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Abstract 

Operating speed models help assess and evaluate geometric design consistency 
along successive road segments. The development of operating speed models 
has been mostly focused on rural two-lane two-way highways, where horizontal cur-
vature plays a dominant role in speed prediction. The need to enhance the prediction 
power of operating speed models and ability to capture more complex relationships 
within an urban setting have motivated this investigation. This research investigates 
the use of artificial neural networks, to develop operating speed models for multilane 
urban elevated arterial roads. Variables investigated in this study included geometric/
operational features of a road segment in addition to the residual impact of the char-
acteristics of upstream segments. A data collection exercise was undertaken on two 
major urban elevated arterial roads in Greater Cairo Region, Egypt: 6th of October 
and Saft Al-Laban corridors. Speed data was extracted from Google Distance Matrix 
Application Programming Interface and validated using test vehicle speed data. 
A regression-based modeling exercise was undertaken in the preliminary investigation 
phase to serve as a benchmark for the intended machine learning modeling exercise. 
Results showed that the prediction power of the developed ANN models — capturing 
the residual effect of upstream speeds — outperformed regression-based ones. The 
best-performing model used operating speeds of two upstream segments in addi-
tion to geometric/operational features of the segment under investigation to predict 
the segment operating speed (the model reported MAPE of 6.7%). Outputs of this 
model were used in a design consistency evaluation and potential transferability exer-
cises to further investigate the model practicality.

Keywords: Elevated urban arterials, Operating speed models, Artificial neural 
networks, Geometric design consistency

Introduction
Road safety and design consistency have been of eminent concern in the last few dec-
ades. The hefty price that comes with post construction evaluations and design improve-
ments has motivated efforts for pre-construction design consistency evaluation (during 
the design phase). Speed profile along a given road is a key measure in road safety and 
design consistency assessments. Variations in operating speeds are directly influenced 
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by variations in road geometry. Limiting expected variations in operating speeds, by 
design, has become a worldwide necessity for sustainable road development. Thus, 
understanding the impact of road geometry on operating speeds and enhancing the pre-
diction power of operating speed models have been of crucial concern to researchers as 
well as practitioners.

Immense efforts have been dedicated to modeling operating speeds, most of which 
were focused on freeways and two-lane two-way highways [1]. Studying the relation-
ships between geometric/operational features of a given segment (such as horizontal 
curve radii, cross-section elements, and posted speeds) and its operating speed, using 
ordinary least-square regression techniques, has been the core of many developed oper-
ating speed models. Such modeling efforts have significantly contributed to the under-
standing of this complex relationship.

The need for enhancing the prediction power of operating speed models and mod-
eling more complex relationships within an urban setting has motivated this investiga-
tion. Three main ideas were of interest to investigate: (1) widening the scope of modeling 
inputs to include road features of upstream segments; (2) generalizing the modeling 
attempt through adopting a case study of an elevated urban arterial and not the conven-
tional two-way two-lane case study, and (3) using a machine learning modeling approach 
in addition to the conventional regression-based approach to enable the comparative 
assessment of both approaches. In the following section, examples of previous modeling 
efforts are described to set the stage for the current investigation.

Background
Developing operating speed models has been the focus of several research endeavors. 
Ordinary least-square regression has been the conventional modeling approach for a 
long time, with elements of horizontal curves serving as the key input to most of the 
developed models. On the other side, the use of machine learning in operating speed 
modeling has been gaining recent interest. Models were developed using artificial neural 
networks (ANN) in an attempt to compare their performance to that of conventional 
regression-based models. This section presents selected models from both sides.

Regression‑based operating speed models

Table  1 presents a summary of previous regression-based operating speed models 
developed to predict the driver speed on two-lane two-way highways or arterials. For 
two-lane two-way highways, the models developed were mostly for curves with a few 
developed for tangents. Predictors usually represent the geometric characteristics of the 
alignment, such as horizontal curve radius (or its variations), deflection angle, length of 
curve, vertical grade of curve, approach tangent length, and operating speed of the pre-
vious element (approaching speed). Predictors of arterial roads on the other hand are 
mainly based on speeds such as posted speed limit and inferred design speed or based 
on urban segment characteristics such as access density, land uses, number of lanes, and 
the presence of sidewalks. This highlights that predicting operating speeds on arterial 
segments is more complicated than two-lane two-way highways due to various factors 
affecting speed other than the geometry of the alignment.
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Table 1 Previously developed regression-based operating speed models

Where:

V85 = predicted operating speed (mph or km/h)

V85 C = predicted operating speed on horizontal curve (mph or km/h)

V85 T = predicted operating speed on tangent (mph or km/h)

V85 PC = predicted operating speed at point of curvature (km/h)

V85 MC = predicted operating speed at midpoint of horizontal curve (km/h)

V85 PT = predicted operating speed at point of tangency (km/h)

V85 IL = predicted operating speed on horizontal curve inside lane (mph)

V85 OL = predicted operating speed on horizontal curve outside lane (mph)

Author (s) Model R2 Eq.

