the optimal (target) answer. Every search unit in GOA has a one-location vector, 
which calculates every search unit’s next location. Equation (5)’s first step, the summation, 
replicates grasshopper interaction by considering the locations of several grasshoppers. T̂d 
reflects their propensity to migrate in the direction of food resources. Eventually, c simulates 
the grasshoppers’ slowing as they reach the food resource in Eq. (6) [50].

In this equation, the present iteration and the iterations’ highest number, L and l . The 
lowest and highest values are denoted cmin and cmax [50]. We utilized the same set-
tings as Saremi et al. [50], who utilized cmax = 1 and cmin = 0.00001 . In summation, 
the swarm eventually approaches a fixed goal as the safe area is reduced by the c vari-
able. The swarm also successfully pursues a moving goal by T̂d . The grasshoppers will 

(3)Gi = −gêg

(4)Ai = uêw

(5)Xd
i = c




�N

j = 1

j �= i

c
ubd − lbd

2
s
�
xdj − xdi

�xj − xi

dij




+

�Td

(6)c = cmax − l
cmax − cmin

L
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approach the objective through many repetitions. Algorithm 1 below displays the GOA 
pseudocode [50].

Algorithm 1. GOA’s Pseudocode

Salp swarm optimization ( SSA)

As presented in Fig. 3, salps move highly alluringly, often traveling in a cooperative chain 
as they seek food in the oceans and seas. This characteristic allows the swarm to move 
more fluidly and with greater kinetic energy while they search for food [52]. A single 
leader often leads the salps chain followers. A d-dimensional matrix describes a group 
chain X with n salps.

A focused food establishment is also represented by F  . Following are the modified 
positions for a leader 

(
x1j

)
:

Based on this equation, k2 and k3 are two randomly generated numbers in the range [0, 
1], and Ub and Lb stand for the top and low boundaries. According to the following equa-
tion, k1 maintains an equilibrium between exploitation and exploration:

(7)X =




x11
x21

x12
x22

. . .

. . .

x1d
x2n

.

.

.
.
.
. · · ·

.

.

.

xn1 xn2 . . . xnd




(8)x1j =

{
Fj + k1

((
Ub−j − Lb−j

)
k2 + Lb−j

)
, k3 ≥ 0.5

Fj − k1
((
Ub−j − Lb−j

)
k2 + Lb−j

)
, k3 < 0.5

(9)k1 = e

(
−4n
N

)2
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In Eq. (9), the iterations n and N  stand for the exact and highest iterations. The remain-
ing (or followers) salps’ location is determined by the formula below:

In Algorithm 2, the fundamental SSA pseudo code is described.

Algorithm 2. SSA’s Pseudocode

(10)xij =
xij + xi−1

j

2

Fig. 3  Salp chain
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Support vector regression ( SVR)

The statistical learning theory and structural risk minimization concept are the founda-
tions of the nonlinear regression method known as SVR [53]. The core of this method is 
a nonlinear conversion technique (kernel functions) that converts the initial input area 
into a novel hyperspace. The complex and nonlinear interactions among input and out-
come parameters in transformed hyperspace are described by a linear function [53, 54]. 
SVR is the procedure of identifying the function f (x) that is as flat as feasible and has a 
maximum deflection ε from the training samples 

(
xi, yi

)
 for i = 1, . . . ,N  . The complex-

ity of the model may be reduced by maximizing the function’s flatness, which affects the 
model’s overall performance. In fact, according to the learning theory [55], the gener-
alization error may be limited by the sum of two factors, one of which depends on the 
model’s complexity and the other of which depends on the fault in the training data. 
The foundation of SVR techniques is the management of model complexity throughout 
training.

The procedure is initially explained for a linear function f (x) of the following type:

Based on this equation, x,w , and b show the input vector, the parameters’ vector (or 
weight), and a constant to be specified, respectively. The data is mapped onto a greater 
dimensional area utilizing a nonlinear kernel in the context of nonlinear issues:

In this equation, the kernel function is shown by ϕ(x).
Data may be mapped onto a greater dimensional characteristic area and can also be 

used to apply a linear regression method. The w and b may be gained by minimizing the 
given function:

Subjected to:

Based on this equation, ξ∗i  and ξi show the negative and positive faults as presented in 
Fig. 4. A hyperparameter allowing for adjustment of the balance among the amount of 
fault permitted and the flatness of the function f (x) is the constant C > 0 . The penalty 
factor C and the kernel function variable ( σ ) control the generalization and fitting capa-
bilities of the SVR model, respectively. Selecting the optimal C and σ may assist in avoid-
ing under- or over-fitting while also improving the SVR model’s estimating efficiency.

