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Introduction
In the world of today, metals and their alloys play an extensive role in the manufacturing 
of products within the following industries: medical, aerospace aeronautics and manu-
facturing [13, 26]. Norgate and Jahanshahi [21] discussed the high influence that metals 
have in achieving the global sustainability requirements in existing and emerging areas 
as previously mentioned. Nitinol-60 is an example of a metal alloy with outstanding 
properties including high strength and durability, malleability, ductility, electrical and 
thermal conductivity, high melting point and high tensile strength [8, 13, 17, 27, 31]. 

Abstract 

The objective of this study is to propose a method called the fuzzy technique for order 
preference by similarity to the ideal solution (F-TOPSIS) to select parameters of the wire 
electrical discharge machining (WEDM) process. Consequently, the parameters prin-
cipally influencing the outputs of the WEDM process were identified and examined 
using the F-TOPSIS framework where the inputs of three decision makers, represent-
ing their opinions are incorporated into the analysis. The idea of parametric selection 
in a WEDM process is multicriteria-based when the production of nitinol-60 smart 
memory alloy (SMA) is critically considered. Current approaches of TOPSIS and analytic 
hierarchy process (AHP) evaluations to select the WEDM parameters fail because of the 
constraints of linguistic evaluations, but the use of F-TOPSIS crosses over the restric-
tion to choose the best parameters in a WEDM process for nitinol-60 SMA. In this work, 
the experimental results obtained from published research were utilised to validate 
the proposed method. The validation of the suitability of F-TOPSIS, aided by the pub-
lished work on the WEDM process, analysed the surface integrity of nitinol-60 SMA. 
From the five outputs, the closeness coefficients of the best and worst are found to be 
0.7567 and 0.2838, respectively. This research aids the process engineer in optimis-
ing the outputs in the WEDM process, to select the best output. Hence, the research 
showcased how the WEDM process could select outputs efficiently, thus aiding 
process engineers to maintain the process to optimise parametric resource allocations 
and guarantee utmost productivity.
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Once obtained from nature, metals unarguably undergo some refining processes and 
are finally processed further to achieve the desired geometric properties such as shape, 
length and surface area, usually through machining [13, 31]. Although machining is cat-
egorised as conventional and unconventional, the latter type is the best fit to manufac-
ture nitinol in a WEDM process due to its difficult-to-cut nature [13, 14].

However, during the experimental process on the WEDM system to process nitinol-60, 
the operator and researchers are subjected to some degrees of linguistic quantifications 
where the exercise of judgement on experimental data concerning parameters is often 
challenging and words such as high, low and medium often dominate their judgements. 
Hence, it becomes apparent that crisp numerical expression of data is inefficient consid-
ering the WEDM processing of nitinol-60 material. This leads to some confusion about 
material distribution decisions when confronted with material planning for the machin-
ing of nitinol-60 using the WEDM process. Thus, the crisp numerical value evaluation 
may be unsuitable and lead to wrong decisions. For this reason, the ranking of run orders 
involving the outputs of the WEDM process while manufacturing nitinol-60 is deter-
mined optimally to obtain ranks for the run after evaluating their performance scores. 
The ranking decision produces the best ranking at which specimens with better output 
responses emerge [29]. In this article, the particular problem to be solved is the linguis-
tic qualification of the WEDM process. The need arises from the fact that machining 
systems are relatively expensive and specialised processes, and as such, the best way to 
make the most use of the process is to linguistically quantify the experimental data and 
reduce or eliminate wrong decision-making [4, 7, 20]. To the best of the authors’ knowl-
edge, previous studies have failed to tackle the uncertainty and imprecision of the exper-
imental data to evaluate the optimal runs, performance scores and ranks of data while 
considering outputs. Hence, this work seeks to tackle and reduce the linguistic quanti-
fication problem, to linguistically quantify the WEDM process for nitinol-60 SMA. The 
fuzzy multicriteria decision-making (MCDM) was utilised for the design of experiments 
for the outputs. In the present study, the fuzzy MCDM method simply provides data 
from more instances, avoiding conducting the process. In this case, the process insti-
tuted is the WEDM of nitinol-60 SMA regarding a recorded set of parameters (duty fac-
tor, time on and time off).

Furthermore, a brief analysis of the work to date on the parametric selection and 
experimental analysis of nitinol is required to appreciate the gap bridged in the pre-
sent study. Here, we trace the research journey in recent times from 2020 to 2023. 
Therefore, a review showing the graduation of studies to the recent period is given 
as follows: Bisaria et al. [5] mainly employed the following parameters to analyse the 
surface integrity of Ni55.95Ti44.05 from the experimental perspective: spark gap volt-
age, pulse-on-time, wire tension, pulse-off time and wire feed rate. However, Okpo-
nyia and Oke [22] failed to consider the micro-structural approach for a multicriteria 
perspective to analyse the parameters of the WEDM to machine Ni55.8Ti44.2 (nitinol). 
Besides, they incorporated current and powder concentration as new parameters 
that were ignored in Bisaria et  al. [5]. They concluded that the current is the most 
important parameter from the results of the two versions of the methods tested by 
them. These methods are the combined Taguchi-EDAS and the combined Taguchi-
Pareto-EDAS methods. Although focused on surface quality, the method of testing 
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by Balasubramaniyan et al. [3] in the WEDM process of NiTiCuZr alloy is ultrasonic 
vibration. Recently, Adedeji et al. [1] coupled the Taguchi-Pareto method and the grey 
wolf optimiser while using the desirability function analysis to translate the multi-
ple outputs into a single response when machining the nitinol-60, using the WEDM 
process. From these studies, there is a research gap, which is an obstacle to reliable 
decision-making by the process engineers in the WEDM process. All the studies men-
tioned above show a complete absence of how to reduce uncertainties and impreci-
sion while choosing the best parameter in the WEDM process. Undeniably, these 
issues are due to equipment calibration errors and measurement errors by the opera-
tor but the literature has been silent on this issue while selecting parameters in the 
WEDM process.