Two-lane two-way highways

Lamm et al. [2] V85C = 34.70− 1.00DC + 2.081LW + 0.174SW + 0.0004AADT 0.842 1

Krammes et al. [3] V85C = 102.45− 1.57DC + 0.0037Lc − 0.1�

V85C = 41.62− 1.29DC + 0.0049Lc − 0.12�+ 0.95V85T
0.82
0.9

2
3

Voigt [4] V85 = 102− 2.08DC + 40.33e
V85C = 99.6− 1.69DC + 0.014L− 0.13�+ 71.82e

0.81
0.84

4
5

Gong and Stamatiadis [5] For inside lane:
V85IL = 51.520+ 1.567ST − 2.795MT − 4.001PT − 2.15AG + 2.22ln(LC)
For outside lane
V85OL = 60.779+ 1.804ST − 2.521MT − 1.071AG − 1.519FC

0.647
0.432

6
7

Zuriaga et al. [6] For all radii values:
V85C = 97.4254−

3310.94

R
V85C =

1

0.00948323+(0.00001501∗CCR)
For radii > 400 m
V85C = 102.048−

3990.26

R
For Tangents
V85T = V85C + 1− e−�L

× (Vdes − V85C)

0.76
0.79
0.84
0.52

8
9
10
11

Passetti and Fambro [7] V85C = 103.9− 3020.5/R 0.68 12

Abbas et al. [8] V85MC = 75.344−
368.14
√

R
+ 0.307V85AT 0.532 13

Mahmoud et al. [9] Two-dimensional model:
V85C = 102.466−

5003.426

R
Three-dimensional model:
V85C = 103.559−

4951.51

R
− 3012.795G2

0.69
0.732

14
15

Islam and Seneviratne [10] V85PC = 95.41− 1.48DC − 0.012DC2

V85MC = 103.3− 2.41DC − 0.029DC2

V85PT = 96.11− 1.07DC

0.99
0.98
0.98

16
17
18

Bird and Hashim [11] V85C = 119.073−
518.275
√

R
−

125440

ATL2
+

413.181

�2
0.88 19

Hashim et al. [12] For point of curvature:
V85 = 99.885−

3880.21

R
For center of the curve:
V85 = 101.564− 3480.88/R
For point of tangency:
V85 = 101.18−

3969.9

R
For tangents
V85T = 84.34+ 0.593

√
LT

0.704
0.730
0.728
0.851

20
21
22
23

Arterials

Fitzpatrick et al. [13] For all roadways
V85c = 7.675+ 0.98PSL
For urban/suburban arterials
V85c = 8.666+ 0.963PSL
For rural arterials
V85 = 36.453+ 0.517PSL

0.904
0.86
0.81

24
25
26

Fitzpatrick et al. [14] V85c = 43.5+ 0.38IDS
V85T = 74.91+ 22.29/AD

0.83
0.71

27
28

Wang et al. [15] V85T = 31.565+ 6.491lane.num− 0.101roadside − 0.051driveway 0.67 29

+0.00047R + 2.408
LC

R

−0.082intersection+ 3.01curb− 4.265sidewalk − 3.189parking

+3.312land.use1+ 3.273land.use2
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Artificial neural networks models

McFadden et al. [16] conducted a comparative study by developing two ANN models 
using the same predictors from the same dataset collected by Krammes et al. [3]. The 
accuracy of ANN models was examined by comparing the coefficients of determina-
tion (R2). The performance of ANN model 1 was compared to the performance of the 
regression model shown previously in Eq. 4 where ANN model 1 reported R2 of 0.761 
compared to 0.81 (regression based). The performance of ANN model 2 was com-
pared with the performance of the regression model shown previously in Eq. 5 where 
ANN model 2 reported R2 of 0.79 compared to 0.84 (regression based).

Semeida [17] investigated the accuracy of ANN compared to regression by develop-
ing models using same inputs for two-way multilane highways in Egypt. Posted speed 
limit and geometric features of road segments were the independent variables for the 
regression-based model to predict operating speed on any road segment. The model 
with the best accuracy reported a RMSE of 10.32. Semeida [17] stated that although 
the regression model had an acceptable accuracy, the model did not consider all the 
predictors. Therefore, he used multilayer perceptron feedforward ANN to develop 
a model which considers all the independent variables of the dataset as predictors. 
ANN model training set had RMSE = 2.9 and R2 = 0.982, while for validation set, the 
RMSE = 4.12 and R2 = 0.84.

R = horizontal curve radius (m)

DC = degree of curvature (°) (equals to 1746.38/R)

CCR  = curvature change rate

LC = length of horizontal curve (ft)

LW = lane width (ft)

SW = shoulder width (ft)

AADT = average annual daily traffic (vehicles/day)

LT  = tangent length (m)

Δ = deflection angle (°)

e = superelevation rate (m/m)

G = Grade on Horizontal Curve

ST = shoulder type indicator (1 if the shoulder type is surfaced; 0 otherwise)

MT = median type indicator (1 if no median barrier present; 0 otherwise)

PT = pavement type indicator (1 if pavement type is concrete; 0 if asphalt)

AG = approaching section grade indicator (1 if the absolute grade ≥ 0.5%; 0 otherwise)

FC = front curve indicator (1 if the approaching section is a curve; 0 otherwise)

Vdes = desired speed (km/h)

PSL = Posted speed limit (km/h)

� = calibration factor to minimize mean square error (MSE)

ATL = the average length of the preceding and following tangents of the curve

AD = approach access density (number of access points per km)

IDS = inferred design speed (km/h)

roadside = density of roadside objects per mile / average offsets from roadside (ft)

driveway = density of driveways (number of driveways per mile)

lane.num = number of lanes

curb = 0 if there is no curb; otherwise, curb = 1

sidewalk = 0 if there is no sidewalk; otherwise, sidewalk = 1

parking = 0 if there is no on-street parking; otherwise, parking = 1

land.use1 = 0 and land.use2 = 0 if land use is commercial

Intersection = intersection density per mile

Table 1 (continued)
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In a separate study, Smeida [18] developed two regression models (one model for pas-
senger cars and the other for trucks) and two ANN models to predict the operating 
speed on horizontal curves for multilane rural highways in Egypt. Only two independ-
ent variables were included in the regression-based model (median width and deflec-
tion angle). There were four other variables (shoulder width, curve length, curve radius, 
superelevation rate) that were significantly correlated with the operating speed that were 
not included in the regression models. Therefore, two ANN models were developed to 
examine the effect of using all correlated variables as inputs. The performance of the 
developed ANN models reported a RMSE of 5.77 and 4.3 and R2 of 0.932 and 0.95, for 
passenger cars and trucks, respectively.

