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Abstract 

An experimental study on the optimal gas turbine inlet air filtration system perfor‑
mance for offshore applications is presented. The objective is to conduct a comparative 
real‑time data analysis for an offshore selection of optimal filtration system. Different 
filtration configurations were set up in a wind tunnel under simulated offshore environ‑
mental settings. The considered filter grades (A, B, C, D, E and F) align with the ASHRAE 
filter class (F7, H12, E11, E10, G5 and F9). Offshore contaminants weighing 1000 g, 
ranging between 0.05 and 20 µm, were used based on ASTM standards. The contami‑
nants were loaded between 20 and 100% mass. The results indicate that the accu‑
mulated contaminant across the filter elements at 100% loading for A, B, C, D, and E 
filters ranged between 205.36 and 318.02 g. Similarly, the pressure differential change 
across the filters A–B, D–E, B–C, E–F, and filter housing inlet–outlet were estimated 
at 19.02 kPa, 16.9 kPa, 2.54 kPa, 2.86 kPa, and 2.25 kPa, respectively, while the parti‑
cle removal efficiency for A, C and D filters were highest calculated at 53%, 58.22% 
and 51.69%, respectively. The result proved significant, with an overall improvement 
in the compressor output at 205 kW for a pressure change of 2.25 kPa at the fil‑
ter housing outlet  used to establish the optimal performance. The filter elements 
recorded decreased efficiency across the compressor stages due to mass accumulation 
on the media surface area. The study inferred that a 3‑stage filtration with filter combi‑
nation A–B (F7–H12), D–E (E10–G5), and B–C (H12–E11) is suitable for an inlet filtration 
system for GTs operating within the studied offshore environment.
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Introduction
Gas turbines (GTs) have evolved over the last decade with increasing demand for power 
generation and other drive applications, especially in the oil downstream and off-stream 
sectors [1]. The offshore oil and gas sector relies greatly on power generated by GT 
plants to power the subsystems within the oil installations [2]. In applying GTs, the main 
concerns of GT users and operators are availability, reliability and maintenance costs. 
Effective maintenance is indispensable for high-level reliability, GTs, and maintenance 
approaches are imperative [3]. The performance of GT slowly deteriorates during its 
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operation, even under typical engine operating conditions [4]. Generally, GTs have dif-
ferent operating environments based on the site condition concerning contaminants that 
affect GT performance [5]. The performance of GTs in service needs to be maximised. 
However, to achieve this, clean and quality air ingestion into the engine is of the essence 
[6, 7]. Fouling, corrosion, and erosion remain prevalent factors in reducing its perfor-
mance and reliability due to the clogging of filter housing [8, 9]. The offshore Environ-
ment is peculiar with pollutants from exhaust flares, leakage of oil tanks, drilling dust, 
paint fumes, accumulation of sea salt (SS), and hydrocarbons, which are detrimental to 
the GT performance [10]. Thus a suitable inlet air filter system is required to minimise 
the effect of these contaminants on GT performance.

Studies have shown that clogging is a major challenge that affects filter elements and 
housing, thus reducing engine GT performance, operability, production efficiency and 
life span [11, 12]. Clean inlet air filtration is indispensable to maintain GT performance, 
as it averts the effect of fouling, erosion, and corrosion, correlating the production capac-
ity and longevity of GT systems [13]. The prediction of GT engine performance deterio-
ration and clogging is highly complicated. It is challenging due to structural complexity, 
non-stationary operating conditions, and other uncertainties associated with GT design 
and environmental factors [14]. In the last few decades, scholars have kept researching 
alternate filtration systems/methods to mitigate the impact of contaminants on com-
pressors and turbine blades [15–17]. Additionally, several prognostic approaches have 
been investigated by many researchers, and these techniques can be summed into two 
categories, model-based prognostics and data-driven approaches [17]. In the prognostic 
approach, it was observed that the rapid deterioration in the GT systems is due to the 
clogging of the filter housing and fouling of the surfaces of upstream sections, resulting 
in varying degrees of GT failures [18]. An observation from the research conducted by 
[19, 20] shows that some form of pollutant still enters the compressor when using three-
stage filtration systems with significant clogging of the filter house. Unfortunately, the 
dynamics and complexity of the filtration system make it difficult for operators and users 
to maximise the power generated. The latter is because filter system design customarily 
comes from the original equipment manufacturers (OME). Therefore, the design process 
lacks a corresponding analysis of the domestic condition and running state. In practice, 
the environmental conditions may vary significantly as such conditions may not have 
been factored in during the design. The latter may impose unnecessary operation/main-
tenance costs and thus reduce the GT lifespan [21, 22].