This paper addresses the problem of linguistic quantification of outputs of the WEDM 
process while machining the nitinol-60 SMA. Recently, Adeniran et al. [2] provided sev-
eral sides to this problem. The first is that crisp numerical values used are ineffective 
when evaluating experimental outcomes of the WEDM process by ignoring the judge-
ments of engineers, operators and system owners. They impact the solution and lead to 
wrong machining decisions. The second problem is the weight index, which has no cer-
tainty of what approach to adopt to evaluate this. Thus, solving these problems improves 
performance potentially for the WEDM problem. Then, we can establish a realistic and 
innovative weight assignment fuzzy-based method, denoted by the weight index as input 
to the performance score for the WEDM problem.

Thus, understanding and establishing the linguistic quantification of experimental 
data collected during the WEDM process is challenging because of human (operators) 
errors in recording, the errors generated by the equipment and the environmental errors 
imposed on the equipment such as highly varying temperature and pressure. Moreover, 
the linguistic quantifications should be simple enough to be understood by the opera-
tor and stakeholders of the WEDM process. Often, the researchers make decisions by 
relying on crisp numerical values, which may be misleading and inaccurate based on the 
possible uncertainty and fuzziness in the data collection process. The operator records 
the experimental values for all the parametric inputs and the outputs of the WEDM pro-
cess are equally recorded while machining the nitinol-60 SMA. Also, the various pieces 
of equipment within the WEDM process generate data under controlled conditions of 
temperature, humidity and pressure. However, the controls could fail due to malfunc-
tioning, old age, or obsolescence, thereby generating incorrect data for decision-mak-
ing. Thus, the mode of interpreting the data generated is a very essential aspect of data 
management for the WEDM process while manufacturing the nitinol-60 SMA. The 
quantification of the WEDM parametric data should be linguistically evaluated to allow 
a correct evaluation of the situation and decision-making. In this paper, we proposed 
a method to express the experimental data of WEDM process parametric observations 
as linguistic qualifications using the fuzzy TOPSIS (F-TOPSIS) process that depends 
on normalised and weighted normalised data to evolve performance scores that finally 
bring out ranks for the run orders by considering the outputs in the WEDM process 
of nitinol-60 SMA. Introducing the F-TOPSIS method into the processing of nitinol-60 
SMA on the wire electrical discharge machining would assist in creating precise swap-
ping between several multicriteria and easily represent the preferences of the operations 
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and decision maker within the WEDM process [12]. Moreover, it exhibits straightfor-
ward computational steps [12, 29]. The chief contributions of this paper are as follows:

1.	 Conceptualization, linguistic quantification and parameterization of the WEDM 
process while producing nitinol-60 SMA.

2.	 Establishment of a method that combines normalisation and weighted normalisation 
and weighted normalisation of experimental data into performance score and then 
the ranks of the run orders to evaluate optimal runs for the experiment while con-
ducting the WEDM process of nitinol-60 SMA.

3.	 Preparation of experimental data of the WEDM process as a basis for linguistic quan-
tification of outputs.

4.	 A reasonable weights index of 0.2 derived from an equal apportioning of weights to 
the outputs is established.

Literature review

A literature review is often written to offer a background idea on the subject matter 
of the article. In this case, multicriteria analysis was applied to the WEDM process to 
identify gaps and emphasise the relevance of the research. Consequently, the studies 
presented are associated with the multicriteria analysis of the WEDM process while dis-
cussing the effect of analyses on the nitinol-60 SMA material.

Surface integrity has been widely studied focusing on diverse aspects including the 
following. Kumar and Singh [15] utilized the Taguchi’s technique and grey relational 
analysis to optimize the surface characteristics in wire electrical discharge machin-
ing focusing on Inconel X-750 alloy. The parameters of interest are the spark gap volt-
age, wire tension, wire feed rate, pulse-off time, pulse-on time and peak current. The 
responses to measure surface integrity are the cutting speed and surface roughness. Raj 
and Prabhu [25] presented in modeling and analysis scheme, leading to the coupling of 
the principal component analysis method and the grey relational framework for the per-
formance analysis of titanium alloy on the WEDM facility. In between the analysis, the 
L9 orthogonal matrix of the Taguchi method was deployed as a stepping stone for fur-
ther analysis. It was found that the wear rate of brass (whose usage was compared with 
that of molybdenum) wires increased with a growth in the input energy when machin-
ing titanium alloy compared with a lower wear rate for molybdenum wire. Besides, 
Thankachan et al. [30] deployed a multi-objective optimisation method developed from 
the combined framework of the Taguchi method and grey relational analysis to assess 
the machining attribute of wire-cut electrical discharge machining. The focus param-
eters are the different volume fractions of boron nitride, wire feed rate, pulse discharge 
on time and pulse discharge off time. The responses are the surface roughness and the 
material removal rate. In addition, Karthik et al. [11] presented experimental results that 
address the effect of materials as well as the parameters of the WEDM scheme on the 
performance of the system while machining the Al/AlCoCrFeNiMo0.5 MMC. The tar-
get responses are the reduced kerf width, improved surface finish and material removal 
rate. It was concluded that by applying a multi-objective optimisation scheme through 
the TOPSIS method, the surface finish and material removal rate increased while the 



Page 5 of 20Sawyerr et al. Journal of Engineering and Applied Science          (2023) 70:120 	

kerf width declined in value. Mouralova et  al. [19] analysed the influence of machine 
set-up parameters on the oxygen presence on the surfaces of metals. The parameters are 
discharge current, gap voltage, wire feed, pulse off time and pulse on time. Kumar et al. 
[16] analysed the microstructure together with the optimization of Inconel 825. The ana-
lysed parameters are spark gap voltage, pulse-on time, wire feed, pulse-off time, peak 
current and wire tension. In addition, Sen et al. [28] analysed electrode materials as well 
as process parameters and their influences on the responses of the WEDM process. The 
studied responses are recast layer thickness, surface morphology and surface roughness. 
Balasubramaniyan et al. [3] machined the NiTiCuZr SMA subjected to the WEDM of 
the ultrasonic vibration type. The outputs of the process are the surface roughness and 
material removal rate. However, the parameters of interest are the servo voltage, pulse 
on time, pulse off time and applied current.