Based on the presented literature, it is apparent that using ANN in modeling operat-
ing speeds is still evolving. Most of reviewed models were developed for freeways and 
two-lane two-way highways. Almost all considered predictors are segment specific (cur-
vature radii, deflection angles, cross section elements, posted speed, etc.), which implies 
that changes in driver’s speed are only triggered by immediate changes in road features. 
This observation motivated this research to investigate the residual impact of upstream 
segments’ features on operating speeds. In other words, are driver’s speed-related deci-
sions function only of the features of the current segment, or is there some built-up 
knowledge that comes with travelling on upstream road segments?

The objective of this research is to investigate the performance of ANN in modeling 
operating speeds on multilane elevated urban arterial roads. In doing so, the accuracy 
of the developed ANN model is compared to another model developed using multi-
ple linear regression (MLR) as a benchmark. The effect of adding the operational and 
geometric features of the upstream segments as a variable on the accuracy of the devel-
oped model was investigated. In addition, to facilitate speed data collection, speed data 
collected from google maps (using its application programming interface (API) was 
investigated.

Methods
To realize the objective of this research, four main steps were adopted according to the 
research methodology chart, given in Fig. 1. First, a thorough review was performed to 
understand and select the main factors (variables) affecting operating speeds on multi-
lane elevated urban arterial roads. Two corridors were selected for the case study: 6th of 
October Bridge and Saft Al-Laban Corridor, in Greater Cairo, Egypt. An experiment was 
set up to collect geometric and speed data from the two corridors using a GPS device 
in a test vehicle. The second step was concerned with data collection. While geometric 
features data was collected by creating AutoCAD Civil 3D® alignments, speed data was 
collected from Google API® distance matrix and then validated using field measured 
speeds.

The third step was concerned with model development. Two types of operating models 
were developed: MLR and ANN models. All models were developed to predict operat-
ing speeds of a roadway segment given its geometric/operational features in addition to 
features from upstream segments. A stepwise regression technique was used to develop 
MLR operating speed models. On the other hand, several ANN architectures were 
investigated. While different architectures vary in number of inputs, number of hidden 
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layers, number of neurons per layer, and associated functions; they all had one neuron 
in the output layer representing segment operating speed. Evaluation of investigated 
ANN models was based on prediction accuracy indicators. Finally, a design consistency 
evaluation exercise was undertaken to validate the performance of the developed ANN 
model.

Case study data collection
Two elevated multilane urban arterials were selected for this study: 6th of October and 
Saft Al-Laban Corridors as shown in Fig.  2. Both corridors were chosen to ensure a 
wide range of sharp and smooth curves (with radii between 70 and 1400 m), and similar 
posted speeds of 60 km/h on most of the sections and 40 km/h on sharp alignment sec-
tions. Operating speeds data was collected during free-flow conditions to examine the 
effect of the geometric characteristics on vehicle speeds. Characteristics of the selected 
corridors are described in Table 2.

A mobile equipped with a GPS-based tracker was used in a test vehicle for collect-
ing latitude and longitude coordinates of the two corridors. A horizontal alignment was 
developed for each direction of the two corridors using the vehicle’s position inside the 
lane. The recorded coordinates were used in AutoCAD Civil 3D® to develop horizontal 
alignments. The horizontal geometric features (tangent lengths, curve lengths, and curve 
radii) were determined. The alignments were calibrated using Google Earth® to ensure 
that the alignments were developed based on coordinates that can be used on Google 
Maps APIs. The alignments were divided (segmented) into tangents and curves to detect 
the impact of a certain geometric element on the following element. Geometric features 
were collected for each segment: radius (R), curve length (CL), and tangent length (TL).

Fig. 1 Research methodology
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GPS-based speeds were measured during free-flow conditions in between 3:00 AM 
and 4:00 AM, through one test run for each moving direction. This time slot was selected 
to ensure free-flow conditions, as our case-study corridors are heavily used during day-
time. Nonetheless, the corridors are fully lighted which is believed to limit the impact of 
darkness on drivers’ behavior.

Since operating speed models are normally distributed and require a sample size of 
spot speeds of at least 30 vehicles, the conducted test run was not enough to secure 
reliable operating speed data. Alternatively, open-sourced travel time data provided by 
Google Cloud Services was used in this research to estimate operating speeds on differ-
ent road segments. The data is publicly accessible through Google APIs®. While the test 
vehicle data represents only one run speed data, Google-based data relies on a larger 
pool of vehicles in addition to a historical data component. It is important to note that 

(a)

(b)
Fig. 2 Case study routes a 6th of October Corridor and b Saft Al-Laban Corridor

Table 2 Summary of geometric features for the case study

6th of October Corridor Saft 
Al‑Laban 
Corridor

Length in both directions 20.6 km 9.4 km

Number of lanes/direction 3–4 3

Number of curves 40 20

Posted speed (km/h) 60 (40) 60 (40)

Maximum curve radius
(R max)

1400 m 1300 m

Minimum curve radius
(R min)

110 m 70 m
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the adequacy of using Google API data in capturing speed data has been investigated 
repeatedly in the literature [19]. Speeds were captured using a developed Python code 
which develops a distance matrix. The inputs for the developed code were the final seg-
ment coordinates, and the outputs were travelled distance (segment length) and travel 
time under free-flow condition. Since speeds were estimated under free-flow conditions, 
they were considered operating speeds. Google-based speed data estimation accuracy 
was evaluated by comparing it to the ground truth speed data of 6th of October Cor-
ridor segments. A reasonable difference was estimated; MAE and MAPE were found to 
be 4.2 km/h and 5% respectively which can be considered as the difference between the 
one run-based speed (collected from geo-tracker) and multiple vehicle speeds (collected 
by Google).