Conversely, the prognostic approach has attempted different procedures. Still, it can-
not be completely reliable since certain assumptions are made within its approach, which 
is prevalent in operations [23]. Moreover, the approach lacks experimental data from 
the literature to validate most of the research conducted from prognostic methods [11], 
which investigated the clogging trend in the filter housing of the GT engine. However, to 
minimise contaminants entering the compressor section and maintain the gas turbine 
performance, the filtration system remains a vital component to be enhanced. It should 
address the challenges mentioned above, ascertained by the experimental procedure. 
Choosing the filtration mechanism or system can be overwhelming because it involves 
several considerations and inputs. The filtration system selection should be based wholly 
on the operating philosophy and objectives for the GT, the type of contaminants existing 
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in the ambient air, the environmental peculiarity, and predictable variations in the con-
taminants in the future owing to momentary emission sources or periodic changes. The 
current study explores different filter combinations for a specific location to generate 
data to enhance GT production efficiency. The study adopts a pragmatic approach by 
using different filter classes, arrangements and selection within an experimental test rig. 
The study objective is to conduct a comparative real-time data analysis for an offshore 
oilfield that will aid in selecting an optimal filtration system for offshore applications. 
Such generated data are not found elsewhere as they are based on simulated contami-
nants within the studied oilfield. The authors have considered the study noteworthy and 
may form a basis for policy drive in this respect. Thus, reducing maintenance costs while 
extending GT life and operational time.

Methods
The materials employed include a wind test tunnel consisting of an air filter housing, 
filter bellmouth, filter elements, barometric total and static pressure (digital pitot tube) 
instrumentations, digital anemometer, centrifugal compressor (a suction mechanism), 
particle ingestion mechanism, digital anemometer, an electronic mixer, Labtech BL-5002 
weighing electronic compact scale: salt, dust (potassium sulphate) sample, and a timer. 
Also, the study environment within the framework is a simulated offshore setting, char-
acterised by high humidity contents, sea salt, hydrocarbon flare, smoke (remains of 
unburnt fuel as discharged from exhaust fumes and delivery vessels), and dust (blown by 
the wind as a result of offshore industrial activities). A flowchart of the methodology is 
presented in Fig. 1.

Simulated contaminant preparation

Sample test feed was obtained from a standard Laboratory facility in Nigeria. Potassium 
Sulphate is reported in this study as soluble test dust. The samples depicted in Fig.  2 
were prepared indoors with a total measured weight of 1000 g each of salt aerosol, mist, 
dust, and particulate matter (PM) within the size range of 0.05 to 20 µm. This conforms 
to ASTM standard sample preparation for indoor testing.

Furthermore, sample weights were measured with Labtech BL-5002 digital elec-
tronic compact scale with an accuracy of ± 0.01 µg and cleansed before being meshed 
in B01F56/725 electronic mixer. To ensure uniform mesh, Eq. (1) was used to determine 
the percentage per mixture of each contaminant before testing commenced.

where Mc is the mass concentration in submicron.
The summary of each contaminant’s specifications is shown in Table 1. These samples 

were obtained for the experimentations because they represent the significant contami-
nants influencing filtration system performance within the studied offshore environs.

Test rig setup

The test rig is a wind tunnel with a centrifugal compressor as a primary drive system. 
The rig was modelled to resemble a typical offshore GT filtration system at the Usan 
oilfield, Rivers State, Nigeria. The wind tunnel test rig layout consists of different 

(1)% pm = 0.0053×Mc
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Fig. 1 Methodology flowchart

Fig. 2 Simulated contaminants sample
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grades of filter elements arranged for various filtration system configurations in the 
transparent plexiglas tunnel that channels airflow at specified velocities. Barometric 
pressure instrumentations were also installed at different flow states of the filtration 
stages to measure both static and total pressures simultaneously for each test sample, 
as indicated in Fig. 3. The test rig also consists of a filter bellmouth of converged con-
figuration that houses the 132–263-kW SLT300 centrifugal compressor which acts as 
both the suction and aerodynamic compressible performance mechanism.