Furthermore, the search for multicriteria studies such as TOPSIS, VIKOR, ELECTRE, 
AHP and DEMATEL was carefully reviewed in the literature concerning the nitinol-60 
SMA. Then, the survey focused on available research on the multicriteria-based WEDM 
process, among others. To date, several studies have been conducted on the optimisa-
tion and selection of metals in WEDM as can be seen in Ikedue and Oke [9] using the 
Al7075/Al2O3/SiC composite and in the application of AZ91 magnesium alloy by Ikedue 
et al. [10]. However, the specific applications of nitinol SMA are expanding with a review 
by Adeniran and Oke [2] and application studies in Adedeji et al. [1] and Okponyia and 
Oke [22]. These studies intend to improve the parameters of the machining process in 
optimisation predictions and their rankings. However, all the studies have ignored the 
uncertainty introduced by the operator from the equipment and the error caused by 
the pieces of equipment themselves. Some literature accounts elsewhere that problems, 
which show similarity in characteristics have been solved through the intervention of the 
F-TOPSIS method. Though the TOPSIS method which is the foundation for F-TOPSIS 
was introduced in 1981 by Hwang and Yoon, later extended in 1987 and 1993 by Yoon, 
Hwang, Lai and Liu, the introduction of linguistic variables to TOPSIS was much later. 
Nădăban [20] provided an extensive background of the development of F-TOPSIS in a 
literature review. F-TOPSIS achieves ideal solutions and mechanises processes to over-
come uncertainty and ambiguity while selecting machining parameters. The F-TOPSIS 
is popular for being straightforward in symbolising human preferences, computation-
ally simple and permits trade-offs when multiple criteria are considered. In the past few 
years, F-TOPSIS has become an interesting subject and tool to research because of the 
mentioned advantages. Priyadarshini et al. [24] established how the turning parameters 
could occur using F-TOPSIS. It was asserted that F-TOPSIS aided the optimal paramet-
ric performance determination for the turning process while analysing the influence 
of each system parameter on the specific energy consumption, surface roughness and 
material removal rate. Pawanr et al. [23] applied F-TOPSIS to the traditional machining 
system but not the non-conventional WEDM system. They established a multi-objective 
optimisation method to select the optimal thresholds of cutting parameters while pro-
cessing an aluminum piece. The key parameters studied are the depth of art, feed rate 
and speed. These parameters are different from the ones pursued here, which are cut-
ting rate, recast layer thickness, maximum peak-to-valley-height, average peak-to-valley 
height and cutting rate, respectively. The differences in the types of parameters studied 
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and the machining methods strengthen the need for the present study. It was concluded 
that F-TOPSIS yielded optimal results validated with the Taguchi method. Bhatia and 
Diaz-Elsayed [4] developed a multi-criteria-making method to help small and medium 
enterprises adopt technologies through the evaluation of parameters by F-TOPSIS. 
The prediction of quality, tool wear and equipment efficiency was declared as the most 
important elements to the decision-makers in the industry.

Table 1 offers information on the previous studies that were directed at the WEDM 
process. Nonetheless, notice that these articles hardly considered uncertainty and 
imprecision in the solution of the selection and optimisation problem. Previous studies 
on the selection and optimisation of WEDM process parameters. Overall, these articles 
provide a substantial understanding of the selection and optimisation process. Moreo-
ver, they fell short of exploring the effect of uncertainty and imprecision in analysis and 
were unable to reduce them. This is the principal weakness of the papers since their 
efforts were directed to crisp numerical value analysis within the WEDM process. To 
bridge this gap, the present study aims to investigate the WEDM process, analyse its 
parameters and introduce an imprecision reduction on the process parametric data.

Methods
Experimental details

Figure 1 shows a simplified process flow of the WEDM process. This is applicable to the 
case drawn here from Roy and Mandal [27]. As declared in the experiments conducted 
by Roy and Mandal [27], the experimental setup (Fig. 2) consists of a cylindrical work-
piece (rod), which is 8 mm and L = 100 mm. Notice that the rectangular workpiece may 
be replaced by a cylindrical rod.

Table 1  Previous articles on the selection and optimisation of the WEDM process

S/No Author(s) Method Solution approach

1 Raj and Prabhu [25] Multivariate statistical techniques 
and multicriteria decision-making

Principal component analysis, grey 
relational analysis

2 Thankachan et al. [30] Mathematical modeling Response surface methodology

3 Majumder and Maity [17] Artificial intelligence, multicriteria 
decision-making, fuzzy logic

GRNN, MOORA-fuzzy

4 Roy and Mandal [27] Mathematical modeling Response surface methodology

5 Karthik et al. [11] Mathematical modeling Taguchi method, ANOVA and TOPSIS

6 Das and Chakraborty [8] Multicriteria decision making Grey correlation-based TOPSIS

7 Okponyia and Oke [22] Multicriteria decision making, math-
ematical modeling

EDAS-Taguchi, EDAS-Taguchi-Pareto

8 Chaudhari et al. [6] Metaheuristics Teaching learning-based optimisation 
algorithm, multi-objective teaching 
learning-based optimisation algorithm

9 Vakharia et al. [31] Artificial intelligence and machine 
learning

Singular generative adversarial net-
work, dense Net deep learning

10 Adedeji et al. [1] Mathematical modeling and 
metaheuristics

Taguchi-Pareto, grey wolf algorithm, 
desirability function analysis

11 Ikedue et al. [10] Mathematical modeling, metaheuris-
tics, multicriteria decision making

AHP, Taguchi method and modified 
Taguchi methods, genetic algorithm

12 Ikedue and Oke [9] Mathematical modeling Taguchi, Taguchi Pareto, Taguchi-ABC 
methods
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The standard setup has two simple clamps. The clamps hold the cylindrical ini-
tial-60 materials, which will be reduced in size but still maintain the cylindrical shape 
after the machining process. The work materials (nitinol-60) will have to be in con-
tact with the lower arm of the WEDM machine to clean it up. Notice that nitinol-60 
is a suitable material for the machining process, and this serves as the reason for its 
choice. Incompatible material may not be machined by the WEDM setup. Inserts will 
be used on the material, and they will be tapped off. It was assured that the work-
piece was held properly before the machine started work. Introduce fixtures for the 
nitinol-60 machining application and connect the wire to it for the functioning of the 

Fig. 1  Simplified process flow in the WEDM process

Fig. 2  A typical WEDM setup (see [32]
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WEDM. Notice that inserts are also needed and their working is synchronised with 
that of the fixture to work properly.

