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Abstract 

The study focuses on computing the optimized foot profile for a walking leg 
mechanism using artificial neural network (ANN), genetic algorithm, and regression 
approaches. The technique adopted in this work is the benchmark approach and acts 
as a tool for complex problems. A mathematical model using regression and ANN 
is developed for the 8-link coplanar mechanism. Optimum link lengths are obtained 
to minimize the objective function (error). The output response is the foot length 
with a minimum foot height of 124 mm for obstacle clearance. A neural network 
is designed with seven neurons (one neuron/link) in the input layer. Optimum neurons 
in the hidden layer are determined based on the output obtained through simulation. 
A single neuron is used to represent the foot profile length at the output layer. The foot 
lengths obtained from the regression model and ANN are compared and validated 
with a genetic algorithm for the data sets of 100, 200, 300, 400, and 500. Simulation 
studies of the walking leg mechanism revealed a difference of 19%, 22.4%, and 5.23% 
in the foot profile by ANN and mathematical, ANN and regression model, and math-
ematical and regression approach respectively. This paper reveals that different 
approaches viz., ANN, mathematical and regression models generate dissimilar foot 
profiles.

Keywords:  Walking leg robot, Artificial neural network, Planar mechanism, Regression 
model

Introduction
Walking robots mimicking the gait of humans have inspired many researchers in the 
recent past. Controlling a biped walking mechanism is a complex multivariable prob-
lem due to the system’s nonlinearity, high dimensionality, and intrinsic instability. In 
every realistic instance, the exact dynamic equations of a walking robot are either too 
complicated or impossible to formulate in closed form for use in control solutions. Dif-
ferent types of gait are used by animals in mobility, crawling uphill or downhill, slowly 
or quickly [1]. Of the various mechanisms developed, the coplanar single-degree-of-
freedom mechanism has advantages over other mechanisms. Artificial Intelligence (AI) 
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enables computers or inanimate objects based on computers to think and act in the same 
way that people do. Kousik et al. [2] conducted the motion studies of a quadruped robot 
made of Desai’s walking mechanism on a straight path and staircase climbing using SAM 
6.1 and SOLIDWORKS software. The stride length and stride height are the parameters 
of importance in the foot profile of walking mechanisms.

ANN applications have grown tremendously since the mid-twentieth century and 
are constantly emerging. Oh et al. [3] developed the artificial neural network model to 
study the effect of ground reaction forces on human gait and fuzzy-controlled humanoid 
robots are studied [4]. A Neuro-Simulation for complex robots using the bootstrapped 
method by Woodford and du Plessis [5] and Hexapod walking robots with artificial 
intelligence capabilities using the ANN approach is studied by Kessis et al. [6]. Authors 
[7, 8] used neural networks and wavelet methods to analyze the analytical techniques for 
gait data.

The ANN has been successfully implemented in biomechanical research [9] and in 
animating human figures while standing, walking, and running [10]. The optimization 
techniques [11], e.g., genetic algorithm (GA), particle swarm optimization (PSO), artifi-
cial bee colony (ABC), backtracking search algorithm (BSA), lightning search algorithm 
(LSA) and whale optimization algorithm (WOA), were reviewed extensively. Identifying 
gait-cycle phases is crucial [12] for controlling the walking mechanism, as most human-
oid robots walk unhuman-likely with bent knees [13]. The walking fatigue of bipedal 
robots with compliant feet [14] and the kinematic model of the walking robots for dis-
continuous contact with the ground [15] were analyzed.

Optimization situations frequently necessitate good algorithms to minimize or maxi-
mize objective functions. Gheorghita and Gheorghita [16] optimized a 6-link planar 
mechanism to develop a regression model using computer software and validated the 
results experimentally. By a genetic algorithm model, authors [17] synthesized a pla-
nar mechanism using regression deviation and converged regression error to a global 
minimum. Researchers [18] developed an approach combining analytical and statistical 
methods for studying robot kinematics to reduce the tracking error. Authors [19] devel-
oped regression equations for the bipedal walking model and measured ground reaction 
forces.