Data descriptive analysis
Collected geometry and speed data were used to construct two datasets to be used in 
the development of two types of operating speed models. Dataset #1 was for developing 
operating speed models on curves only (Model #1), and Dataset #2 was for developing 
operating speed models on all segments (curves and tangents) (Model #2).

Dataset #1 consisted of 60 horizontal curves extracted from the developed alignments 
for both corridors. Table 3 shows the description of the Dataset #1 variables.

Spearman correlation analysis was adopted to analyze the correlation between the 
independent variables and the dependent variable in Dataset #1, using SPSS® analysis 
tool. The reason for using Spearman correlation is that it relaxes the normality assump-
tion of Pearson correlation. Table 4 shows the results of the correlation analysis, where 
operating speed on curve (n) (V85C(n)) is highly correlated with NL, PS, R, V85T, TL, and 
V85C(n-1).

The analysis also shows that there is high correlation between the independent vari-
ables themselves which indicates a potential presence of multicollinearity between the 
predictors. To ensure that the multicollinearity will not affect the regression model, the 
variance inflation factor (VIF) was calculated for each independent variable. All pre-
dictors reported > 1VIF > 10 which illustrates that although there is multicollinearity 
between the predictors, it is not significant to affect the accuracy of the MLR model.

Table 3 Description of dataset #1 variables

Variable Name Symbol Unit Range of 
Measurement

Mean Coefficient 
of Variation

Independent variables
    Number of lanes/direction NL - 3, 4 3.44 0.146

    Posted speed PS km/h 40, 60 55.93 0.145

    Curve length CL m 52 – 265 110.22 0.47

    Curve radius R m 70 -1400 341.36 0.892

    Speed on tangent V85T km/h 48 – 87 67.68 0.135

    Tangent length TL m 60 – 1488 353.83 1

    Operating speed on previous Curve (n-1) V85C(n-1) km/h 50 – 90 68.83 0.139

Dependent variables
    Operating Speed on Curve (n) V85C(n) km/h 50 – 90 69.12 0.133
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On the other hand, Dataset #2 was constructed using data on all segments (tangents 
and curves), from both corridors. It consisted of 122 segments (60 curves and 62 tan-
gents). A categorical approach was adopted to differentiate between segments with 
respect to curvature characteristics; segments were classified into 10 categories which 
are described as below:

• Category #1 (C1): Curves with radii < 100 m
• Category #2 to Category #9 (C2 to C9): Curves with radii of 100 to 550 m with an 

increment of 50 m
• Category #10 (C10): Tangents and curves with radii > 550 m

Moreover, to investigate the effect of upstream segments’ geometric and opera-
tional features on the accuracy of the prediction model, the dataset included the char-
acteristics of four previous segments. Table 5 below shows the shape of Dataset #2, 
the symbol of each variable, and its range of measurements to be used in the second 
model that predicts the speed of all segments.

Results of the correlation analysis, presented in Table 6, illustrates that the speed on 
segment (n) (V85 (n)) is significantly correlated with some features of segments n, n-1, 
n-2, n-3, and n-4 (PSn, L (n-1), V85 (n-1), C(n-1),V85 (n-2), V85 (n-3), V85 (n-4)). It is also noticed 
from the correlation analysis that there is multicollinearity among the independent 
variables.

To evaluate the effect of multicollinearity on regression Model #2, the variance infla-
tion factor (VIF) for Dataset #2 predictors were calculated. The VIF for all independent 
variables was between 1 and 10 (1<VIF<10) which indicated that there is multicollinear-
ity among the independent variables, but it does not significantly affect the regression 
models.

Table 4 Spearman correlation analysis for dataset # 1

a Correlation is significant at the 0.05 level (2-tailed)
b Correlation is significant at the 0.01 level (2-tailed)

Variables V85C(n‑1) TL V85T R CL PS NL V85C (n)

V85C(n‑1) Correlation coefficient 1.000 0.323a 0.453b 0.326a 0.147 0.262a 0.363b 0.413b

Sig. 0.013 0.000 0.012 0.268 0.045 0.005 0.001

TL Correlation coefficient 0.323a 1.000 0.425b 0.359b 0.240 0.368b 0.126 0.412b

Sig. 0.013 0.001 0.005 0.067 0.004 0.340 0.001

V85T Correlation Coefficient 0.453b 0.425b 1.000 0.370b 0.186 0.331a 0.300a 0.476b

Sig. 0.000 0.001 0.004 0.159 0.011 0.021 0.000

R Correlation Coefficient 0.326a 0.359b 0.370b 1.000 0.250 0.649b 0.264a 0.646b

Sig. 0.012 0.005 0.004 0.056 0.000 0.044 0.000

CL Correlation Coefficient 0.147 0.240 0.186 0.250 1.000 .268a -0.143 0.071

Sig. 0.268 0.067 0.159 0.056 0.040 0.279 0.593

PS Correlation Coefficient 0.262a 0.368b 0.331a 0.649b 0.268a 1.000 0.109 0.366b

Sig. 0.045 0.004 0.011 0.000 0.040 0.410 0.004

NL Correlation Coefficient 0.363b 0.126 0.300a 0.264a -0.143 0.109 1.000 0.380b

Sig. 0.005 0.340 0.021 0.044 0.279 0.410 0.003

V85C (n) Correlation Coefficient 0.413b 0.412b 0.476b 0.646b 0.071 0.366b 0.380b 1.000