In this article, we have selected nitinol-60 SMA as the focus material for machin-
ing based on the following outstanding advantages: high mechanical performance, 
elevated proportion of power to weight, huge deformation and actuation force, mini-
mal operation voltage, elevated specific strength, wear resistance, damping capacity 
and frequency response. Other advantages of nitinol-60 are elevated corrosion and 
chemical resistance as well as compactness and lightness [18]. Besides, notice that the 
research areas available in WEDM metallic materials are broad, encompassing studies 
on electrode wire, material surface, machining characteristics, dielectric fluid and dis-
charging systems, among others [26]. However, this study concentrates attention on 
the material surface. But surface engineering and science may be divided into impor-
tant parts, such as interfaces of liquid, gas and solid gas. Thus, this study, through 
the solid surface of the material, which does not touch the wire, but which permits 
actions in the air (consisting of gases such as oxygen) may be said to operate in the 
solid–gas interface. Furthermore, this research particularly focuses attention on sur-
face integrity, within the surface engineering framework. The dataset obtained from 
the wire-EDM experiments, provided by Roy and Mandal [27], was based on the use 
of a cylindrical workpiece of diameter and length of 8 mm and 100 mm, respectively. 
The machine used plays a significant role in determining the reliability of the machine 
products. Thus, the ELECTRA MAXICUT e 734 machine was used. By chemi-
cal composition, the nitinol-60 used in this study has two main ingredients, namely 
nickel and titanium having composite percentages of 60% and 40%, respectively when 
measured by weight. Also, the wire electrode employed for the nitinol-60 experiment 
is a zinc-coated brass having a diameter of 25  mm. The results obtained from the 
experiments, drawn from Roy and Mandal [27], are shown in Table 2.

Table 2  Experimental data [27]

Beneficial Non-beneficial Non-beneficial Non-beneficial Non-beneficial
CR Rz Rt SCD RLT

Run order 1 2.354 9.458 12.354 0.0134 9.102

2 2.454 10.384 13.1962 0.0205 11.762

3 2.405 9.803 12.636 0.0154 9.801

4 2.288 9.566 12.351 0.0137 8.913

5 1.478 8.295 11.5991 0.0116 8.623

6 2.395 9.794 12.4635 0.0146 9.381

7 2.157 9.337 12.261 0.0128 8.872

8 2.424 10.126 12.9236 0.0179 10.673

9 2.557 9.859 13.3912 0.0224 12.306

10 2.416 10.006 12.842 0.0169 10.364

11 1.584 8.813 11.6321 0.0115 8.304

12 1.749 8.882 11.703 0.0116 8.366

13 1.911 9.122 11.8116 0.0121 8.432

14 2.312 9.565 12.362 0.0136 8.978

15 2.108 9.227 12.154 0.0126 8.675
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Outputs of the WEDM process

To achieve efficient WEDM processing of the nitinol 60 SMA, which is the goal of this 
work, it is essential to establish the expected outputs from the process. These outputs, 
which are the principal outputs of the WEDM process, were first observed through a lit-
erature review exercise and then selected by Roy and Mandal [27]. Based on the need to 
establish the outputs of the WEDM process, the following outputs are discussed.

Cutting rate

Process engineers ought to consider the cutting rate in the WEDM process since it has a 
direct influence on the quality of nitinol-60 SMA produced from the system. The lower 
the cutting rate, the less time it takes the WEDM machine to produce a high-quality 
surface finish, thereby reducing the possibility of being rejected, which arises from a cus-
tomer’s dissatisfaction with the quality of a product.

Procedure for the F‑TOPSIS implementation

The steps used in carrying out the F-TOPSIS on numerical data are as follows:

Step 1:Obtain and arrange experimental data and determine which parameters are 
beneficial (to be optimised) and non-beneficial (to be minimised): In this article, the 
concept of benefits derivable from the institution of outputs for the WEDM process 
is introduced and the two terms, namely beneficial parameters and non-beneficial 
parameters are used to indicate which of the outputs will be more desirable to the 
system and the extent is quantitatively measured by the degree to which the outputs 
moves towards or deviates from the goal of the WEDM process. Consequently, in 
the context of the present work, beneficial parameters are the outputs that profit the 
WEDM’s process assessment and its reporting processes. However, non-beneficial 
parameters are the reverse of the beneficial parameters where they do not profit the 
process in its evaluation and reporting processes.
Step 2 Normalise the data using Eqs. (1) and (2): Looking closely at the outputs of 
the WEDM process, they are different in units. For instance, the cutting rate is meas-
ured in minimum while the duty factor is assessed in percentage. However, does a 5% 
growth in the cutting rate equate to a 5% growth in the duty factor? This is difficult to 
answer since these outputs are not of the same units. Similar problems had existed in 
the engineering literature and the approach taken in the past to resolve the issue was 
to normalise these output parameters. This means that the WEDM process output 
data will be organised and evaluated using some normalising indices to make them 
appear similar in all fields and records (i.e. data items look similar).

For non-beneficial parameters, the chosen ratio is (Eq. 1)

To evaluate the non-beneficial parameters for the WEDM process, the analyst needs 
to first obtain the minimum value of the Xij among all the options and then multiply it by 
the actual value of the Xij of interest, Eq. (1).

(1)MinimumXij /Xij
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For beneficial parameters, the following ratio is evaluated (Eq. 2):

To calculate beneficial parameters for the WEDM process, the researcher needs to 
multiply the parameter Xij by the reciprocal of the maximum item of Xij Eq. (2).