Many researchers and industries are interested in developing legged walking robots 
that resemble humanoid motion [20]. Legged devices replicating legged animals’ mor-
phology are useful for movements in off-road travel, including sandy or wet natural areas 
and space exploration. The benefits of legged mobility vary depending on the posture, 
number of legs, and leg functionality [21]. An 8-link single dof leg mechanism for a walk-
ing robot is designed for an optimum stride path and stride height and analyzed different 
configurations of mechanisms by Desai et al. [22]. The studies of a passive walking biped 
robot with flexible legs [23] and a coplanar 8-link walking leg mechanism using GA [24] 
are reported in the literature. The design of experiments concept is used for processes to 
find the optimum process parameters [25–28]. In optimizing linkage mechanisms, these 
techniques limit foot profile for both stride length and stride height. Researchers used 
optimization algorithms in renewable energy, as in comparative analysis of renewable 
energy sources[29], performance analysis of photovoltaic systems [30, 31], optimal eco-
nomic indices [32], optimization of PID controller [33], generation of hybrid renewable 
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power [34], experimental investigation of DC converters [35], hybrid EV studies [36], 
performance analysis of photovoltaic grid [37], studies on hybrid photovoltaic [38].

In the open literature, regression and ANN models on the performance of a single 
dof coplanar 8-link walking mechanism are unavailable; hence, this paper attempts to 
develop regression and ANN models for the Desai mechanism [22] walking robot. This 
work will be a benchmark study for developing an efficient mathematical model for opti-
mization studies.

Mathematical model for foot profile generation
Walking leg robots generate a foot profile. The coordinates of joints and paths of the 
links are computed using the principle of the intersection of two circles to find the posi-
tion of joints in the mechanism for angular rotation of the input crank (L1).

Figure 1 shows the C-2 configuration of the Desai mechanism [22]; Ro is a fixed joint, 
input link L1 rotates (θ) through 2π radians, and link L1 is formed between joint Ro and 
joint R1 (in Fig. 1), Ro is fixed joint P, R1 is joint Q, R2 is joint U, R3 is fixed joint S, R4 is 
joint T). In the Cartesian coordinate system, the Instantaneous position of joint R1(Qx, 
Qy) can be computed using (1) and (2).

Fig. 1  Kinematic analysis of C-2 configuration [22]
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The instantaneous coordinates of joint R2(Ux, Uy) are computed using the principle of 
intersection of circles. R2 is represented as joint U. The two circles with centers R1(Qx, 
Qy) and R2(Ux, Uy) with radii L2 and L3 respectively, can be expressed as

The distance between the centers of two circles with radii R1 and R2 is

Coordinates of R2 can be expressed as

Similarly, the coordinates of joint R4 (Tx, Ty) can be computed as the intersec-
tion point of two circles with centers R1(Qx, Qy) and R3(Sx, Sy) with radii L8 and L7, 
respectively.

The distance between two circle centers, R1 and R3, is

Coordinates of R4 can be expressed as
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Similarly, the coordinates of joint V (Vx, Vy) are computed as the intersection point 
of two circles with centers R2(Ux, Uy) and R4(Tx, Ty) with radii L4 and L6, respectively.

Distance between two circle centers, R2 and R4:

Coordinates of V can be expressed as,

W represents the foot of the walking robot and its slope is the same as that of link L4.
Many researchers have studied the various approaches to minimize the error of the 

designed six target points and the corresponding points obtained through the fitness 
candidate. In their study, the best fitness candidate value in the population is the low-
est error in the population. A population is an array of the upper and lower bound of 
all the link lengths 600 mm and 100 mm, respectively, except for input link L1. The 
stride length and stride height of the foot trajectory of the walking leg mechanism are 
treated as constraints with a minimum stride length of 300 mm and maximum stride 
height of 124 mm. For the study, the input link (L1) length is 100 mm and six selected 
target points on the foot trajectory are

Minimizing the error in the traced path by the foot of the walking robot is the 
objective per rotation of the input crank. The objective function in the optimization 
study is given by (21),
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Six target points (Wi
XT ,W

i
YT ) on the foot profile are considered in the objective 

function for minimization of the error(Wi
X ,W

i
Y ) . The ten different constraints are 

used in the optimization algorithm. Equations (22–25) are used due to Grashof ’s cri-
teria, as the mechanism comprises two crank rockers (PQUR and PQTS) for smooth 
leg movement in the stride phase.

Here, L1 and L2 represent the shortest and the longest links, with L3 and L10, are 
other links in polygon PQUR, as in Fig. 1. Similarly, L1 and L8 represent the shortest 
and longest links, with L7 and L9 being the links in polygon PQTS (Fig. 3a).

