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Abstract 

Using groundnut shell ash (GSA) as a component in concrete mixtures is a viable 
approach to achieving sustainability in building practices. This particular kind of con-
crete has the potential to effectively mitigate the issues associated with high levels 
of  CO2 emissions and embodied energy, which are primarily attributed to the exces-
sive utilization of cement in conventional construction materials. When GSA is uti-
lized as a partial replacement for cement, the strength characteristics of concrete are 
influenced not only by the quantity of GSA replacement but also by several other 
factors, including cement content, water-to-cement ratio, coarse aggregate con-
tent, fine aggregate content, and curing length. This work demonstrates a predictive 
model for the compressive strength (CS) of GSA mixed concrete using ML methods. 
The models were constructed with 297 datasets obtained from published literature. 
These datasets included various input variables such as cement content, GSA content, 
fine aggregate content, coarse aggregate content, water need, and curing duration. 
The output variable included in the models was the CS of concrete. In this study, 
a set of seven machine learning algorithms was utilized as statistical assessment tools 
to identify the most precise and reliable model for predicting the CS of GSA mixed 
concrete. These techniques included linear regression, full quadratic model, artificial 
neural network, boosted decision tree regression, random forest regression, K near-
est neighbors, and support vector regression. The present study evaluated several 
machine learning models, and it was shown that the random forest regression model 
had superior performance in forecasting the CS of GSA mixed concrete. The train 
data’s R2 is 0.91, with RMSE of 2.48 MPa. Similarly, for the test data, the R2 value is 0.89, 
with an RMSE of 2.42 MPa. The sensitivity analysis results of the random forest regres-
sion model indicate that the cement content primarily drives the material’s CS. Sub-
sequently, the curing period and GSA content significantly impact the CS. This work 
systematically evaluates the CS of GSA mixed concrete, contributing to the existing 
body of knowledge and practical implementation in this domain.
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Introduction
Cement manufacturing is a significant contributor to the emission of  CO2 into the 
atmosphere. It is accountable for around 8% of global anthropogenic  CO2 emis-
sions. Cement production totals over 4 billion tonnes [48], and each tonne of cement 
releases approximately 900 kg of  CO2 [7]. The use of fossil fuels to generate heat to 
initiate the cement manufacturing procedure, along with the thermal breakdown of 
calcium carbonate during the clinker manufacturing process, leads to significant car-
bon dioxide emissions. A total of 30–40% of the energy used in this process comes 
from fuel combustion, while 60–70% comes from decarbonization [10, 16, 17, 60]. 
Despite its high  CO2 emissions, cement is necessary for most building materials, 
including concrete.

The construction industry is increasingly faced with the need to develop alterna-
tive cementitious materials that may serve as viable alternatives for cement in building 
applications [57]. This is due to the urgent need to reduce  CO2 emissions and embodied 
energy since these factors play a crucial role in mitigating global warming in the long 
term [42]. Building materials often use a diverse range of supplementary cementitious 
materials [8, 9]. These materials encompass metakaolin [55], silica fume [20], volcanic 
pozzolanas [22], granulated blast furnace slag [38], and limestone [61]. Utilizing these 
industrial waste by-products as a financially viable substitute for cement does not impair 
the mechanical properties and long-lasting nature of the construction materials. Never-
theless, it is expected that the accessibility of these industrial by-products will diminish. 
Furthermore, it should be noted that the accessibility of these resources is limited, espe-
cially in less developed nations [9]. The construction sector is very interested in using 
agro-waste as a cement substitute. Agro-wastes have been widely used as cement substi-
tutes, including sugarcane bagasse ash [21], rice husk ash [26, 34, 53], and sawdust ash 
[5]. The existing research literature indicates that construction materials, including agro-
waste, have been found to meet the minimal standards given in regional building codes. 
Moreover, the use of these agricultural by-products in the manufacturing of building 
materials results in a decrease in ecological harm [59]. Most agricultural waste is unpro-
cessed, unused, and often indiscriminately burned, dumped, or landfilled [45].