Step 3 Determine criteria for assigning linguistic terms to parameters: In discuss-
ing the parameters of the WEDM parameters, the lens of linguistic quantification 
was used. Also, using the F-TOPSIS method while processing the nitinol-60 SMA, 
applying the idea of decision makers’ contributions to the evaluation agrees with 
the standard procedure and will make the work robust. Thus, the standard prac-
tice is to involve three decision-makers to linguistically quantify the parameters. 
In this context, the decision-makers are those with experience in the working of 
the WEDM process and have knowledge that leads to the efficient operation of the 
process. The decision-makers are versed in identifying and establishing the con-
straints of the WEDM process, including the resources available in the system. 
In contributing to the evaluation of the linguistic quantities for the WEDM pro-
cess, the decision-makers who may be engineers and managers with current and 
past responsibilities assist in making deliberate, thoughtful decisions through the 
organisation of associated information and establishing options. However, in this 
particular situation, decision-makers are scarce and alternative means of repre-
senting the three decision-makers must be devised to still have some resemblance 
of the inputs from the three decision-makers. Thus, the standard deviation, mean 
and range of the outputs were considered to represent the decision makers 1, 2 
and 3, respectively.

Furthermore, the standard deviation, mean and range of quantities are defined as 
descriptive statistics that measure how dispersed the data is when benchmarked against 
the mean. The present researchers opted to use standard deviation as the representative 
judgement of decision maker 1 because it will assist in knowing the various outputs of 
the WEDM process when the data is distributed. For decision maker 2, the researchers 
decided to adopt the mean of the outputs, which shows the typical value and hence a 
measure for all observations. The decision maker 3 is represented by a range, which is 
important to have access to each value in an array. It is often defined as the difference 
occurring when the lowest value is subtracted from the highest value.

Step 4 Assign linguistic values to the rank values
Step 5 Using the previous table, apply the linguistic values to the parameters. In 
the table below, decision maker 1 refers to ranking based on standard deviation, 
decision maker 2 refers to ranking based on the mean of values, and decision 
maker 3 refers to ranking based on the range of the values.
Step 6 Assign fuzzy numbers to the linguistic values or linguistic terms. The table 
below was used in this work
Step 7 Apply the fuzzy numbers to the parameters, as shown below, to obtain a 
fuzzy weightage table.

(2)Xij/
(

MaximumXij

)
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Step 8 Obtain a fuzzy-weighted decision matrix by multiplying the fuzzy weight with 
the normalised data.
Step 9 Determine the fuzzy positive ideal solution (FPIS) and the fuzzy negative ideal 
solution (FNIS): The following equations are relevant:

FPIS and FNIS concepts: A solution may be described as ideal if the criterion value con-
sidered and that of the best criterion value are nearly equal. However, a fuzzy idea solution 
is one in which there is a near equal of the fuzzy number (fuzzy criterion) and the best 
fuzzy number (best criterion). Moreover, there are two types of fuzzy ideal solutions. The 
first type is the fuzzy positive ideal solution, FPIS and the second type is the fuzzy negative 
ideal solution, FNIS. The issue of a positive or negative solution is dependent on whether 
the criterion being considered is beneficial or non-beneficial. A beneficial criterion is desir-
able by the process engineer as it is known to add value towards the achievement of the 
goal of the WEDM process. This goal is to create complicated shapes and geometrics with 
the least resources of time and others. Moreover, a non-beneficial criterion is one, which 
produces undesirable effects on the achievement of the goal of the WEDM process, and 
it is therefore not wanted by the process engineer. From the foregoing, the FPIS may then 
be described as a fuzzy criterion with a beneficial impact on the WEDM process with a 
criterion value and that of the best criterion that is almost equal. Then, the FNIS is a fuzzy 
criterion with a non-beneficial impact on the WEDM process exhibiting a criterion value, 
which is almost equal to the best criterion.

Step 10 Calculate the difference between FPIS (di
+) and FNIS (di.−) for each parameter 

using Eqs. (7) and (8)

For each fuzzy entry (a1, b1, c1), with A+ being (a2, b2, c2), and A− being (a3, b3, c3),

(3)xij =
(

aij , bij , cij
)

(4)aij = min
k

[

akij

]

(5)bij =
1

k

k
∑

i=1

bkij

(6)cij = max
k

[

ckij

]

(7)d+i

√

(

1

3(a1 − a2)
2
+ (b1 − b2)

2
+ (c1 − c2)

2

)

(8)d−i

√

(

1

3(a1 − a3)
2
+ (b1 − b3)

2
+ (c1 − c3)

2

)
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Step 11 Calculate the closeness coefficient CCi for each run order using Eq. (9)

Step 12 Rank the values in descending order of magnitude (highest to lowest)

Results and discussion
In Roy and Mandal [27], experiments on nitinol-60 were conducted and the verifiable 
experimental results were displayed in their work. However, due to the limitation of 
not having access to the experimental rig by the current authors, the experimental data 
of Roy and Mandal [27] was employed to validate the method proposed in this work. 
Moreover, the term “experiments” in the context of the present article has two interpre-
tations. The first interpretation concerns the conduct of experiments and the display of 
experimental results, which the present authors do not claim to have done. The second 
interpretation relates to statistical experimentation using the orthogonal arrays, which 
is an element of the present study. To be clear, the present study uses Roy and Mandal’s 
experimental data and the statistical experiments regarding orthogonal arrays to obtain 
practical and useful results.

Furthermore, the steps used to conduct the F-TOPSIS (Technique for Order of Per-
formance by Similarity to Ideal Solution) on numerical data are stated here. F-TOPSIS 
effectively operates where the performance values within the decision matrix fail to 
possess the attributes of crisp numerical values but exhibit linguistic terms, which are 
judged by three decision-makers (i.e. decision maker 1, decision maker 2 and decision 
maker 3) in the present article. The situation considered here is one where the best run 
order is to be chosen based on the output values. The outputs considered are CR, Rz, 
Rt, SCD and RLT. Table 2 shows the normalised experimental data where two distinct 
categories of outputs are given, namely the beneficial criterion and the non-beneficial 
criterion. The outputs regarded as beneficial criteria are the CR and Rz. However, non-
beneficial criteria are Rt, SCR and RLT (Table 3). Interestingly, the values obtained in 
Table 3 are derived from Table 2 and two examples of how these values are calculated 
will be demonstrated with the beneficial criterion and the non-beneficial criterion. Now, 
we start with the beneficial criterion, CR. By observing Table 1 and CR under run order 
1, a value of 2.354 is given. But Eq. (2) is used since CR is a beneficial output. The value 
of interest, X11 is 2.354 but the maximum value of Xij, which is read from all the values 
in the column of CR for all entries in the run order 1 to 15 is 2.557 (i.e. run order 9). 
By dividing 2.354 by 2.557, a value of 0.921 is obtained. This value is recorded at the 
intersection of CR and run order 1 in Table 3. However, to calculate for a non-beneficial 
parameter, Rz (run order 1) Eq. (1) is used where the minimum Xij is identified as 8.295 
(run order 5). But Xij is 9.458. Therefore, 8.295 divided by 9.458 gives 0.877, which is 
inserted at the intersection of Rz and run order 1. Table 3 shows the normalised data 
after using Eqs. (1) and (2).