Metrics

The formulations in Eqs.  14–17 depict the metrics values for assessing the models’ 
robustness and comparing with the literature to choose the outperformed model.

(11)f (x) = w.x + b

(12)f (x) = wϕ.(x)+ b

(13)min
1

2
�w�2 + c

∑N

i=1

(
ξi + ξ∗i

)






yi − �w, xi� − b ≤ ε + ξi
�w, xi� + b− yi ≤ ε + ξ∗i
withξi, ξ

∗

i ≥ 0, i = 1, . . . ,N
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1) Coefficient of determination ( R2)

2) Root-mean-square error ( RMSE)

3) Mean absolute error ( MAE)

4)A20−Index

In these equations: md defines the records, m the mean values of records, zd the pre-
dicted values, z the mean values of predictions, and D is the number of a dataset. M is 
the number of samples, and m10 is the number of samples with a recorded/predicted 
proportion in [0.8, 1.2].

Results and discussion
The conclusions of the GOA-SVR and SSA-SVR architectures are provided to forecast 
the CS of the HPC augmented with BFS and FA. As stated in the previous part, the pro-
ductivity of SVR is determined by choosing the proper values for the mixture of the 
key SVR sections. The reported and computed values of the CS of HPC throughout the 
training and testing stages for the GOA-SVR and SSA-SVR simulations are presented in 
Fig. 5. Along with the time series plots, a residual CS concentration graph with a nor-
mally distributed curves around the zero line is given. R2, RMSE, MAE, and A20−Index 
were calculated to assess the workability of the GOA-SVR and SSA-SVR (see Table 2). 
Both the GOA-SVR and SSA-SVR techniques show great potential for properly forecast-
ing HPC CS.

(14)R2
= (

∑D
d=1(md −m)(zd − z)√[∑D

d=1(mP −m)2
][∑D

d=1(zd − z)2
] )

2

(15)RMSE =

√
1

D

∑D

d=1
(zd −md)

2

(16)MAE =

1

D

∑D

d=1
|zd −md |

(17)A20−index =

m20

M

Fig. 4  Setting the soft margin loss for a linear SVR [56]
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This section of the research compares the findings of the statistical identifiers devel-
oped for the generated investigations, known as GOA-SVR and SSA-SVR, to see 
whether one version performs better than others. Furthermore, an attempt has been 
undertaken to appropriately compare the investigation’s findings to previously pub-
lished ones. The findings reveal that the combined GOA-SVR and SSA-SVR frame-
works could perform wonderfully well during predicting, with R2 values of 0.9695 and 

Fig. 5  Results from the SVR models
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0.9688 for GOA-SVR and 0.9438 and 0.9161 for SSA-SVR for the training and test-
ing sections, respectively. However, analyzing and evaluating the generated signals is 
necessary to choose the appropriate technique. When compared to the SSA-SVR, the 
GOA-SVR RMSE’s value decreased somewhat in the training portion from 3.6962 to 
2.4815 MPa. A stunning drop from 4.0861 to 2.3906 MPa was achieved in the testing 
stage. Another criterion, MAE, yielded similar findings to RMSE and shows that the 
GOA-SVR has a better ability for CS prediction at MAETrain = 2.124 and MAETest = 
1.5049 because its values were smaller than those of the SSA-SVR at MAETrain = 3.476 
and MAETest = 3.2734. A similar pattern might be found in the A20−Index indicator, 
which showed a 14 percent increase in the train portion and a 16 percent increase in 
the test section for GOA-SVR.

The computations in this article were compared with [19, 28, 38–42] in order to 
give a full review and validation. Where different types of techniques used like Gene 
Expression Programming (GEP) [38], Semi-empirical method (SEM) [40], Gaussian 
process regression (GPR) [41, 39], Extreme-gradient-boosting (XGBoost) [42], Arti-
ficial neural networks (ANNs) [19], and Multi-gene genetic programming (Multi-
GGP) [28]. As shown in Table [38], for example, exhibited a little lower  R2 and a 
much higher MAE than GOA-SVR by 0.8224 and 5.202, respectively. SEM [40], as a 
new technique, performed worse than GOA-SVR, with R2 at 0.84 significantly lower 
than 0.9695, RMSE at 6.3 lower than 3.1108 (a drop of greater than 50%), MAE at 
4.91 greater than 2.124, and A20−Index at 0.68 lower than 0.9417. Moreover, the GOA-
SVR beat the GPR [41] watching to R2 , RMSE, and MAE. Another GPR [39] depicted 
marginally better in the training phase compared to this article, but it was terribly 
poor in the testing section. Other approaches, such as Multi-GGP [28] and ANNs 
[19] performed weakly than GOA-SVR, with R2 values of 0.8046 and 0.8469, respec-
tively, which are interestingly less than 0.9688. Finally, the most recently developed 
technology, XGBoost [42], got close, although it was also weaker than GOA-SVR. 
Finally, the suggested model is the GOA-SVR framework created for simulating the 
CS of HPC with FA and BFS.