The compressor is located downstream of the test rig. The speed is adjusted by a 
frequency converter that enables testing over a wide range of air velocities (± 15 m/s) 
through the filter elements. The wind tunnel accommodates a wide range of configura-
tions and allows testing of various aspects of filter elements. The rig was set up in line 
with HVAC standards. The main filter-holding module was made of plexiglas to enable 
the operator to visually observe the filter performance during testing.

Filter studied

A combination of EPA and HEPA filters was selected to remove ingested contami-
nants. Understanding that the HEPA filter has a high-efficiency filtration capacity of 
removing particulate matter ± 0.1 µm [24]. Different grades of EPA and HEPA filter 
elements (A, B, C, D, E, F) in accordance with ASHRAE filter class (F7, H12, E11, 
E10, G5, F9) were studied, with filters A to C and D to E operating as high veloci-
ties filters (5.4–10  m/s) and low-velocity filters (3.5  m/s) respectively. The size 
(12 × 12 × 0.75  cm) filter elements with a face area of 144  g/cm2 were specifically 

Table 1 Summary of simulated contaminants

Contaminants Sample quantity (g) Per water (ml) % per mixture

Salt aerosol 1000 1 53

Mist 1000 1 53

Dust 1000 1 53

PM 1000 1 53

Fig. 3 Test rig layout
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selected to fit in the test cell. At the same time, they were varied at different contami-
nant loading conditions. To minimise errors, filter elements were cleansed with brine 
water and weight was determined before loading. Filter elements A, B, C, D, E, and F 
had corresponding weights of 347.1 g, 345.9 g, 341.2 g, 315.3 g, 314.5 g, and 314.8 g, 
respectively. The schematic layout of high and low-velocity filter elements for the fil-
tration system studied is depicted in Fig. 4a and b, in that order. Furthermore, the fil-
ter elements were varied interchangeably while filter performance data was collected 
during condition monitoring. The proposed configuration was capable of removing 
contaminants ingression with accuracy ± 0.01 µm.

Experimentation

The units in the instrumentation were kept at the default setting while varying the 
velocity (5  m/s and 10  m/s) at constant atmospheric pressure (101.325  kPa) for the 
ingested contaminants. Filter elements were labelled A, B, C, D, E and F for easy 
assessment of their position in the intake configuration of the filter housing. Before 
the primary test began, an initial test was carried out without the filter elements to 
check the characteristics of air velocity, pressure, and uniformity of the flow. The 
velocity was measured through a digital anemometer (RSA485/0–20 m/s with preci-
sion 0.1  m/s) and pressure through the digital pitot tube (accuracy 1% reading and 
measurement uncertainty due to resolution 0.001 bar) installed at the inlet and outlet 
duct. The uniform wind velocity inside the test section was estimated as the average 
measured inlet velocity to the outlet velocity to be 12 m/s. The uniform air pressure 
of wind inside the test section amounted to 100.32 kPa. This was carried out within 
a time frame of 15 min. All measurements were observed by digital instrumentation 
illustrated in Fig. 3. To ensure steady-state conditions, each speed setting on the fre-
quency-controlled compressor was held constant for a minimum of 6 min. Prepared 
contaminants percentage per mixture (% pm) was taken from the test cell and sup-
plied into the airstream by impingement nozzles at 121  cm upstream from the test 
model. Two nozzles were used to ensure adequate coverage of the entire face area 
of the test filter without significant wetting of the air duct walls upstream from the 
filter element. The static and total pressure of filter elements A–B, B–C, C–D, D–E, 
and E–F were recorded along the instrumentation. The inlet and outlet air filter test 
performance data for the test housing was accounted for and analysed. An electronic 
mixer was used to determine the particulate matter (PM) mesh load for the prepared 
contaminants studied and the filtered air to the centrifugal compressor.

Fig. 4 Layout of filter elements studied. a High velocity (A, B, C). b Low velocity (D, E, F)
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Filter element performance

The experimental result of the influence of airflow leaving inlet housing (Hi) to filter 
element A (Hi-A), A–B, B–C, C–D, D–E, E–F, and inlet housing to housing outlet (Hi-
Ho) differentials were used to evaluate the performance characteristics of the GT under 
study. The specific heat ratio of air ( γ ), the specific heat capacity of air (Cp), air density at 
the inlet (ρ), and the temperature difference across compressor (∆T) were assumed to be 
1.4, 1.005 kJ/kgK, 1.2 kg/m3, and 22.2 °C, respectively [24].

The pressure differential (∆Pt) and filter loading efficiency (ηf) were determined from 
Eq. (2, 3 and 4), respectively [25, 26].