Moreover, three decision makers are arbitrarily selected, based on the standard devia-
tion (S/D), mean and range of the data. These values were calculated for the data and are 

(9)CCi =
d−i

d−i + d+i
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presented in Table 4. These values are used to rank the parameters in descending order 
of magnitude (i.e. being assigned to the highest numerical value, and 5 being assigned to 
the lowest numerical value). Furthermore, Table 4 shows the arbitrarily selected decision 
makers, which are three and the basis of selection is the standard deviation (S/D), mean 
and range of the data. These values are used to rank the parameters in descending order 
of magnitude (i.e. being assigned to the highest numerical value and 5 being assigned to 
the lowest numerical value).

Table 3  Normalised experimental data

Non-beneficial = (minimum Xij )/ Xij ; beneficial = Xij / (maximum Xij)

Output parameter

Beneficial Non-beneficial Non-beneficial Non-beneficial Non-beneficial

CR Rz Rt SCD RLT

Run order 1 0.921 0.877 0.939 0.858 0.912

2 0.960 0.799 0.879 0.561 0.706

3 0.941 0.846 0.918 0.747 0.847

4 0.895 0.867 0.939 0.839 0.932

5 0.578 1.000 1.000 0.991 0.963

6 0.937 0.847 0.931 0.788 0.885

7 0.844 0.888 0.946 0.898 0.936

8 0.948 0.819 0.898 0.642 0.778

9 1.000 0.841 0.866 0.513 0.675

10 0.945 0.829 0.903 0.680 0.801

11 0.619 0.941 0.997 1.000 1.000

12 0.684 0.934 0.991 0.991 0.993

13 0.747 0.909 0.982 0.950 0.985

14 0.904 0.867 0.938 0.846 0.925

15 0.824 0.899 0.954 0.913 0.957

Table 4  Standard deviation, mean and range

Parameters S/D Rank Mean Rank Range Rank

CR 0.13 2 0.866 4 3.872 4

Rz 0.05 4 1.036 2 3.949 3

Rt 0.04 5 1.154 1 4.960 1

SCD 0.15 1 0.797 5 4.849 2

RLT 0.10 3 0.985 3 2.900 5

Table 5  Linguistic terms for rank values

Abbreviation Rank value Linguistic value

VL 5 Very low

L 4 Low

M 3 Medium

H 2 High

VH 1 Very high
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After assigning the linguistic values to the rank values, Table 5 is obtained.
It is observed that in Table 5, there is no crisp value assigned to outputs. However, 

five linguistic terms are used, namely very high, high, medium, low and very low. 
This classification is consistent with the literature as shown in Chisale and Lee [7], 
where five grades were used, namely very poor, poor, fair, good and very good. Here 
are the expected rates for the output of interest in the WEDM process on a five-point 
scale mentioned above. Based on the five-point scale, Table  6 evolved as a decision 
matrix showing the minds of each decision maker. Thus, decision maker 1 assigns a 
high term to CR, decision maker 2 assigns a low term to CR, and decision maker 3 
assigns a high term to the CR output (Table  6). It should be noted that if there are 
no numerical values given, it is extremely difficult to calculate the ranks of the run 
orders. Therefore, as opposed to directly mapping the linguistic terms for the WEDM 
process to the weight used in the calculation, the process engineer who decides on the 
system can evaluate the fuzzy number for the weight of each criterion in the WEDM 
process using the fuzzy HHP method, which is not discussed in this article.

Furthermore, using Table  5, the linguistic values were applied to the parameters. 
In Table 6, decision maker 1 refers to ranking based on standard deviation, decision 
maker 2 refers to ranking based on the mean of values and decision maker 3 refers to 
ranking based on the range of the values.

Moreover, fuzzy numbers are assigned to the linguistic values or linguistic terms as 
shown in Table 7.

In Table  7, the five-point scale earlier declared in Table  6 was fuzzified using tri-
angular membership functions as shown in Table  7. Notice also that the triangular 
membership concept used in the present study is consistent with the one used in 
Chisale and Lee [7]. For each decision maker, the evaluation is done as presented in 
Table  8. In this case, where three decision-makers are used, their evaluations need 

Table 6  Decision matrix

Decision maker 1 Decision maker 2 Decision 
maker 3

CR H L H

Rz L M VL

Rt VL VH L

SCD VH VL VH

RLT M H M

Table 7  Fuzzy numbers

Term Fuzzy number

VL 1,1,3

L 1,3,5

M 3,5,7

H 5,7,9

VH 7,9,9
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to be merged as fuzzy numbers. This is explained as follows. Here, the idea of group 
decision-making is introduced to merge the thoughts of the three decision mak-
ers. For this case, we assign equal importance to the declarations of each decision 
maker, i.e. decision makers 1, 2 and 3. The next action is to replace the linguistic 
term obtained earlier with the fuzzy numbers using the five-point conversion scale 
in Table  7. By replacing the values of Table  7 in linguistic terms with fuzzy num-
bers, Table 8 emerges. To calculate the next step, it is desired to have a single matrix 
referred to as the combined decision matrix. This means that the individual entries 
are added. Furthermore, the fuzzy numbers are applied to the parameters to obtain a 
fuzzy weightage table (Table 8).