One of these agricultural wastes is groundnut shells, a by-product of groundnut (pea-
nuts) manufacturing. Global peanut production was peak at around 47 million tonnes in 
2020. China was the largest producer, accounting for 40% (or 18 million tonnes) of world 
peanut production [49, 52]. About 21–29% of the weight of the peanut is in the shell 
[11, 13]. Thus, the peanut industry generates about 11 million tons of peanut shell waste 
yearly [40]. In addition, a significant quantity of peanut shells is utilized as biomass for 
energy. However, a greater volume of discarded peanut shells is disposed away with ordi-
nary waste. Using groundnut shells and their derivatives as construction materials is a 
viable solution to mitigate the environmental challenges linked to cement consumption 
and the management of groundnut shell waste. Numerous research has been conducted 
on the usage of GSA as a potential alternative to cement in concrete and cement mortar. 
Additionally, GSA has been investigated as a stabilizing agent for soil, road foundation, 
and masonry blocks. Furthermore, its application as a precursor in the development of 
geopolymer materials has also been explored.
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When GSA is utilized as a partial substitute for cement, the strength characteristics of 
concrete are influenced not only by the quantity of GSA replacement but also by several 
other factors, including cement content, W/C ratio, coarse aggregate content, fine aggre-
gate content, and curing length. Therefore, it is crucial to examine the impact of these 
factors on the CS of GSA blended concrete and put forward a method for forecasting the 
CS of GSA blended concrete. Nevertheless, a prediction model for the CS of concrete 
with GSA has not yet been developed.

In recent years, engineers and academics have become increasingly interested in using 
ML techniques to predict the characteristics of building materials [14, 33, 50, 51]. The 
properties of GSA mixed concrete are sensitive to the mixing proportions and are influ-
enced by many variables, making ML approaches the best option for predicting these 
properties. There is a suggestion to use more advanced techniques to minimize reliance 
on laboratory testing. Additionally, engineers should be equipped with essential tools 
and mathematical equations to predict the outcomes of tests [49, 56]. ML techniques 
may be used to provide alternate approaches and resolutions for both linear and nonlin-
ear scenarios, whereby mathematical models are unsuccessful in precisely defining the 
interdependencies among the variables implicated in a given issue [15, 62].

The primary objective of the current study is to use ML approaches to forecast the CS 
of GSA mixed concrete. Consequently, mixed design elements are utilized to develop 
predictive models for CS, enabling the utilization of these models in the construction 
industry without the need for previous theoretical comprehension. To determine the 
most precise and dependable model for predicting the CS of GSA blended concrete, a 
statistical evaluation was conducted using seven distinct machine-learning techniques. 
These techniques included linear regression, full quadratic model, artificial neural net-
work, boosted decision tree regression, random forest regression, k-nearest neighbors, 
and support vector regression. The proposed models provide a means to enhance the 
accuracy of predicting the CS of GSA mixed concrete.

Methods
The approach used in the present work encompasses a sequence of procedures, visually 
shown as a flowchart in Fig. 1. The primary procedures include the following actions:

Fig. 1 Methodology of research
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• Generating and gathering information about GSA mixed concrete from existing 
scholarly sources.

• The predictors for the models include cement content (CC), groundnut shell ash 
content (GSA), fine aggregate (FA), coarse aggregate (CA), quantity of water content 
(WC), and curing duration (t). The target value of the models is the CS of concrete.

• The acquired data is randomly divided into two groups, with two-thirds of the total 
data assigned to the training group and the remaining one-third allocated to the test-
ing group.

• Developing predictive models using LR, FQ, ANN, BDT, RFR, KNN, and SVR 
machine learning algorithms.

• Assessing the proposed models based on the following performance indicators: R2, 
RMSE, MAE, SI, a-20 index, and OBJ.

• The present study uses SHAP analysis to perform sensitivity analysis to identify the 
crucial parameter for accurately forecasting the CS of GSA mixed concrete.

Data collection

The database used in this work was constructed using seventeen previously published 
experimental investigations, as shown in Table 1. These studies were employed to create 
297 experimental datasets for the database. All datasets included in this study were gen-
erated via samples that adhered to internationally recognized standards for casting and 
testing. The parameters used in this database were as follows:

• Cement content, CC (in kg/m3)
• Groundnut shell ash content, GSA (in kg/m3)
• Fine aggregate content, FA (in kg/m3)
• Coarse aggregate content, CA (in kg/m3)
• Water content, WC (in kg/m3)
• Curing period, t (in days)
• Compressive strength, CS (in MPa)

The collected data were partitioned into two groups with the RAND function. The first 
subset of 198 data sets accounted for about two-thirds of the total data and was used for 
model development. The remaining dataset, which accounted for one-third of the total 
data, was utilized to verify the models constructed based on the first group.