Equations  (26–27) are the constraints due to the transmission angle of the crank 
rocker PQUR and PQTS of the mechanism.

The linkages L2- L4 -L6 -L8 form a parallelogram with the following constraint.

Equation  (29) lists the constraint on the range of links as Min(Li) = 100 mm and 
Max(Li) = 600 mm as mechanism design parameters.

The constraint of stride height of the foot in the foot profile is given by (30), with 
the maximum stride height of the foot being limited to 124 mm.

Equation (31) is the constraint on the stride length of the foot for a minimum value 
of 300 mm.
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Methods
In this section, the regression model and ANN models were developed based on the 
normalized data.

Normalized input data

Simulations were conducted on the 8-link coplanar Desai mechanism [22]. The length 
of the L1 is fixed to 100 mm and the location of the three pivot points is also fixed. The 
lengths of links 2 to 7 (input data) were randomly generated to obtain the foot profile 
using a mathematical model with a constraint of a minimum foot profile length of 
124 mm. The trials were conducted for the sample sizes of 100, 200, 300, 400, and 500. 
The output of the foot profile length of these samples and found that the foot profile 
follows a normal distribution (i.e., bell-shaped curve).

Development of regression model

The input and output data from the above trials were used in Minitab software to 
obtain the regression model. The regression model is further tested with randomly 
generated link lengths (links 2–7).

The results obtained from the regression model and the mathematical model were 
compared for various trained data samples.

Development of the ANN model

Input and output data obtained from the above mathematical approach were used for 
training in ANN. An ANN was designed to take these trials of seven input param-
eters for link length and angle to obtain output as foot profile length. Randomly gen-
erated initial weights are used to train and test the data. All the data of 7-link lengths 
were given at the input neuron and the output neuron represents foot length in mm; 
net architecture was created with a hidden layer between the input and output layer. 
Simulations were conducted to decide the number of neurons in the hidden layer to 
obtain better output. The neuron in the hidden layer was varied between 1 and 20 and 
tested for mean square error. The best-simulated trail for the optimum neuron in the 
hidden layer is selected based on the minimum mean square error.

Seventy percent of the samples were used to train the model, and the remaining 30% 
were used to validate the model. The minimum coefficient of determination for train-
ing data and validation is more than 95% and 91%, respectively. The weights and bias 
of the best simulation results were extracted. The trained model is further tested with 
randomly generated link length. The result obtained from the ANN-trained model 
for randomly generated link length and the mathematical model compared various 
trained data of samples such as 100, 200, 300, 400, and 500.

Results and discussion
The working of a single degree of freedom 8-link co-planar walking mechanism is 
analyzed using three approaches. The study highlights the stability of the mechanism 
during the stride phase and the lift phase with an emphasis on getting a symmetric 
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bell-shaped foot profile. This section is arranged in three subsections, viz., regression 
model, ANN, and mathematical model.

Regression model

The regression equation obtained for the horizontal length of the foot pro-
file = 425–0.0382(L2)-0.749(L3) + 0.371(L5)-0.946(L7) + 4.08(Theta) + 0.961(L8)-
0.118(TZ).

ANN structure with 07 normalized link lengths as input neurons produces foot profile 
length as outputs. The network is trained with an extensive data set for efficient learning 
to establish a relationship between inputs and output. The trained network predicts the 
output by providing randomly generated input (link length) and obtaining the output 
(foot profile length). The number of neurons in the hidden layers is varied until a satis-
factory performance is obtained. The structure of ANN architecture is listed in Table 1. 
MATLAB Toolbox™ of Neural Network used in the study.

Simulation and testing

After training the ANN using five sets of data (each with 100, 200, 300, 400, and 500 
samples). The ANN model and the mathematical model results were compared for foot 
profile length.