Next, a fuzzy-weighted decision matrix has been obtained by multiplying the 
fuzzy weight with the normalised data (Table  9). Also, the fuzzy positive ideal solu-
tion (FPIS) and the fuzzy negative ideal solution (FNIS) have been determined, where 
FPIS = A+  = maximum value and FNIS = A− = minimum value. These results are shown 
in Table 9. Now, a discussion of how to obtain the value in the combined decision matrix 
is given as follows: consider the intersection order 1 and CR in Table 9, which gives a 
fuzzy member of 6.444, 2.762 and 6.444. An interesting question is to explain how this 

Table 8  Fuzzy weightage table

Decision maker 1 Decision maker 2 Decision 
maker 3

CR 5,7,9 1,3,5 5,7,9

Rz 1,3,5 3,5,7 1,1,3

Rt 1,1,3 7,9,9 1,3,5

SCD 7,9,9 1,1,3 7,9,9

RLT 3,5,7 5,7,9 3,5,7

Table 9  Fuzzy weighted decision matrix

CR Rz Rt SCD RLT

1 6.444, 2.762, 6.444 2.631, 4.385, 1.462 1.565, 7.824, 2.817 7.152, 1.430, 7.152 4.562, 6.386, 4.562

2 6.718, 2.879, 6.718 2.396, 3.994, 1.331 1.465, 7.325, 2.637 4.675, 0.935, 4.675 3.530, 4.942, 3.530

3 6.584, 2.822, 6.584 2.539, 4.231, 1.410 1.530, 7.649, 2.754 6.223, 1.245, 6.223 4.236, 5.931, 4.236

4 6.264, 2.684, 6.264 2.601, 4.336, 1.445 1.565, 7.826, 2.817 6.995, 1.399, 6.995 4.658, 6.522, 4.658

5 4.046, 1.734, 4.046 3, 5, 1.667 1.667, 8.333, 3 8.261, 1.652, 8.261 4.815, 6.741, 4.815

6 6.557, 2.810, 6.556 2.54, 4.235, 1.412 1.551, 7.755, 2.792 6.564, 1.313, 6.564 4.426, 6.196, 4.426

7 5.905, 2.531, 5.90 2.665, 4.442, 1.481 1.577, 7.883, 2.838 7.487, 1.497, 7.487 4.680, 6.552, 4.680

8 6.636, 2.844, 6.636 2.458, 4.096, 1.365 1.496, 7.479, 2.693 5.354, 1.071, 5.354 3.890, 5.446, 3.890

9 7, 3, 7 2.524, 4.207, 1.402 1.444, 7.218, 2.599 4.278, 0.856, 4.278 3.374, 4.724, 3.374

10 6.614, 2.835, 6.614 2.487, 4.145. 1.382 1.505, 7.527, 2.710 5.671, 1.134, 5.671 4.006, 5.609, 4.006

11 4.336, 1.858, 4.336 2.824, 4.706, 1.569 1.662, 8.310, 2.991 8.333, 1.667, 8.333 5, 7, 5

12 4.788, 2.052, 4.788 2.802, 4.670, 1.557 1.652, 8.259, 2.973 8.261, 1.652, 8.261 4.963, 6.948, 4.963

13 5.232, 2.242, 5.232 2.728, 4.547, 1.516 1.637, 8.183, 2.946 7.920, 1.584, 7.920 4.924, 6.894, 4.924

14 6.329, 2.713, 6.329 2.602, 4.336, 1.445 1.564, 7.819, 2.815 7.047, 1.409, 7.047 4.625, 6.474, 4.625

15 5.771, 2.473, 5.771 2.697, 4.495, 1.498 1.591, 7.953, 2.863 7.606, 1.521, 7.606 4.786, 6.701, 4.786

A +  7, 3, 7 3, 5, 1.667 1.667, 8.333, 3 8.333, 1.667, 8.333 5, 7, 5

A- 4.046, 1.734, 4.046 2.396, 3.994, 1.331 1.444, 7.218, 2.599 4.278, 0.856, 4.278 3.374, 4.724, 3.374
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is obtained. To proceed, we call this cell xii . This cell depends on three cells in Table 8, 
which are the intersection of CR with decision maker 1, which is 5,7,9. It also includes 
the intersection of CR with decision maker 2 (i.e. 1,3,5) as well as the intersection of CR 
with decision maker 3, which is (5,7,9). The value of k in Eqs. (4), (5) and (6) vary from 1 
to 3. This is because there are three decision makers. The ith term represents the num-
ber of rows, which is the order member that ranges from 1 to 15. These are the criteria or 
alternatives to be chosen among. The ith value represents the member of the columns. 
It will be seen from Table 8 that for decision maker 1, the intersection with CR, which is 
5,7,9 can be written as a1

11
, b1

11
, c1

11
 . The intersection of CR with decision maker 2, which 

is 1,3,5 can be written as a2
11
, b2

11
, c2

11
 . Also, the intersection of CR with decision maker 

3, which is 5,7,9 can be written as a3
11
, b3

11
, c3

11. By looking at the first value of the fuzzy 
number (6.44, 2.762, 6.444), which is 6.444, also called a11 is computed from Eq. (4) as 
the minimum of (5,1,5), which is 1. By using Eq.  (4), it is mathematically expressed as 
a11 = min (5,1,5) = 1. Notice that from Eq. (4), k varies from 1 to 3, which is the reason 
for having three components of the fuzzy numbers. For the second component, which 
is the b11 components, the values to work upon from decisions 1, 2 and 3 are 7, 3 and 
7. But the operation in Eq.  (5) is to be carried on this. Therefore, b11 = 1/3 (7 + 3 + 7), 
which is 5.667. For the third component, c11 the items it contains are 9, 5 and 9. Then, 
Eq. (6), which is the maximum of 9, 5 and 9, giving 9, is used. Mathematically C11 = max 
(9,5,9) = 9. Similarly, we may compute the fuzzy numbers in each cell by evaluating the 
minimum value from the aij components, choosing the mean of the bij component and 
the maximum value of the cij component for the decision matrix at the intersection of 
CR with decision makers 1, 2 and 3 in Table 9.