Machine learning modeling

Linear regression

LR is a supervised ML approach that is utilized to determine the linear association 
between a dependent parameter and a set of independent parameters. The model pos-
tulates a linear association between the input parameters and the only output parameter. 
The purpose of the technique is to recognize the optimal linear equation that can effec-
tively forecast the value of the dependent variable by using the independent variables. 
The linear regression (LR) model, as stated in Eq. (1), was used to predict the CS of GSA 
blended concrete.
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where a0 to a6 are model parameters.

Full quadratic (FQ) model

The full quadratic regression model is a kind of regression analysis that represents the 
association between the independent and the dependent parameters as a polynomial 
of degree two in the independent parameters. Polynomial regression is a kind of linear 
regression that involves using a polynomial equation to represent data that demonstrates 
a nonlinear relationship among the dependent and independent parameters. Equation 2 
introduces a complete quadratic formula that provides a relationship between CS and 
the first and second orders of each independent parameter [27].

where β0 to β27 are model parameters.

Artificial neural network (ANN) model

ANNs are computer models that draw inspiration from the functioning of biological neu-
ral networks. ANNs consist of linked processing nodes, often called neurons, which can 
acquire knowledge and identify patterns within incoming data. ANNs are used for pattern 

(1)CS = α0 + α1(CC)+ α2(GSA)+ α3(FA)+ α4(CA)+ α5(WC)+ α6(t)

(2)

CS = β0 + β1(CC)+ β2(GSA)+ β3(FA)+ β4(CA)+ β5(WC)+ β6(t)+ β7(CC)
2

+ β8(GSA)
2
+ β9(FA)

2
+ β10(CA)

2
+ β11(WC)22+ β12(t)

2
+ β13(CC)(GSA)

+ β14(CC)(FA)+ β15(CC)(CA)+ β16(CC)(WC)+ β17(CC)(t)+ β18(GSA)(FA)

+ β19(GSA)(CA)+ β20(GSA)(WC)+ β21(GSB)(t)+ β22(FA)(CA)

+ β23(FA)(WC)+ β24(FA)(t)+ β25(CA)(WC)+ β26(CA)(t)+ β27(WC)(t)

Table 1 The experimental data set collected from published literature

Ref. Cement 
(kg/m3)

GSA 
(kg/m3)

FA  
(kg/m3)

CA  
(kg/m3)

Water 
(kg/m3)

Curing 
period (days)

Strength 
(MPa)

No. of 
data

Abro, Kumar et al. [2] 264–310 0–46.5 620 1240 155 3, 28 13.2–36.9 12

Alabadan, Olutoye et al. [4] 155–310 0–155 620 1240 171 7, 14, 21, 28 2.3–31.4 24

Buari, Olutoge et al. [8] 276–460 0–184 650 1068 170 7, 14, 28 9.8–49.0 15

Dharani and Selvan [12] 263–376 0–113 636 1103 177 7, 28 11.1–29.0 12

Kanchidurai, Nanthini et al. [28] 314–392 0–78.4 477 1353 216 7, 28 19.9–29.8 10

Karthikeyan, Saravanan et al. [29] 309–425 0–106 510 1234 234 7, 14 5.5-29.1 12

Krishnan and Nizar [31] 326–383 0–57.5 549 1184 192 7, 14, 28 7.2–30.1 21

Ige, Anifowose et al. [18] 248–310 0–62 620 1240 186 7, 14, 28 10.5–24.3 15

Ikumapayi, Arum et al. [19] 260–310 0–49.6 620 1240 186 7, 28 12.6–16.3 14

Lakshmi and Sagar [32] 202–310 0–109 620 1240 186 7, 14, 28 5.9–23.2 24

Mujedu and Adebara [35] 77.5–310 0–233 620 1240 171 7, 28 1.8–26.7 24

Nwofor and Sule [36] 186–310 0–124 620 1240 171 7, 14, 21, 28 2.0–25.5 20

Ogork, Uche et al. [37] 191–318 0–127 705 1252 175 7, 28, 60, 90 5.5–31.1 24

Pandi, Ganesan et al. [39] 289–385 0–96.3 577 1154 193 28, 56, 90 18.2–26.0 18

Raheem, Oladiran et al. [44] 264–368 0–73.6 620–846 956–1240 171–202 7, 14, 21, 28 8.2–35.1 28