Sig. 0.001 0.001 0.000 0.000 0.593 0.004 0.003
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Model development
This research investigated two modeling techniques: multilinear regression (MLR) 
and feedforward artificial neural networks (ANN). Each of the mentioned modeling 
techniques was used to develop two types of models. Model #1 predicts speed on 
curves only using predictors from Dataset #1. Model #2 predicts speed on any seg-
ment (tangent or curve) using predictors from Dataset #2. MLR model was devel-
oped using SPSS®, while ANN model was developed using a tailored Python script. 
The dataset used in developing the ANN models was divided into training and testing 
data (with a ratio of 70:30). The predicting power of each modeling technique was 
assessed by comparing the prediction accuracy of each model.

MLR‑Model #1 speed on curves

A stepwise procedure was used to model operating speed on curves using Dataset 
#1 as shown in Eq.  30 with MAE = 7.87 km/h, MAPE = 11.66%, and R2 = 0.37. The 
positive sign of the coefficient for the radius (R) is logical as the speed on curve ( V85C) 
increases with the increase in curve radius. Moreover, the positive sign for the coef-
ficient ( V85T  ) also indicates that the higher the speed on the tangent before the curve, 
the higher the expected speed on the curve. Table 7 presents the significance of each 
predictor.

(30)V85C = 36.6+ .015R+ 0.341V85T

Table 5 Variables for dataset #2

Segment position Variable name Symbol Unit Range of 
measurement

Mean Coefficient 
of variation

Dependent variable
    Segment (n) Speed V85 (n) km/h 48—90 69.19 0.14

Independent variables
    Segment (n) Length Ln m 52—1488 235.98 1.19

Category Cn - 1 – 10 7.57 0.42

Posted Speed PS km/h 40, 60 58.03 0.1

    Segment (n-1) Length L(n-1) m 52—1488 232.04 1.22

Speed V85 (n-1) km/h 48—90 69.38 0.14

Category C(n-1) - 1—10 7.49 0.43

    Segment (n-2) Length L(n-2) M 52—1488 236.16 1.21

Speed V85 (n-2) km/h 48—90 69.43 0.14

Category C(n-2 - 1—10 7.55 0.41

    Segment (n-3) Length L(n-3) m 52—1488 226.66 1.21

Speed V85 (n-3) km/h 48—90 69.54 0.14

Category C(n-3) - 1—10 7.46 0.42

    Segment (n-4) Length L(n-4) m 52—1488 230.93 1.2

Speed V85 (n-4) km/h 48—90 69.48 0.14

Category C(n-4) - 1—10 7.63 0.4
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MLR‑Model #2 speed on all segments

For MLR-Model #2, the significantly correlated variables from Dataset #2 were used 
to develop the best regression model using stepwise regression approach. The best 
model is shown in Eq. 31 and Table 7. The model is significant at a 95% confidence 
level with coefficient of determination (R2) equal to 0.31, MAE = 6.17 km/h, and 
MAPE = 9.03%.

The developed model reflects the impact of the residual speed from previous seg-
ments. The operating speed of the previous two segments ( V85(n−1)V85(n−2)) , the radius 
category of the previous segment (C(n−1)) , and the posted speed on the road (PS ) were 
all of significant impact.

ANN‑Model #1 speed on curves

ANN is commonly used to capture nondeterministic relationships between predictors 
and dependent variables. In the case of Model #1, the correlation analysis showed that 
there is high correlation between V85C(n) as the dependent variable and NL, PS, R, V85T, 
TL, and V85C(n-1) as independent variables. However, the MLR model considered R and 
V85T only as significant predictors. Thus, a feedforward ANN was used to model the 
operating speed considering all predictors of Dataset #1.

Since ANN-Model #1 was developed to predict speed on curves V85C(n), therefore, tan-
gent length (TL), approaching speed (speed on tangent) V85T, and speed on the previous 

(31)V85(n) = 14.313+ 0.201V85(n−1) + 0.255V85(n−2) + 0.814C(n−1) + 0.303PS

Table 7 MLR Models statistical significance

Model Predictor Coefficient Sig.

MLR‑Model #1 Intercept 36.597 0.001

R 0.015 0.000

V85T 0.341 0.000

MLR‑Model #2 Intercept 14.313 0.115

V85 (n-2) 0.255 0.004

V85 (n-1) 0.201 0.022

C(n-1) 0.814 0.002

PS 0.303 0.026

Table 8 ANN-Model #1 developed trials

ANN M 1–1 ANN M 1–2 ANN M 1–3 ANN M 1–4

Inputs PS PS PS PS

NL NL NL NL

R R R R

CL CL CL CL

-- TL TL TL
-- -- V85T V85T

V85C(n-1)
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curve V85C(n-1) are considered the geometric and operational properties of upstream seg-
ments. To determine the effect of adding the upstream characteristics on the accuracy of 
the operating speed model, a stepwise criterion was adopted in developing ANN-Model 
#1. The effect of adding each predictor was measured by developing four separate ANN 
models shown in Table 8. Models’ architectures were developed through a comprehen-
sive trial error approach. The dataset was divided into training and testing subsets with a 
ratio of 70:30.