Next, the results of the difference between FPIS (di
+) and FNIS (di

−) for each param-
eter using Eqs. (7) and (8) are shown in Table 10, where for each fuzzy entry (a1, b1, c1), 
with A+ being (a2, b2, c2), and A− being (a3, b3, c3), Also, the closeness coefficient CCi is 
calculated for each run order using Eq. (9). Furthermore, we have ranked the values in 
descending order of magnitude (highest to lowest) as shown in Table 10.

Table 10  Rank according to TOPSIS

di
+ di

− CCi Rank

1 4.091 9.558 0.700 7

2 9.497 4.153 0.304 14

3 5.956 7.693 0.564 11

4 4.375 9.275 0.679 9

5 4.058 9.591 0.703 6

6 5.128 8.521 0.624 10

7 4.022 9.628 0.705 5

8 7.870 5.779 0.423 13

9 9.775 3.874 0.284 15

10 7.210 6.439 0.472 12

11 3.632 10.02 0.734 3

12 3.322 10.330 0.757 1

13 3.463 10.190 0.746 2

14 4.302 9.348 0.685 8

15 3.722 9.928 0.727 4
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Research articles previously published in the area of the WEDM process, particularly 
those reviewed in the present study, offered important insights into both mathematical 
modeling and experimental analysis aspects of the WEDM process. Nonetheless, these 
works have up till now paid extremely little attention to uncertainty and precision results. 
The common deficiency in most of these articles is the relatively little attention to the 
substantial impact of uncertainty and precision on the results. Fuzzy, which is a solution 
approach, is related to the analysis of a parameter using multiple probable truth values 
that may be processed using the same parameter. The concentration of research reports 
was mainly directed towards the evaluation of crisp numerical values that depended on 
experimental data in many cases. But to the best of the authors’ knowledge, this paper 
lays claim to be among those inaugural reports on nitinol and where WEDM is used for 
processing. It is among the papers to consider the decisive influences of fuzziness on the 
results of analysis. Notably, this paper innovatively expressed the crisp numeric num-
bers in linguistic terms, passes through the process of normalisation, apply the TOPSIS 
framework, defuzzify the numbers and state the crips values. Apart from Majumder and 
Maity [17], by contrasting the present article with the majority of articles in the nitinol 
literature, this article diverges from the literature by adopting the fuzzy concept for the 
evaluation of the WEDM process parameters. The findings in the present work reveal 
the strong influence of uncertainty and imprecision and the extent to which they could 
be reduced, contributing to improving decision-making on the WEDM process. The 
derived results establish run order 12 as the best run order ranking 1 and having the CCi 
value of 0.757. This CCi value strongly highlights the importance of reducing uncertainty 
and imprecision in decision-making since incorrect decisions are reduced.

This shows that it is crucial to reduce imprecision and uncertainty in an optimisation 
and selection drive. The effect is the savings in resources, time and materials used for 
the WEDM process. Our findings remain consistent with the previous study by Sham-
suzzoha et  al. [29] and Kannan et  al. [12]. These studies have considered fuzzy deci-
sion-making and the selection of the best parameters in complex project selection and 
the selection of suppliers, respectively. They addressed the analysis and prioritisation 
of parameters, reducing uncertainty and imprecision under the target item selection 
scheme using multicriteria decision-making methods. However, these studies are out-
side the WEDM scheme. So more of the studies appear to have quantitatively described 
the reduction of uncertainty and imprecision in the WEDM process. Furthermore, our 
results seem to share a resemblance with those reported by Majumder and Maity [17]. 
The outcome of their study confirms that the reduction of uncertainty and imprecision 
in the WEDM process contributes to the inflation of results by using the MOORA-fuzzy 
method.

The principal motivation to apply F-TOPSIS in the selection and optimisation process 
of WEDM, using nitinol-60 is that the process of capturing uncertainty and imprecision 
for the WEDM scheme is simplified to a combination framework. The fuzzy term inter-
pretation with the selection of option for the shortest Euclidean distance from the ideal 
solution as well as the largest distance from the negative ideal solution are the unique 
constituents of the F-TOPSIS method. Besides, the F-TOPSIS method has the follow-
ing advantages over other multicriteria decision-making methods: (1) It is straightfor-
ward to calculate [12, 29]. (2) Human preferences are easily represented. The F-TOPSIS 
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method permits explicit trade-offs among the multiple criteria elements of the process 
[7, 12, 29]. The F-TOPSIS method, when applied to the WEDM process, turns the inputs 
into outputs in a process which identifies the important parameters of the process and 
reduces uncertainty and imprecision and the interpretation of the results for improved 
decision making.

Conclusions
The main motivation for this work is to achieve surface integrity control within the 
framework of machining the nitinol-60 SMA using the WEDM process. However, more 
challenging is the ability of the process engineer to choose the best parameter in the 
process while reducing uncertainty and imprecision in the results obtained for decision-
making. This has impacted decision-making in the past where wrong decisions were 
made with implications for extra spending of time and money as well as morale shrink-
age. This challenge was overcome by developing a method called the F-TOPSIS, which 
was applied to the experimental data of Roy and Mandal [27] on the WEDM process. 
The following conclusions were obtained from the results of the work:

(1)	  From the five outputs, the closeness coefficients of the best and worst are found to 
be 0.7567 and 0.2838, respectively.

(2)	 The application of the F-TOPSIS method led to the reduction of uncertainty and 
imprecision, bringing outputs to the following values: CR is 1.749  mm/min as 
opposed to 2.6177 mm/min obtained by Roy and Mandal [27] for the single param-
eter optimisation. This indicates a reduction of 33.19%. The Rz, Rt, SCD and RLT 
were changed by increases of 8%, 2%, 2.65% and 0.39%, respectively.

(3)	 These increases are desired for non-beneficial parameters, which are these param-
eters affected in this manner.

(4)	 This method of F-TOPSIS is potentially useful for the WEDM process.

In future work, we will extend the proposed approach to establish fuzziness incorpo-
rated with AHP as fuzzy AHP to select the best run order to yield optimum results while 
conducting the WEDM process using the nitinol-60 SMA.
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