Samuel [46] 353–470 0–118 705 940 282 3, 7, 21, 28 4.8–26.3 24

Overall 77.5–470 0–233 477–
846

940–1353 155–282 3–90 1.79–49.0 297
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recognition, data classification, and making predictions. ANNs have self-learning profi-
ciencies and can provide better results as more data is available [24, 25]. The output of 
each layer is calculated by taking the sum of its inputs and applying a nonlinear function 
to it. Given the absence of a standardized approach for constructing the network architec-
ture, the number of hidden layers and neurons was determined by implementing a param-
eter optimization technique [23]. To mitigate the issue of overfitting, a decision was made 
to maintain simplicity in the model architecture by using a solitary, hidden layer with three 
neurons. After several tests and cross-validation, these values were chosen.

Random forest regression

RFR is a kind of ensemble ML technique that creates several decision trees during the 
training phase. This method is used in regression problems, whereby the resultant pre-
diction is the mean or average of the individual trees [6]. The RFR method is a widely 
used ML technique that aggregates the predictions of several decision trees to get a uni-
fied outcome. The acceptance of this tool has been driven by its user-friendly interface 
and versatile functionality, which enables it to address classification and regression tasks 
effectively.

Boosted decision tree

The BDT is an ML methodology that integrates numerous decision trees to enhance 
the precision of predictive outcomes [47]. It works by training each new tree to empha-
size the training instances that were previously mis-modeled. This is done by fitting the 
residual of the trees that preceded it. Compared with random forest regression with a 
boosted decision tree, the main difference between the two methods is that in boosting, 
each tree is dependent on prior trees, while in random forests, each tree is independent 
of the others [41].

K‑nearest neighbors

KNN is a nonparametric approach used in supervised learning to address classification 
and regression challenges [30]. The input comprises the k-nearest training instances 
within a given data collection. The main difference between KNN and ANN is that 
KNN is a simple algorithm that relies on the proximity of data points to make predic-
tions, while ANNs are more complex models that can learn to recognize patterns in data 
through training.

Support vector regression

SVR is a supervised ML algorithm specifically designed to address regression problems. 
SVR is a computational technique that aims to identify a mathematical function that 
effectively models the association between input and output variables, minimizing the 
overall error [30]. Additionally, SVR permits some flexibility within a predefined range, 
allowing for some departure. The input data is transformed by SVR into a high-dimen-
sional feature space, allowing a linear model to be fitted using kernel functions. SVR is 
robust to outliers and can handle nonlinear and high-dimensional data.
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Performance indicators

The evaluation of the created models encompasses several metrics, including the R2, 
RMSE, MAE, scatter index, a20-index, and OBJ. It is anticipated that the values of the 
a20-index will be equal to one for an ideal prediction model. The a20-index, as devel-
oped, has the benefit of possessing a tangible engineering interpretation. It quantifies the 
sample count that meets anticipated values within a 20% deviation from experimental 
values. Equations 3, 4, 5, 6, 7 and 8 are used to calculate each specified criterion.

where
Pi: Predicted CS
Ei: Experimental CS
P : Mean of predicted CS
E : Mean of experimental CS
N: Total number of dataset
N20: Total number of predicted to the measured data of CS ratio ranged from 0.8 to 

1.2
ntr: Number of the training dataset
nte: Number of the test dataset
The R2 value and the a-20 index typically range from zero to one, with a value of 1 

being regarded as the optimal outcome. The RMSE, MAE, and OBJ values range from 
zero to infinity. It is advisable to minimize these values, with zero being the optimal 
outcome. Additionally, if the value of the SI metric is less than 0.1, the model may be 
classified as exhibiting good performance. The SI value ranges from 0.1 to 0.2, 0.2 to 
0.3, and more than 0.3, denoting the model’s performance as excellent, fair, and bad, 
respectively [1, 3, 27].