Table 1  Structure of ANN

Number of input neurons 07

Number of hidden layers 01

Number of neurons in a hidden layer Optimized (18)

Transfer function of hidden layers Tan-sigmoid

Number of output neuron 01

Transfer function of output neurons Purelin

Training function Trainlm

Network performance function Mse

Fig. 2  ANN architecture
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Table 2  Weights and bias (generated from the ANN)

Neurons in 
hidden layer

Weight W1/ Neurons Bias Weight W2 Bias

1 2 3 4 5 6 7

1  − 2.66  − 1.85 0.57  − 0.10 0.47  − 0.98 3.71 2.1 1.06 -0.38

2 0.01  − 0.26  − 0.93 0.8  − 0.36  − 0.89 0.97  − 2.08  − 0.37

3  − 0.04  − 0.18  − 0.74  − 0.79 0.28  − 1.77 1.06  − 1.10 1.57

4  − 2.76  − 0.66  − 0.33  − 0.08 0.37 0.28 2.51 1.49  − 1.23

5  − 1.82 3.03  − 1.92 2.22  − 0.13  − 0.44 0.27 1.7 1.56

6 0.04 0.86  − 1.23 2.55  − 0.40 0.36  − 1.32 0.48 1.45

7  − 0.43  − 0.32 0.83 1.54 1.68  − 0.71  − 1.43 0.37  − 0.30

8  − 1.29  − 0.04  − 0.78 0.98 0.55  − 0.04 2.51 0.1 3.23

9  − 1.80  − 2.26 0.08  − 2.76  − 0.54  − 2.50  − 1.34  − 0.93 0.29

10  − 2.07  − 1.36  − 0.33  − 1.65 0.64 2.02 3.72  − 0.40  − 2.61

11  − 0.89 1.77 0.48  − 0.09  − 1.10  − 0.58 0.03  − 0.34  − 0.48

12  − 0.22 3.63  − 1.11 2.97  − 0.35  − 1.20  − 4.75  − 2.82  − 1.16

13 0.79 1 1.73 1.32 0.29 0.58  − 0.52 2.04 0.91

14 1.64  − 1.15 2.6  − 2.10 0.18  − 0.11 1.63 1.64 0.37

15  − 2.09 0.95  − 1.49  − 1.24 0.56 1.11 1.89 0.13  − 1.24

16  − 1.70 0.52  − 0.36 0.4  − 0.20 1.34  − 0.39  − 1.45 0.26

17 1.64  − 0.18 1.94 1.12 0.02  − 1.26  − 1.18  − 2.39 1.59

18  − 0.01 0.84 1.32  − 0.07  − 1.11  − 1.31 1.39  − 2.88 0.89

Fig. 3  ANN validation and test
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Details for 500 sample data set

Figure 2 shows the architecture of the ANN. Table 2 lists the output obtained after 
ANN training. Figures 3, 4, 5, 6, and 7 depict the output of ANN.

Architecture of ANN
Foot profile generated using a mathematical model for randomly generated link lengths

The data in Table 3 is used to obtain the foot profile for the Desai mechanism [22]. 
The GA results for test sets 1, 2, 3, 6, 7, and 11 are used. Figures 8, 9, 10, 11, 12, and 
13 show the typical foot profile obtained using the randomly generated link lengths.

The summarised results of foot profiles obtained by ANN, GA, and regression 
approaches are in Table 4.

The present study has used three approaches, namely GA, ANN, and regression 
method for optimizing stride length in the foot profile of the 8-link coplanar walking 
leg Desai mechanism [22]. The results of the GA approach used in this study agree 
with Raghavendra and Annigeri [24]. The regression model is compared with GA 
and ANN models and found that they disagree.

Fig. 4  R value (training data)
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Fig. 5  R value (validation data)

Fig. 6  R value (training and validation data)
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Conclusions
Six different configurations of the 8-link planar Desai mechanism [22] were studied 
and found that the second configuration gives a bell-shaped foot profile for better 
walking stability. The second configuration is further studied by optimising the link 
dimensions using three different approaches such as mathematical model, regres-
sion, and ANN approach to obtain the optimum foot profile length of the walking 
robot.

Fig. 7  Scatted data points

Table 3  Randomly generated input data (link lengths) and output (foot profile length) using ANN, 
GA, and regression approach

Test set Input: link lengths (mm) Output: foot profile length 
(mm)