The accumulated mass flow (Wa) on each filter element is determined by Eq. (4) [25] as 
a function of the weight of tested filter elements.

The flow density (ρ) is obtained from Eq. (5)  [27, 28]

The flow rate (q) across each filtration stage is calculated from Eq. (6) [27, 29]

where Pt and Ps are obtained from the test instrumentations.
Furthermore, the housing intake (Hi) and outlet (Ho) parameters obtained from the 

experimentation were used to evaluate the compressor’s performance. The performance 
was evaluated in terms of compressor volumetric flow rate (Qf) and the power drawback 
as sensible capacity (ꟼs) of the compressor motor as presented in Eqs. (7) and (8), respec-
tively [30, 31].

Investigation of mass loading (ML) on filter elements

Mass loading of 20%, 40%, 60%, 80% and 100% ingression of particulate matter on filter 
elements in filter housing were investigated at intake. Performance health monitoring of 
filter elements involved monitoring the static and total pressure over the intake housing 

(2)�Pt = Pi − Pe

(3)Wa = wm − f (A,B,C ,D,E, F)

(4)ηf =
We −Wl

We
× 100

(5)ρ =

Ps

gh

(6)q =

√

2Pt

ρ

(7)Qf = q

√

�Ps

�Pt

(8)qs = Qf ρ(CP�T )
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using pressure instrumentations. Since the experiment did not consider variations in 
particle size distribution across the face area of individual filter elements, mass accu-
mulation  (Wa) was evaluated. Other performance parameters (efficiency and flow rate) 
were calculated from Eqs. (4) and (6), respectively. The accumulated mass flow was also 
evaluated from Eq. (3), whereas the weight of loaded filter elements was accounted for 
using Labtech BL-5002 weighing compact electronic scale.

Results and discussion
Effect of mass loading (ML) on static and total pressure

The most accumulated filter elements at 100% loading condition were recorded at 
intake of the filter housing. That is, A and D (318.02  g and 310.15  g). However, B, 
C, E, and F showed substantial contaminant mass distribution of 213.14 g, 208.14 g, 
208.13 g, 205.36 g, and 199.50 g, respectively. The effects of various particulate loading 
(20%, 40%, 60%, 80% and 100%) on filter elements across filter housing are presented 
in Figs. 5, 6, 7, and 8. Figure 5 accounts for the effect of mass loading on the PS within 
the stages of filtration.

Fig. 5 a Static pressure at 10 m/s and b static pressure at 5 m/s
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From the figures, static pressure decreased at the inlet of the filter housing as contami-
nant concentration increased from 20 to 60%, corresponding with filter elements Hi-A, 
A–B, B–C, and D–E. It maintained linear correlation at 80%, 100% loading for both high 

Fig. 6 a Total pressure at 10 m/s and b total pressure at 5 m/s

Fig. 7 Total pressure (Pt) vs static pressure (Ps)
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and low velocities, as observed in Fig. 5a and b. Similarly, Fig. 6a and b show total pres-
sure across filter housing at various loading conditions while maintaining constant set-
up velocities at 10 m/s and 5 m/s, respectively.

When intercepted with filter media, the Pt across each face area of filter elements 
resulted in decreased pressure across the stages of filtration. However, filter combina-
tions A–B and B–C showed higher differential (60–100% loading). In contrast, D–E and 
E–F showed less incremental in the differential, as discussed subsequently. The relation-
ship between the static and total pressure is shown in Fig. 7.

Effect of mass loading on the pressure drop across filter housing

Figure  8 presents the differential pressure across the filter housing. At 80% loading 
condition, filter elements A–B and D–E recorded the highest-pressure differential of 
6.21 kPa and 6.05 kPa, respectively, when contaminants were ingested. The pressure dif-
ferential across the housing resulted from the ingested contaminant into the impinge-
ment nozzle along the flow path captured by the filter media. However, within the two 
velocities considered, the overall pressure differential (Hi-Ho) recorded 1.05  kPa less 
than B–C and E–F filtration stages with 4.24 kPa and 2.827 kPa, respectively. This result 
was validated by the studies of [32].

Effect of mass loading on filter elements

The effect of ML is reported in terms of mass accumulated on the surface area of fil-
ter elements A, B, C, D, E and F. This accounts for the changes in airflow as the filters 
attained maximum holding capacity operating at varied speeds (5 m/s, 10 m/s). Figure 9 
shows how particulate matter is distributed in each varied stage of the filtration housing. 
The filter elements showed particulate deposition at each varied stage. All filter elements 
showed decreased inlet mass flow across the filtration stages within the filter housing. 
However, filter elements A and D at 80% to 100% loading showed maximum accumula-
tion of 318.02 g and 310.15 g, respectively, while maintaining minimal ML.