(3)R2 =
i Pi − P Ei − E

i Pi − P
2

i Ei − E
2

2

(4)RMSE =

√

∑n
i=1 (Ei − Pi)

2

N

(5)MAE =

∑n
i=1 (|Ei − Pi|)

N

(6)SI =
RMSE

E

(7)a20index =
N20

N

(8)OBJ =

(

ntr

N
×

RMSEtr +MAEtr

R2
tr + 1

)

+

(

nte

N
×

RMSEte +MAEte

R2
te + 1

)
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Results and discussion
Statistical analysis

Statistical analyses were conducted to evaluate the connection among the factors listed. 
The relationship between CS and the dependent variables is shown in Fig. 2. The findings 
suggest a reasonable association exists between the amount of cement used and the GSA 
(ground slag aggregate) content with respect to CS, as seen in Fig. 3. However, the rela-
tionship between fine aggregate, coarse aggregate, water, and curing time with CS was 
low. The statistical analysis findings are succinctly presented in Table 2.

Machine learning model results

Figure  4 illustrates GSA blended concrete’s predicted vs. measured CS values for all 
seven machine-learning models discussed. Table 3 summarizes the performance indica-
tors for each model.

The LR model is a fundamental mathematical model used to predict the CS of con-
crete. The outcome of the LR model is revealed in Eq. (9). Figure 8a illustrates the cor-
relation between the anticipated and observed CS. The training dataset has an R2 value 
of 0.608 and an RMSE value of 5.11 MPa. Moreover, the testing dataset exhibited an R2 
value of 0.643 and a RMSE of 4.29 MPa. Based on the obtained R2 and RMSE data, it can 
be concluded that the performance of the LR model is unsatisfactory. The outcomes of 
the LR model are among the least effective, mainly owing to its simplistic mathematical 
formulation. The error range in the training dataset is −20 to 20%. This indicates that 
55% of the data is within the range of 0.8 to 1.2 for the ratio used to estimate CS.

Due to its advanced mathematical formulation, the FQ model is one of the most suc-
cessful mathematical models. It has been developed using mathematical criteria such 
as constants, linearity, variable product terms and interactions, and quadratic variables. 
The formula for the FQ model predicting the CS of GSA mixed concrete is shown in 
Eq. 10. Figure 4b shows the relationship between the predicted and measured CS of the 
FQ model. The R2 and RMSE for the training data were 0.865 and 3.00 MPa, respectively, 
while for the test data, they were 0.766 and 3.48 MPa, respectively. For the expected 
observed CS ratio, 69% of the data falls between 0.8 and 1.2 in the training data set, with 
an error line of −20 to 20%. Although FQ model performs better than LR models, its 
prediction accuracy is still less than RFR and BDT models.

Other ML models except KNN show better performance indicator values than LR 
and FQ models. RFR models show R2 closer to unity and lower RMSE, MAE, and 
SI values than other ML models. For the predicted to observed CS ratio, 81% of the 
data falls between 0.8 and 1.2 in the training data set, which is 8% higher than the 

(9)CS = −37.78+ 0.119(CC)+ 0.024(GSA)+ 0.016(FA)+ 0.023(CA)− 0.117(WC)+ 0.135(t)

(10)

CS = 154, 115.4 − 176.7(CC)− 175.8(GSA)+ 47.4(FA)− 342.8(CA)+ 903.7(WC)− 1.5(t)

+ 0.3(CC)2 + 0.3(GSA)2 − 0.006(FA)2 + 0.1(CA)2 + 0.02(W )2 − 0.005(t)2

+ 0.6(CC)(GSA)− 0.2(CC)(FA)+ 0.2(CC)(CA)− 0.6(CC)(WC)

+ 0.007(CC)(t)− 0.2(GSA)(FA)+ 0.2(GSA)(CA)− 0.6(GSA)(WC)

+ 0.006(GSB)(t)+ 0.1(FA)(CA)− 0.3(FA)(WC)

+ 0.001(FA)(t)− 0.4(CA)(WC)+ 0.0008(CA)(t)− 0.01(WC)(t)
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next-best model (SVR). The precision of the RFR and BDT models in predicting the 
CS of concrete is comparatively good and ranked as 1 and 2, respectively. ANN and 
FQ models perform closer to each other and are ranked as 3 and 4, respectively. It is 
followed by SVR, KNN, and LR models. The RFR model has more points inside the 
20% error envelope with 81% of the total data, followed by SVR and BDT at 73% and 

Fig. 2 The variation of CS with independent parameters
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72%, respectively. Overall, the RFR model is the best option for predicting the CS of 
GSA blended concrete.