The effect of adding each predictor was measured by calculating MAE and MAPE for 
each model as shown in Table 9. The performance of ANN-Model #1–4 is considered 
the best performance among the developed models (MAPE of 8%) which illustrates that 
adding the upstream segments’ features has increased the accuracy of operating speed 
prediction model. Extensive efforts were exerted to fine tune the ANN model architec-
ture to achieve the best possible performance. ANN M 1–4 had two hidden layers, with 
7 and 4 neurons, respectively, and tanh activation function. Figure  3 presents M 1–4 
model architecture and learning curve.

ANN‑Model#2 speed on all segments

The developed MLR model considered four predictors only which were posted speed 
PS, category of the previous segment C(n-1), approaching speed V85 (n-1), and speed on 
segment n-2 V85 (n-2), although there were other predictors which were significantly cor-
related to the operating speed on segment n V85 (n). ANN-Model #2 was developed to 
consider all predictors of Dataset #2. To understand the contribution of data from previ-
ous segments, the model development process was conducted by developing five ANN 
models, as shown in Table 10.

Table 11 presents MAE and MAPE for each of the developed models. The results 
show that although models ANN M 2–4 and ANN M2-5 have more predictors 

Table 9 Model #1 prediction errors

ANN models MLR‑Model #1

MAE (km/h) MAPE (%) MAE (km/h) MAPE (%)

M 1‑1 9.244 13.4% 7.87 11.66

M 1‑2 7 10.1%

M 1‑3 6.5 9.4%

M 1‑4 5.5 8.0%

Fig. 3 ANN M 1–4 architecture and learning curve
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including the operating speed and category of segments (n-3) and (n-4), the MAE and 
MAPE values were higher than those for ANN M 2–3. The best-performing model 
was ANN M 2–3, with MAE = 4.65 km/h, MAPE = 6.7%, and R2 = 0.56. The model 
uses input data (predictors) from segment (n) until segment (n-2). The model has two 
hidden layers, 16 neurons each, and tanh activation function. Figure 4 presents ANN 
M 2–3 architecture and learning curve. On the other hand, using data from further 
segments (n-3) and (n-4) negatively affected the accuracy of the model as seen in the 
MAE and MAPE values of the 4th and 5th models. This implies that driver’s choice 
of speed was impacted by their previous experience (represented by their speed) on 
the previous two segments only (n-1) and (n-2), and that their speed on the segments 
before that (n-3) and (n-4) were not a contributing factor.

Results and discussion
Model #1: Speed on curves

ANN performance surpassed the performance of MLR as R2 and MAPE for ANN 
M1-4 were 0.5 and 8% respectively compared to 0.37 and 11.66% for MLR-Model #1. 
To further investigate the robustness of ANN M1-4, an error distribution analysis was 
conducted on the testing dataset. As shown in Fig. 5, the distribution of errors takes a 
normal shape with 40% of the error values in the range of 0 to 5 km/h.

Table 10 ANN-Model #2 developed trials

Model name Inputs

ANN M 2–1 Ln, Cn, PSn

ANN M 2–2 Ln, Cn, PSn
L(n-1), V85 (n-1), C(n-1)

ANN M 2–3 Ln, Cn, PSn
L(n-1), V85 (n-1), C(n-1)
L(n-2), V85 (n-2), C(n-2)

ANN M 2–4 Ln, Cn, PSn
L(n-1), V85 (n-1), C(n-1)
L(n-2), V85(n-2), C(n-2)
L(n-3), V85 (n-3), C(n-3)

ANN M 2–5 Ln, Cn, PSn
L(n-1), V85 (n-1), C(n-1)
L(n-2), V85 (n-2), C(n-2)
L(n-3), V85 (n-3), C(n-3)
L(n-4), V85 (n-4), C(n-4)

Table 11 Model #2 prediction errors

ANN models MLR Model #2

MAE (km/h) MAPE (%) MAE (km/h) MAPE (%)

M 2–1 7.1 10.3% 6.17 9.03

M 2–2 5.7 8.3%

M 2–3 4.6 6.7%

M 2–4 5.1 7.4%

M 2–5 5.2 7.5%



Page 16 of 25Said et al. Journal of Engineering and Applied Science          (2023) 70:123 

Fi
g.

 4
 A

N
N

 M
2-

3 
ar

ch
ite

ct
ur

e 
an

d 
le

ar
ni

ng
 c

ur
ve



Page 17 of 25Said et al. Journal of Engineering and Applied Science          (2023) 70:123  

The ability of the developed ANN M1-4 to capture the sensitivity of operating speeds 
to changes in radius was examined on a curved segment from 6th of October corridor. 
The segment has the following characteristics (NL = 3 lanes, PS = 60 km/h, CL = 168 m, 
R = 180 m, V85T = 68 km/h, TL = 113 m, and V85C(n-1) = 63 km/h). All input parameters 
were fixed, and changes in curve radius have been performed incrementally to observe 
the change in predicted operating speed. It can be noticed from Fig. 6 that the rate of 
increase in the predicted operating speed decreases with the increase in curve radius. 
More specifically, the predicted operating speed is highly sensitive to the change in 
curve radius from R = 80 m to R = 480 m (10 km/h increase). Then, a reduced sensitivity 
could be depicted for curves with 480 m < R < 1280 m.

Model #2: Speed on all segments

The performance of ANN M2-3 reported the best performance with R2 and MAPE of 
0.56 and 6.7% respectively compared to 0.31 and 9.03% for MLR-Model #2. The testing 
data for ANN M2-3 was examined to determine the distribution of errors. The results 
shown in Fig. 7 depict a normal distribution of errors with a peak in the error range 0 to 
5 km/h.