L2 L3 L5 L7 Theta L8 EQ ANN GA Regression

1 219.86 288.2 101.78 286.83 0.6 271.45 2.17 248.63 63.35 237.77

2 147.51 178.59 274.52 369.57 0.93 459.17 164.2 148.06 494.46 468.59

3 303.93 271.66 183.9 411.41 0.18 523.31 79.24 507.30 302.33 393.68

4 177.78 250.89 309.06 443.45 1.95 515.18  − 22.81 338.94 437.30

5 136.01 149.47 269.63 453.94 1.35 477.2 116.67 309.47 433.46

6 193.38 302.27 304.93 484.46 3.21 404.16 136.41 885.40 229.02 238.09

7 110.09 243.76 291.64 288.9 1.5 256.46 39.77 268.05 229.023 324.79

8 106.51 208.6 170.46 393.84 1.89 347.66 96.35 369.82 289.46

9 213.26 194.78 307.52 313.96 1.53 284.39  − 6.67 436.84 375.71

10 237.69 169.01 283.99 342 4.07 445.86 5.61 202.78 523.75

11 110.2 294.08 196.9 339.71 2.68 433.62 129.92 262.24 212.66 368.31
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Fig. 8  Test set 1

Fig. 9  Test set 2



Page 14 of 19Venkatagiriyappa et al. Journal of Engineering and Applied Science          (2023) 70:127 

Fig. 10  Test set 3

Fig. 11  Test set 6
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The results of the three approaches used in this study are summarized below:
A mathematical model approach generates the output of foot profile lengths. In this 

approach, five different sample sizes were used, viz., 100, 200, 300, 400, and 500. The link 

Fig. 12  Test set 7

Fig. 13  Test set 11
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lengths followed a bell-shaped normal distribution curve indicating satisfactory output 
data.

A regression model is fitted for 500 samples. The P value observed for the link L2 and 
EQ, which is more than the significance value, indicates no evidence against the null 

Table 5  Regression analysis

S (standard error of regression) = 37.8467

R-squared (statistical measure of fit) = 17.9%

R-squared (adjusts for predictor) = 16.8%

Predictor Coefficient Standard error 
coefficient

T (coefficient/standard 
error coefficient)

P value 
(Probability 
Score)

Constant 425.38 34.44 12.35 0

L2 -0.03818 0.06998 -0.55 0.586

L3 -0.7487 0.1274 -5.87 0

L5 0.37142 0.0546 6.8 0

L7 -0.9461 0.2456 -3.85 0

Theta 4.076 1.35 3.02 0.003

L8 0.9609 0.2336 4.11 0

TZ -0.1175 0.1301 -0.9 0.367

Table 6  Analysis of variance

P Value** = Probability that measures the evidence

Source DF (degrees of 
freedom)

SS (sum of squares) MS (mean 
squares)

F* P value**

Regression 7 170,626 24,375 17.02 0

Residual error 548 784,938 1432

Total 555 955,565

Regression 7 170,626 24,375

Total 555 955,565

Table 4  Foot profile length and comparison of different test sets

Test set Foot profile length in mm Difference in %

ANN GA Regression ANN and GA ANN and
regression

GA and
regression

1 248.63 63.35 237.77 74.52 4.37  − 275.33

2 148.06 494.46 468.59  − 233.97  − 216.49 5.23

3 507.30 302.33 393.68 40.40 22.40  − 30.22

4 338.94 – 437.30 –  − 29.02 -

5 309.47 – 433.46 –  − 40.07 -

6 885.40 229.02 238.09 74.13 73.11  − 3.96

7 268.05 229.02 324.79 14.56  − 21.17  − 41.81

8 369.82 – 289.46 – 21.73 –

9 436.84 – 375.71 – 14.00 –

10 202.78 – 523.75 –  − 158.29 –

11 262.24 212.66 368.31 18.91  − 40.45  − 73.19
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hypothesis as shown in Tables 5 and 6. The P value for other links is statistically signifi-
cant with the foot profile length.

The ANN model was designed to optimize the foot profile for the 8-link planar mech-
anism. The ANN model developed for various neurons in the hidden layer found that 
18 neurons yield optimum results. Weights and bias are also determined to predict the 
results efficiently.

Test sets were randomly generated with the maximum and minimum values as shown 
in Table 7 for all three approaches and the link lengths were tested. Comparisons were 
made for foot profile length obtained through a mathematical model, regression model, 
and ANN.

The maximum difference of 19% in the foot profile is observed for ANN and the math-
ematical model. ANN and regression model show a maximum difference of 22.4% in the 
foot profile of the mechanism. The mathematical and regression approach shows a maxi-
mum of 5.23% difference in the result obtained.

In the future, the research focus will be to model the remaining configurations in [22] 
using GA, ANN, and Regression approaches. Simscape Multibody analysis of MATLAB 
software will be used to measure displacement, velocity, and acceleration of all the joints 
in the walking leg.
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