Performance of machine learning models

Figure 5 displays the prediction error for all the examined machine-learning models, cal-
culated as the difference between the expected and observed CS. The shown chart dem-
onstrates that many data points have been identified as outliers, suggesting a higher level 
of inaccuracy. This phenomenon may arise because of inaccuracies in the experimental 
measurement of CS or discrepancies among the laboratory tests conducted in the litera-
ture. BDT, FQ, and RFR models show a narrow range of error distribution (highest–low-
est error) as 17.56, 18.03, and 18.93 MPa, respectively. LR and KNN models show the 
most comprehensive range error distribution as 35.95 and 31.07 MPa, respectively.

The BDT and KNN models have errors evenly distributed on both sides. This sug-
gests that the projected values are underestimated in some instances, while in oth-
ers, they are overstated. However, under other models, the majority of errors are 
undervalued. Furthermore, except for the BDT model, all other models exhibit nega-
tive skewness. The SVR model has the greatest skewness value of −1.54, while the 
KNN model follows closely with a skewness of −0.86. Using several statistical and 

Fig. 3 Correlation matrix graph among the independent and dependent variables and of GSA blended 
concrete

Table 2 The statistical analysis of the dataset

CC (kg/m3) GSA (kg/m3) FA (kg/m3) CA (kg/m3) WC (kg/m3) t (days) CS (MPa)

Min 78 0 477 940 155 3 2

Max 470 233 846 1353 282 90 49

Mean 298 56 628 1185 190 21 17

Standard deviation 
(SD)

73.9 49.5 69.7 104.5 31.5 18.5 7.9

Variance (Var) 5474 2458 4877 10959 998.7 342.1 62.27

Kurtosis (Kur) 0.48 1.36 2.36 0.80 3.09 5.60 0.67

Skewness (skew) −0.22 1.15 0.79 −1.34 1.95 2.23 0.66
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Fig. 4 Predicted vs. measured compressive strength comparison for various ML models
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graphical techniques may significantly improve the assessment of prediction models. 
This implies that using a variety of statistical indicators and graphical illustrations to 
assess the efficacy of prediction models may provide a more thorough analysis.

Figure 6 depicts the Taylor diagram, a graphical representation utilized to evaluate the 
predictive performance of ML models. The Taylor diagram, a statistical tool, provides a 
visual framework for evaluating and comparing several models. The graphic illustrates 
the degree of alignment between each model and the reference data, as measured by 
correlation, standard deviation, and RMSE. The diagram can visually represent the com-
parative proficiency of each model concerning a reference model [58]. The proximity of 

Table 3 Performance indicators for various ML models

Train Test OBJ Ranking

R2 RMSE MAE SI a20 R2 RMSE MAE SI a20

LR 0.6083 5.11 3.82 0.30 0.55 0.6435 4.29 3.44 0.27 0.52 5.27 7

FQ 0.8654 3.00 2.34 0.18 0.69 0.7659 3.48 2.82 0.22 0.61 3.10 4

ANN 0.8697 2.95 2.34 0.17 0.69 0.7665 3.47 2.78 0.22 0.60 3.07 3

RFR 0.9079 2.48 1.80 0.15 0.81 0.8866 2.42 1.83 0.15 0.80 2.25 1

BDT 0.8849 2.77 2.12 0.16 0.72 0.8357 2.91 2.33 0.19 0.70 2.68 2

KNN 0.7490 4.09 2.80 0.24 0.64 0.7939 3.26 2.58 0.21 0.64 3.71 6

SVR 0.8020 3.63 2.32 0.21 0.73 0.8197 3.05 2.29 0.20 0.70 3.18 5

Fig. 5 Error distribution in predicted compressive strength for various ML models
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the pentagram to the reference spot directly correlates with the model’s accuracy in fore-
casting CS. Among all ML models, RFR model exhibits the highest level of accuracy, 
while LR models provide the lowest level of accuracy. According to these criteria, the 
ML models may be ranked in the following order from highest to lowest performance: 
RFR > BDT > ANN > FQ > SVR > KNN > LR. The results demonstrate a strong correla-
tion with the previously specified performance indicator values.