For further understanding of the behavior of the developed ANN M2-3, a sensitivity 
analysis was performed on a segment from 6th of October Corridor with the following 

Fig. 5 Error distribution for ANN M 1–4

Fig. 6 Sensitivity of the predicted operating speed to change in curve radius
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features (Ln = 106 m, Cn = 4, PSn = 60  km/h, L (n-1) = 175  m, V85 (n-1) = 70  km/h, C (n-

1) = 10, L (n-2) = 103 m, V85 (n-2) = 74 km/h, C (n-2) = 5). The effect of segment category  Cn 
on the operating speed was examined by changing the category of the selected segment 
from 1 to 10, while the other variables were fixed. It can be noticed from Fig. 8 that the 
model sensitivity to changes in segment category is limited (less than 5 km/h) and more 
pronounced in categories 1 to 6.

The conducted sensitivity analysis depicts a variation in sensitivity to segments’ cur-
vature in between Model #1 and Model #2. Model #1 predicts operating speeds only on 
curves, and hence, the data set used for training is specific to curved segments. The nar-
row data range allowed for higher sensitivity to curve radii. On the other hand, Model 
#2 is a generalized version that predicts operating speeds on any segment (tangents or 
curves). This comes at the expense of a wider range of data resulting in diluted sensitivity 
to the impact of curve radii.

Validation of the usability of ANN‑Model #2
Assessment of model usability in design consistency evaluation

Design consistency is one of the major concerns in geometric design of roads as it is 
considered one of the main factors that control the quality of the trip. Lamm et al. [20] 

Fig. 7 Error distribution for ANN-Model #2  V85 estimation

Fig. 8 ANN-Model #2 sensitivity to the change in segment (n) category
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developed three main criteria to evaluate the design consistency of highways; each eval-
uation criterion depends on evaluating the consistency of a specific measure through 
the successive road segments. The safety criterion (II) depends on evaluating the operat-
ing speed. In this research, the developed models predict operating speeds for arterial 
roads; thus, safety criterion (II) was used to evaluate the design consistency of 6th of 
October and Saft Al-Laban Corridors. The safety criteria developed by Lamm et al. [20] 
were for two-lane, two-way highways, where a good design had a change in operating 
speed between two successive elements of less than 10 km/h, a fair design had a change 
of operating speed between two successive elements between 10 km/h and 20 km/h, 
and a poor design had a change of operating speed of more than 20 km/h. In this study, 
the evaluation ranges of criterion II were modified to fit the arterial roads based on the 
design speed ratio between highways and arterial roads as shown in Table 12.

A comparative design consistency evaluation was conducted on each movement direc-
tion for the case study roads by using the proposed modified ranges of Safety Criterion II 
presented in Table 12. The first consistency evaluation was conducted for the case study 
road segments using the operating speed data obtained from Google Maps Distance 
Matrix API as a reference for the comparative evaluation. The second evaluation was 
conducted for the same segments using the predicted operating speed data (V85) based 
on the trained ANN-M2-3. The purpose of the application was to compare the design 
consistency rating using the ground truth data (raw data) operating speed values and the 
ratings from operating speeds inferred from the ANN model to test how different were 
the two results and whether the errors of the models resulted in different consistency 
ratings.

The results of the comparative design consistency evaluations are presented in 
Table 13 for 6th of October Corridor and Table 14 for Saft Al Laban Corridor and sum-
marized in Table 15. By comparing the conducted evaluations for the two corridors, it 
was found that 71% of the segments had the same evaluation category, while 29% of the 
segments had different evaluation rating. Furthermore, the segments with different con-
sistency evaluation were found to be 14 tangents and 15 curves with different range of 
characteristics which indicates that there is no pattern/bias in observed differences. The 
differences, though, could be justified by two main reasons. The first reason is the accu-
racy of the developed ANN model which reflects the prediction power of the model. It 
was noticed that the majority of evaluation differences (97%) are one category difference, 
and the remaining 3% is two categories difference. Referring to the MAE of ANN 2–3 
which was 4.6 km/h and by comparing it with the speed range difference of each evalua-
tion category which is 7 km/h per category, it can be concluded that the reason for most 
of the differences in the consistency evaluation (one category difference) is because of 
the MAE of the prediction model itself. The second reason which was identified through 

Table 12 Modified ranges for operating speed-based evaluation for elevated urban arterials

Evaluation Operating speed consistency

Good ∆V85 ≤ 7 km/h

Fair 7 < ∆V85 ≤ 14 km/h

Poor ∆V85 > 14 km/h
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visual observations is the localized operational conditions that are not captured by the 
developed model and could have an impact on operating speeds such as radars, cameras, 
or deteriorated pavement condition in specific parts of some segments.

Assessment of model transferability

To further assess the developed ANN-Model #2 transferability, a validation exercise was 
undertaken to evaluate the potential application of ANN-Model #2 on other elevated 
urban arterials with similar characteristics. A test was conducted on both directions of a 
1.7-km stretch of an elevated 6-lane divided urban arterial in Cairo, Egypt (Rod El Farag 
Corridor). Figure 9 and Table 16 display the geometric/operational characteristics of the 
considered portion of the corridor. Such data was used as model inputs to predict oper-
ating speeds on each segment of the corridor using ANN-Model #2.

Table 13 Comparative consistency evaluation results for 6th of October Corridor

*F Fair, G Good, P Poor
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Table 14 Comparative consistency evaluation results for Saft Al Laban Corridor

*F Fair, G Good, P Poor

Table 15 Summary of consistency evaluation results

Fig. 9 Assessed route for validation
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The performance of the developed ANN-Model #2 was tested by comparing the model 
predicted speeds to speeds obtained from Google Distance Matrix API (representing 
ground truth data). Table 17 depicts speed estimates and prediction errors. These results 
are for 10 out of the 14 original segments, since the first two segments from both direc-
tions were excluded from the prediction exercise. The operating speed on these excluded 
segments was assumed as the posted speed and used as input in predicting the operating 
speed of the following segment.