Table 2  Findings of developed SVR s and comparison with previous articles

Phase Metric Present Present Comparison purposes

[38] [28] [39] [19] [40] [41] [42]

GOA-SVR SSA-SVR GEP Multi-GGP GPR ANNs SEM GPR XGBoost (all data)

Train R2 0.9695 0.9438 0.8224 0.7885 0.9877 − 0.84 0.888 0.944

RMSE 3.1008 4.5016 − 7.36 − − 6.3 5.59 3.878

MAE 2.124 3.476 5.202 5.56 − − 4.91 3.996 2.592

A20−Index 0.9417 0.8044 − − 0.9753 − 0.68 − −

Test R2 0.9688 0.9161 0.8354 0.8046 0.8858 0.8649 0.8567 0.888 −

RMSE 2.3906 4.0861 − 7.31 − 6.329 5.968 5.597 −

MAE 1.5049 3.2734 5.19 5.48 − 4.421 4.482 3.913 −

A20−Index 0.9773 0.8188 − − 0.757 − 0.752 − −
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Conclusions
The main objective of the current research is to supply a practical way to evaluate the 
effectiveness of Intelligent machines in calculating high-performance concrete (HPC)’s 
compressive strength (CS) via stringent testing. Using the support vector regression 
(SVR) technique, we attempted to construct models that might predict HPC’s qualities 
while it was fresh and hardened properties. It used the grasshoppers’ optimization algo-
rithm (GOA) and salp swarm optimization (SSA) algorithms in this work to pinpoint 
the most critical components of SVR that need to be changed. The created techniques 
were assessed by utilizing 1030 experiments, eight input parameters, like admixtures, 
concrete age, and the major constituent of mixes, as well as the CS as the forecasting 
objective. The findings were then compared to other studies in the field.

•	 The findings reveal that the combined GOA-SVR and SSA-SVR frameworks could 
perform wonderfully well during predicting, with R2 values of 0.9695 and 0.9688 
for GOA-SVR and 0.9438 and 0.9161 for SSA-SVR for the train and test sections, 
respectively.

•	 When compared to the SSA-SVR, the GOA-SVR RMSE’s value decreased some-
what in the training portion from 3.6962 M to 2.4815 MPa. A stunning drop from 
4.0861 to 2.3906 MPa was achieved in the testing stage. Another criterion, MAE, 
yielded similar findings to RMSE and shows that the GOA-SVR has a better abil-
ity for CS prediction at MAETrain = 2.124 and MAETest = 1.5049 because its val-
ues were smaller than those of the SSA-SVR at MAETrain = 3.476 and MAETest = 
3.2734. A similar pattern might be found in the A20−Index indicator, which showed 
a 14 percent increase in the train portion and a 16 percent increase in the test sec-
tion for GOA-SVR.

•	 As shown, the suggested GOA-SVR performed the best compared to the literature. 
GEP [38] exhibited lower R2 and a much higher MAE than GOA-SVR by 0.8224 and 
5.202, respectively. SEM [40] performed worse than GOA-SVR, with R2 at 0.84, sig-
nificantly lower than 0.9695, RMSE with a drop of greater than 50%, and A20−Index 
at 0.68 lower than 0.9417. Moreover, the GOA-SVR beat the GPR [41], watching to 
R2 , RMSE, and MAE. Other approaches, such as ANNs [19] and Multi-GGP [28] 
performed weakly than GOA-SVR, with R2 values of 0.8469 and 0.8046, respectively, 
which are interestingly less than 0.9688. Finally, the most recently developed technol-
ogy, XGBoost [42], got close, although it was also weaker than GOA-SVR.

•	 Finally, the suggested model is the GOA-SVR framework created for simulating the 
CS of HPC updated with FA and BFS.
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