When comparing the performance analysis of each filter element can deduce from 
Fig. 10 that the same trend holds for each varied velocities of 5 m/s and 10 m/s. This 

Fig. 8 Differential pressure (∆p) across filter housing
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indicates that the first filter effectively removes particles from the airstream and can 
use pre-filters to remove large particles that contribute the most to filter loading [32]. 
Filter elements B, C, and E decreased the mass accumulation of 547.1 g, 493 g, 440 g 
and 340 g, respectively, when the filters were tested within 5 h of running time. From 

Fig. 9 a Mass accumulation @5 m/s and b mass accumulation @10 m/s

Fig. 10 Comparative mass concentration on filter elements



Page 12 of 18Effiom et al. Journal of Engineering and Applied Science          (2023) 70:131 

[33], this phenomenon results from particulate matter distribution across the flow 
path with different sizes. This is in accordance with ASHRAE and EN-2022 stand-
ards for HVAC sample preparation of contaminant procedural testing. Furthermore, 
deposits and droplets were observed at the plenum area [34]. As noted by [33, 34], 
this could be due to several reasons, such as; clogging of media area, filter over-
loading, particle bombardment, and contaminant accumulation. According to [35], 
Accumulated mass flow on filter elements plays a significant role and determines the 
performance of the filter media, inlet parameters, and overall performance of the GT 
turbine system.

Effect of filtration efficiency across filter elements

The filter element performance was evaluated across stages of filtration housing as a 
function of the filter element’s ability to remove particulate matter. It was determined 
based on the effectiveness of the filter to remove contaminants from the airstream. Fig-
ure 11 presents the result of filter efficiency across the filtration housing.

In Fig. 11, at 20% contaminant mass loading, all filter elements performed at their peak 
with filter efficiencies of 98.9%, 96.7%, 95.6% and 95.4% when compared with loaded fil-
ters A, B, C, D, E, and F (with contaminants). As mass loading increased with time, fil-
ter elements showed a decrease in filtration efficiencies (from 58.2 to 25.1%), signifying 
filters have reached their holding capacity, evident at all varied concentrations, which 
results in back pressure, thereby reducing the speed of the compressor of the filtration 
test rig. This is affirmed by [36] when studying the mathematical modelling of a multi-
stage filtration system’s trapezoidal shape. In a typical gas turbine operation under con-
sideration, the effect could result in fouling, corrosion, surge, damage to the media face 
area, and high maintenance cost. In addition, maintaining a constant power supply may 
require more energy [37].

Relationship between accumulated mass (Wa) and pressure drop (∆p)

Variations in particulate matter distribution over the face area (FA) for a GT intake fil-
tration system were enhanced by the experimental result from the test rig. In Fig. 12, the 

Fig. 11 Filter efficiency across filtration housing
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relation indicated accumulated mass concentration on filter FA, which caused airflow 
resistance over individual filter elements.

The overall trend holds that at set-up velocities (10 m/s, 5 m/s), Filter A (1522.75 g), D 
(1448.75 g) and B (1011.18 g) elements at the first stage with higher accumulated mass, 
had higher differential pressures of 116.1 kPa, 84.5 kPa, and 95.1 kPa respectively across 
the housing. This is in comparison with filter elements C, E, and F, with less accumula-
tion at 969.33  g, 947.27  g, and 745.54  g. Whereas filter element D deviated from the 
trend with a lower differential despite an increased mass higher than filter element B, 
attributed to possible variations in collective particle type and size distribution over filter 
surface area as well as clogging of filter media [5]. It is also observed that with increased 
velocity, shedding of accumulated mass over media occurred.

Relationship between filter flow rate (q) and pressure drop (∆p)

Figure  13 shows the relationship between pressure drop and filter flow rate at differ-
ent velocities (10 m/s and 5 m/s, respectively). It can be established that the flow rate 
increases with increased pressure drop. According to [36], volumetric flow occurred in 
relation to filter resistance to airflow, thus preventing foulant from entering the engine. 
This could have a negative impact on the media area, thus, resulting in an increase in 
clogging and compressor work.