Estimated prediction errors ranged between 1 and 7% for all segments except for the 
first segment (where the prediction error increased to 13%). The estimated average pre-
diction error was 4.6% (around 3 km/h). Reported results highlight the potential trans-
ferability of the developed model as it was able to reasonably predict operating speed 
patterns on a new urban arterial.

Conclusions
This research focused on the development of operating speed prediction models in 
Egypt using two modeling approaches: multiple linear regression and artificial neu-
ral networks based on speed data extracted from Google Distance Matrix APIs. Two 
distinct models were developed in this research, Model #1 to predict operating speed 
on curves only (V85 C) and Model #2 to predict speed on any segment (tangents and 
curves) (V85 n). Notably, no separate model was developed for speeds on tangents 

Table 16 Descriptive statistics of assessed route

Variable Range of measurement Mean Coefficient 
of variation

Length (m) 2681 - -

No. of tangents 6 - -

No. of curves 4 - -

No. of lanes / direction 3 - -

Posted speed (km/h) 60 - -

Segment length (m) 40—856 221.43 1.305

Curve radius (m) 500—525 512.5 0.03

Segment category 9—10 9.5 0.055

Table 17 Speed estimates and prediction errors of assessed route

Segment no. Segment type Segment 
length (m)

API speed 
(km/h)

Predicted 
speed (km/h)

Error (km/h) % error

1 Tangent 235 60 68 8 13

2 Curve 40 72 73 1 1

3 Tangent 856 70 68 -2 3

4 Curve 162 73 74 2 3

5 Tangent 150 77 74 -3 4

6 Tangent 856 70 75 5 7

7 Curve 40 72 73 1 1

8 Tangent 235 60 64 4 7

9 Curve 56 61 63 2 3

10 Tangent 51 67 70 3 4
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since speeds on the tangents largely depend on the length of the tangent, where 
short tangents will have speeds dependent on that of preceding and succeeding 
curves. The variability and driver’s choice of speed mainly depend on the geometrics 
of the horizontal curves experienced by the driver. To our knowledge, this is the first 
research attempt to investigate the following: (1) the residual impact of upstream 
segments’ operating speeds (segments n-1, n-2, n-3, and n-4) on operating speed of 
a given segment (n) and 2) the feasibility of developing one operating speed model 
that can predict operating speeds on both curves and tangents with acceptable level 
of accuracy.

A preliminary analysis was conducted on collected data to identify correlation pat-
terns between different variables. Seven independent variables were selected to be 
investigated as potential inputs to Model#1, namely, number of lanes NL, posted speed 
PS, curve length CL, curve radius R, speed on tangent V85T, tangent length TL, and 
operating speed on previous curve V85C(n-1). A stepwise regression modeling exercise 
was undertaken. The developed model used only two independent variables (R, V85T,) 
and reported R2 of 0.37 and MAPE of 11.66%. On the other hand, the best performing 
ANN model used all seven variables and reported R2 of 0.5 and MAPE of 8%.

As for Model #2, fifteen independent variables, capturing geometric/operation fea-
tures of the modeled segment n and upstream segments n-1, n-2, n-3, and n-4, have 
been investigated. The developed regression models used four independent variables: 
posted speed, operating speeds on segments n-1 and n-2, and curvature category of 
segment n-1. The model reported R2 of 0.31 and MAPE of 9.03%. On the other hand, 
the best-performing ANN model used all inputs for segments n, n-1, and n-2, report-
ing R2 of 0.56 and MAPE of 6.7%. The model performance was further evaluated in a 
design consistency evaluation exercise.

Outputs of this investigation have highlighted the potential of using ANN in 
enhancing the prediction power of operating speed models. The ability of ANN to 
consolidate inputs from more than one segment, widening the spatial extent of influ-
ence, was proven to effectively boast the model prediction accuracy. Moreover, the 
capacity to include all types of segments (curved and tangents) in one model adds 
an advantage related to the ease of application. Furthermore, the study assessed 
the potential transferability of the developed model by applying it to a new elevated 
urban arterial. Promising results were reported, with an average prediction error of 
4.5%. However, it  is important to acknowledge that  the developed models serve as 
proof-of-concept models as they are based on data consolidated from two elevated 
urban corridors. For model generalization, data from multiple elevated urban corri-
dors should be considered.

The models can be valuable to road authorities during the design phase to check for 
any design inconsistencies that could be avoided. It is not common to test the operat-
ing speed profiles of drivers during the design phase, especially on high-speed urban 
arterials.

While this study attempted addressing specific research objectives related to devel-
oping operating speed models for urban arterial roads using ANN, it has triggered 
several research questions. Future research in this direction could contribute further 
to this point including the following:
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1. Extending the used database to develop the operating speed model to incorporate 
more variability in road geometry (specifically curve radii, lane widths, speed limits).

2. Incorporating other variables that may impact operating speeds such as pavement 
condition.

3. Training and testing the dataset under other conditions such as lighting conditions 
and access points on the road segments.

4. Correlating the operating speed behavior of drivers with crash occurrences on the 
road segments.

5. Incorporating time-dependent variables such as traffic conditions for a wider scope 
of research study besides free-flow conditions.

6. Using the results of this study to provide recommendations to road authorities on 
suggested speed limits, suggested road signage requirements, and suggested traffic 
management procedures to guide driver’s speed choice to be suitable to the align-
ment driven.
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