Sensitivity analysis

Nonlinear and complicated models such as ANN or RFR sometimes exhibit black box 
behavior due to their intricate nature [54]. The use of SHAP is quite advantageous in 
examining intricate machine-learning models encompassing a diverse range of param-
eters [43, 63]. The decision to use the findings of the random forest regression (RFR) 
model, which demonstrated superior performance in predicting CS, was made to gain 
insights into the outcomes via applying the SHAP (SHAPley Additive exPlanations) 
method.

Figure  7 depicts the average SHAP values about various characteristics, which are the 
independent or input variables, concerning the predictions of CS. These predictions are 
derived from the random forest regression (RFR) model. Based on the findings, it is evident 
that the cement content exhibits the highest SHAP value, indicating its significant effect on 
the prediction of CS. Concurrently, it was observed that the fine aggregate content exhib-
ited the lowest SHAP value, suggesting a relatively lesser impact on the prediction of CS.

Figure 8 displays the SHAP summary plots depicting the predictions of CS for con-
crete using the RFR model. The color gradient represents the spectrum of feature val-
ues, while the x-axis denotes the SHAP value or the feature’s contribution towards the 
anticipated CS. The red dot represents a notably high feature value, indicating a corre-
spondingly high SHAP score. A notable finding in the current research is identifying an 
extremely positive SHAP value of 16, indicating that the range of cement content exam-
ined can increase CS by 16 MPa over the average value. Conversely, a SHAP value of −16 

Fig. 6 Taylor diagram of ML models (the red point represents the reference for measured compressive 
strength)
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on the far-left end (negative) indicates that a reduction in cement concentration might 
result in a loss in CS by 16 MPa below the mean value. The results from SHAP indicate 
that utilizing the game theory approach for calculating SHAP might enhance the under-
standing of the proposed hybrid ML models. Additionally, these findings demonstrate 
that the predictive accuracies of the models are both reasonable and satisfactory.

Conclusions
This paper presents a way to use ML algorithms to assess the CS of GSA mixed concrete. 
To train and assess the models, a total of 297 experimental data sets were collected from 
published literature. Several baseline predictors were constructed and trained, includ-
ing linear regression, full quadratic model, artificial neural network, random forest 

Fig. 7 Mean SHAP values

Fig. 8 SHAP summary plot
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regression, boosted tree regression, K closest neighbors, and support vector regression. 
The results of the study may potentially provide the following inferences:

• Statistical analysis shows that CS is moderately correlated with cement content, GSA 
content, and curing time. However, it correlates poorly with fine aggregate content, 
coarse aggregate content, and water content.

• Among the several ML models evaluated in this study, random forest regression 
(RFR) demonstrated superior performance in predicting CS, achieving an R2 value 
of 0.91 and RMSE of 2.48 MPa for the training dataset and an R2 value of 0.89 and an 
RMSE of 2.42 MPa for the testing dataset.

• The RFR model was first graded concerning various statistical techniques, like MAE, 
SI, and OBJ. The training dataset’s mean absolute error (MAE) and structural integ-
rity (SI) values were recorded as 1.80 MPa and 0.15, respectively. Similarly, for the 
testing dataset, the MAE and SI values were observed to be 1.83 MPa and 0.15 MPa, 
respectively. The RFR model exhibited the greatest a-20 index, with 81% and 80% val-
ues for the training and test datasets, respectively.

• The results obtained from the feature significance analysis using SHAP demonstrate 
that the parameter with the greatest influence on the prediction of CS is the cement 
content. This is followed by the curing duration, which exhibit significant relevance 
in the prediction model.

This study systematically evaluates the predictive capabilities of the CS of GSA mixed 
concrete, contributing to the existing body of knowledge and practical implementation 
in this domain. It is crucial to bear in mind that augmenting the ML model with more 
data has the potential to enhance its performance. Consequently, it is vital to maintain 
a comprehensive data collection. Using precisely predicted model techniques may assist 
researchers and designers in selecting optimal input variables and making educated 
selections about the appropriate mix parameters to employ in developing sustainable 
concrete with desired attributes.
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