The filter resistance to airflow at 1.05 kPa to 6.18 kPa was recorded across filter hous-
ing. This trend continued throughout the stages of filtration housing.

Relationship between accumulated mass (Wa) and filtration efficiency (η)

The result obtained at different ML levels, filter elements A, D, E, and F, showed a 
linear relationship with different efficiencies resulting from particle deposition on ele-
ments (Fig. 14). Filter B and C demonstrated a non-linear relation resulting from the 
arrangement on the filtration housing. In a typical gas turbine operation, as contami-
nants are distributed within surrounding installations when filters become loaded, this 
may pose challenges to operators and affect the overall performance of the GT system. 
Maintenance cultures have been employed in this regard to reduce the impacts.

Fig. 12 Relationship between accumulated mass and pressure drop
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Effect of pressure drop (∆p) on filtration efficiency (η)

Figure 15 shows the overall relationship between pressure drop and the efficiency of 
filter elements. As filter media accumulates particulate matter across filter housing, 
a significant change occurred between performance indicators. When evaluated, the 

Fig. 13 Overall relationship between pressure drop and filter flow rate a 10  m3/s and b at 5  m3/s

Fig. 14 Relationship between filtration efficiency (η) and mass accumulation (Wa)
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overall result of pressure drops and filtration efficiency showed that the total pressure 
differential amounted to 116.1 kPa (at 10 m/s) and 71.8 kPa (at 5 m/s). This may be 
due to the high resistance of particulate matter accumulating on media faces against 
airflow between the input and output faces of filter housing [38]. Therefore, it can 
be deduced that the relationship between efficiency and pressure differential is non-
linear. This further indicates the distribution of particles across the airstream channel 
as contaminants’ sizes intercept with filter media.

Experimental result validation

Comparison of summarised test results recorded at housing intake (Hi) to housing 
outlet (Ho), with literature for total differential pressure (∆Pt), change in volumetric 
flow rates (∆Qf), and change in the sensible capacity of the compressor (∆ꟼs) is pre-
sented in Table  2. This result was validated by the literature of [31, 27, 32, and 40] 
and conforms to the filtration flow phenomena. The increase in pressure differential 
resulted in a loss in the compressor’s sensible capacity and a decrease in flow rate. The 
consequences may be huge, considering that industrial GT plants rely so much on the 
filtration system to enhance their health, performance, and life.

Fig. 15 Relationship between overall pressure drop and efficiency of filter elements

Table 2 Validation of result with literature

Outlet–inlet Present study @ 
10 m/s

Present study @ 
5 m/s

 [24]  [26]  [31]  [39]

∆Pt (kPa) 101.80 58.20 215.00 1651.4 30.9 50

∆Qf  (m
3/s)  − 0.83  − 0.22  − 0.05  − 10  − 450  − 123

∆ꟼs (kW)  − 22.29  − 6.08  − 7.73  − 7.73  − 3  − 330
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Conclusions
The analysis and results obtained from the study suggest that this methodology is prom-
ising in simulating offshore contaminant loading to select the best GT filtration system. 
The investigation made the following conclusions: The evaluated pressure drop for fil-
ters A–B, D–E, B–C and E–F across the housing were 19.02  kPa, 16.9  kPa, 2.54  kPa, 
and 2.86 kPa. However, an intake to outlet housing (Hi-Ho) pressure drop was 2.25 kPa. 
Accumulated mass across filter elements A, B, C. D, E, and F face area at the end of con-
dition monitoring (20–100%) were 318.02 g, 213.14 g, 208.13 g, 310.15 g, 205.36 g, and 
199.5 g, respectively. The efficiency of filter elements evaluated for the overall filter load-
ing condition (20–100%) was A (53%), B (49.28%), C (58.22%), D (51.69%), E (34.23%), 
and F (33.25%). Across the varied filter elements B–C and E–F corresponding with filter 
class H12–E11 and G5–F9, a minimal pressure drop at 2.54 kPa, and 2.86 kPa, with com-
pressor performance improvement of 22% and 31%, respectively. The results showed the 
effect of pressure drop, accumulated mass of filter element, and filter flow rate affect the 
filtration system and compressor performance. These results could aid GT users in decid-
ing on filtration system selection, maintenance, and replacement procedures. In the study 
location, a 3-stage filtration combination of filter elements A–B, B–C, and D–E corre-
sponding with filter class F7–H12, H12–E11, and E10–G5 was recommended for the GT 
filtration system having effectiveness at 51.14%, 53.75%, and 43% respectively.
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